用户名: 密码: 验证码:
双电机混合动力系统参数匹配与协调控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结合“十一五”国家“863”计划重大项目(2008AA11A140)“一汽解放牌混合动力客车新型整车技术开发”和吉林省、一汽集团、吉林大学联合行动项目“一汽第二代混合动力客车关键技术预研”,本文研究了一种双电机与变速器集成一体设计的深混混合动力系统。针对目前国内外混合动力汽车开发,特别是国内混合动力汽车开发存在的问题,主要是参数匹配的问题,混合动力系统AMT自身固有的问题,混合动力系统多动力源的控制问题,本文提出了新的参数匹配与控制方法,以提高混合动力系统的实际运行效率,完善混合动力系统参数优化匹配理论与控制方法。全文包括五个方面的研究内容。
     首先,本文建立了基于AVL/CRUISE与MATLAB/SIMULINK联合仿真的混合动力汽车正向仿真开发平台,研究了混合动力汽车正向仿真模型的模型精度校验方法,建立了混合动力汽车仿真开发数据库,为混合动力汽车的理论研究、仿真分析、构型分析、参数匹配、节能专项分析和控制策略开发奠定了坚实的基础。
     其次,针对一般功率匹配方法存在的问题,即,只确定了动力源的功率,没有考虑动力源高效区位置,更没有考虑动力源高效区与循环工况功率需求的匹配,导致匹配的动力系统动力源实际运行效率较低。本文研究了一种功率匹配与效率匹配相结合的混合动力系统参数匹配方法,以功率匹配作为动力性约束条件,以效率匹配作为动力系统循环工况高效运行的经济性匹配目标,研究了发动机、电机高效区确定依据与表征方法,提出了混合动力汽车专用发动机,专用电机的设计依据和技术要求。使混合动力系统动力源高效区确定的转矩、转速范围在变速系统的作用下最大范围覆盖行驶工况的功率需求,保证混合动力系统动力源的高效运行,提高混合动力系统的节能潜力。
     第三,针对传统AMT自身存在的不能解决的问题,即,需要借助离合器的滑摩控制才能完成车辆起步的问题和在换档过程中动力中断和转矩突变的问题,研究了自动变速技术与混合动力技术协同化的综合协调控制方法。通过在AMT自动变速技术中融入混合动力控制技术,解决AMT的起步问题和AMT换档过程的动力中断和转矩突变问题,使双电机混合动力系统的有级变速器具有无级变速器的转矩输出特性,实现双电机混合动力系统的理想驱动特性,提高混合动力系统的综合性能。
     第四,根据双电机混合动力系统的多动力源特点,针对目前混合动力系统控制存在的问题,即,智能控制策略难于用于实车,实车采用的逻辑门限控制策略不能兼顾动力性与经济性,导致混合动力汽车对不同工况和不同驾驶员驾驶习惯的适应能力较差,依据自适应控制理论与滑模变结构控制理论,开发了双电机混合动力系统多动力源的自适应滑模变结构控制方法,研究了混合动力系统控制系统的逻辑结构,将动力系统分为起步控制、低速电动驱动控制、中高速发动机驱动控制、低速联合驱动控制、中高速联合驱动控制和再生制动控制,协调控制三动力源在实际驱动中的功率输出,发挥三动力源的高效区,提高双电机混合动力系统的自适应能力,实现双电机混合动力系统的节能目标。
     最后,根据论文研究需要,结合“863”项目、“联合行动”项目的进度要求,开发了双电机混合动力系统试验台架,并以此台架为基础开发了双电机混合动力系统原型车,通过台架和原型车的调试、试验,验证了本文研究的参数匹配方法,自动变速技术与混合动力技术综合协调控制方法和三动力源的能量管理与协调控制方法。仿真和试验表明,双电机混合动力汽车在整车动力性和经济性两方面都得到了很大的提高。
The deep mixed Plug-In hybrid power-train system that comprise dual-motor within the gearbox is studied in this paper, which is from the follow-up studies of the project sponsored by the state“863”high-tech program (No.2008AA11A140)“Development of New Vehicle Technologies for the JieFang Hybrid Electric Bus of FAW”and the jointed action project among Jilin province, FAW, and Jilin university“Pre-research on the Key Technologies for the Second Generation Hybrid Electric BUS of FAW”. Aiming at problems in the design of hybrid electric vehicle in the worldwide, especially in China, which are mainly located in parameter matching, inherent in the AMT of hybrid electric vehicle, and control of multiple power sources etc, the new methods of parameter matching and coordinated control of hybrid power-train system were proposed in this paper. The purpose of this study is to improve the efficiency of hybrid power-train system, perfect the parameter matching theory and control method of hybrid power-train system. Focusing mainly around the study of the hybrid power-train system parameter matching that include power matching and efficiency matching, the study on the ideal driving characteristics and dynamic coordinated control of dual-motor hybrid power-train system, the study on the energy manyment and coordinated control of multiple power sources of dual-motor hybrid power-train system, five aspects of research contents were proposed in this paper.
     1. The forward co-simulation platform of hybrid electric vehicle based on CRUISE and MATLAB/SIMULINK was established in this paper. The precision check method of co-simulation model was studied and the forward simulation model database was founded, which will be a valuable preparation for theoretical research, simulation analysis, configuration analysis, parameter matching, special energy-saving analysis and control strategy building for hybrid electric vehicle.
     2. Aiming at the questions of general power matching that determine the power of energy source, does not take into account the high efficiency area of energy source and also the matching between the high efficiency area and power requirements of driving cycle, which would lead to lower actual running efficiency of energy source, a new parameter matching method of hybrid power-train system that combine power matching and efficiency matching was proposed in the paper. The economic target of this method is to have the power-train working with high efficiency in driving cycle and the dynamic performance is just as the constraint of power matching. The design condition and characterization methods of high efficiency area of energy source were studied and the design principle and technical specifications for the special requirement of the engine and motor for hybrid power-train system were proposed. It would require the rpm range and torque range that decided by the high efficiency area cover the power need of driving cycle completely under the action of the gearbox, and make sure the high running efficiency of power source, and then the energy-saving, and emission reduction capability will be enhancing greatly.
     3. In order to solve the inherent questions of traditional AMT, such as, the vehicle could not start without the clutch sliding control, and the power interrupt and torque mutation while shifting, the comprehensive coordination control of automatic transmission technology and hybrid technology was studied and the hybrid control technology is combined into automatic transmission. It could make the variable transmission of dual-motor hybrid power-train system have the torque output characteristics of continuous variable transmission and realize the ideal driving characteristic and then the comprehensive performance of hybrid system.
     4. According to the theory of self-adaptive control and sliding mode variable structure control, the self-adaptive sliding mode variable structure control of dual-motor hybrid power-train system was developed to solve the existing problems of hybrid system control. For example, the intelligent control strategy could not be used in the actual vehicle control, the logic threshold control strategy used in the vehicle could not take into account both the economic and dynamic of vehicle, which would lead to less desired adaptive capability of hybrid electric vehicle for difference driving cycles and difference driver’habit. The self-adaptive control and sliding mode variable structure control divides the power-train control into starting control, electric drive control in low speed, engine drive control in high speed, united drive control in low speed, united drive control in high speed and regenerative braking control. It could coordinate and control the power output of the three power source of dual-motor hybrid system and enhance the self-adaptive ability of dual-motor hybrid system to achieve the energy-saving and emission reduction targets.
     5. The dual-motor hybrid system testing bench was build to meet the requirements of the PhD thesis and also the schedule requirements of the projects. The prototype vehicle of dual-motor hybrid system was also build based on the testing bench. The parameter matching method, coordinate control method of automatic transmission technology and hybrid technology, the self-adaptive sliding mode variable structure control of dual-motor hybrid power-train system were tested and verified with the test bench and the vehicle prototype. Simulation and testing results show that the economic and dynamic of dual-motor hybrid electric vehicle have been improved dramatically.
引文
[1]朱业云.浅析中国替代能源汽车的发展[C].中国汽车工业协会燃料与润滑油分会第十四届年会论文集. 2010:90-93.
    [2]张金宝,梁荣光.汽车新能源的研究现状及应用[J].内燃机. 2007(5):49-51.
    [3]陈清泉,孙逢春.现代电动汽车技术[M].北京:北京理工大学出版社, 2002.
    [4] C. C. CHAN. The State of the Art of Electric and Hybrid Vehicles. PROCEEDINGS OF THE IEEE. VOL. 90, NO.2, FEBRUARY 2002:247-275.
    [5]商国华.欧洲柴油车排气净化系统的最新技术动向[J].环境保护. 2001(5):32-36.
    [6]杨妙梁,京都议定书与欧洲柴油轿车发展动向[J].上海汽车. 2005(6):35-38.
    [7] Sanjaka G, Wirasingha, Nige Schofield and Ali Emadi. Plug-in hybrid electric vehicle developments in the US: trends, barriers, and economic feasibility[J]. IEEE Vehicle Power and Propulsion Conference (VPPC), September 3-5, 2008.
    [8] Sanjaka G. Wirasingha, Nige Schofield and Ali Emadi. Plug-in hybrid electric vehicle developments in the US: trends, barriers, and economic feasibility. Vehicle Power and Propulsion Conference (VPPC), September 3-5, 2008.
    [9] Manfred Mitschke,Henning Wallentowitz[德].汽车动力学(第四版)[M].陈萌三,余强译.北京:清华大学出版社, 2009.
    [10]何洪文.混合动力车辆驱动系研究和控制策略分析[D].北京:北京理工大学, 2003.
    [11] http://avt.inl.gov/hev.shtm.
    [12] http://en.wikipedia.org/wiki/Hybrid_electric_vehicle.
    [13] Toyota Hybrid System. Toyota Press Information’97. Prius Product Information, 2000.
    [14]周泉.丰田公司的混合动力系统THSII[J].汽车电器. 2005(7).
    [15] Koichiro Muta, Makoto Yamazaki and Junji Tokieda, Development of New Generation Hybrid System THS II Drastic Improvement of Power Performance and Fuel Economy.SAE 2004-01-0064,2004.3.
    [16] Brendan Conlon, Comparative Analysis of Single and Combined Hybrid Electrically Variable Transmission Operating Modes. SAE 2005-01-1162, 2005.
    [17] Jerome Meise,An Analytic Foundation for the Toyota Prius THS-II Powertrain with a Comparison to a Strong Parallel Hybrid-Electric Powertrain. SAE 2006-01-0666, 2006.
    [18] Chiaoting Li and Huei Peng. Optimal Configuration Design for Hydraulic Split Hybrid Vehicles. 2010 American Control Conference Marriott Waterfront, Baltimore, MD, USA June 30-July 02, 2010.
    [19]于永涛.混联式混合动力车辆优化设计与控制[D].吉林大学博士学位论文. 2006.
    [20] Jinming Liu, Huei Peng and Zoran Filipi, Modeling and Analysis of the Toyota Hybrid System, Proceedings of the 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics Monterey, California, USA, 24-28 July, 2005:134-139.
    [21]葛安林,吴锦秋,林明芳.汽车动力传动系统参数的最佳匹配[J].汽车工程. 1991(1):35-42.
    [22]王庆年,何洪文,李幼德等.并联混合动力汽车传动系参数匹配[J].吉林工业大学学报. 2000, 30(1): 72-75.
    [23]何仁,高宗英.汽车传动系最优匹配评价指标的探讨[J].汽车工程. 1996(1):53-60.
    [24]刘惟信,戈平,李伟.汽车发动机与传动系参数最优匹配的研究[J].汽车工程1991(2): 65-72.
    [25]曾小华.混合动力汽车节能机理研究与参数设计方法研究[D].吉林大学博士学位论文, 2006.
    [26]初亮.混合动力总成的控制算法和参数匹配研究[D].吉林大学博士学位论文, 2002.
    [27]刘明辉.混合动力客车整车控制策略及总成参数匹配研究[D].吉林大学博士学位论文, 2005.
    [28]王加雪,王庆年,吴栋,杨钫,赵子亮.插电式混合动力客车功率匹配与仿真.吉林大学学报(工学版). 2010(6):1465-1472.
    [29] Mikhai Granovskii, Ibrahim Dincer, Marc A. Rosen. Economic and environmental comparison of conventional, hybrid, electric and hydrogen fuel cell vehicles. Journal of Power Sources 159 (2006) 1186-1193.
    [30] Sam Golbuff. Design Optimization of a Plug-In Hybrid Electric Vehicle. SAE, 2007-01-154.
    [31] Galen J, Suppes. Plug-In HEV Roadmap to Hydrogen Economy. SAE, 2005-01-3830.
    [32] M. BOUJELBEN, R. TRIGUI, F. BADIN, S. ARDIZZONE, D. ESCUDIE. Modeling and Optimization of a Plug-in Hybrid Urban Microbus. IEEE VPPC 2008, Harbin China.
    [33] Koji Imai, Takashi Ashida Yan Zhang, and Shigeyuki Minami. EV Range Extender:Better Mileage Than Plug-in Hybrid. IEEE VPPC 2008, Harbin China.
    [34] Sanjaka G. Wirasingha, Nigel Schofield and Ali Emadi. Feasibility analysis of converting a Chicago Transit Authority (CTA) transit bus to a plug-in hybrid electric vehicle. IEEE VPPC 2008, Harbin China.
    [35] Yimin Gao and Mehrdad Ehsani. Design and Control Methodology of Plug-in Hybrid Electric Vehicles. IEEE VPPC 2008, Harbin China.
    [36] Xie Hui and Ding Yunbo. The Study of Plug-In Hybrid Electric Vehicle Power Management Strategy Simulation. IEEE VPPC 2008, Harbin China.
    [37] Jeffrey Gonder, Tony Markel. Energy Management Strategies for Plug-In Hybrid Electric Vehicles. SAE,2007-01-0290.
    [38]武小兰,王军平,曹秉刚,边延胜.充电式混合动力电动汽车动力系统的参数匹配[J]. 2008,30(12):1095-1098.
    [39] Lucy Sanna. Driving the solution: the plug in hybrid vehicle. EPRI Journal. Nov. 2005, pp. 10-17.
    [40] Fritz R. Kalhammer, Haresh Kamath, Mark Duvall, Mark Alexander,and Bryan Jungers,. Plug-in hybrid electric vehicles: promise, issues and prospects. EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium. Stavanger, Norway, May 2009, pp.1-11.
    [41]葛安林,车辆自动变速理论与设计[M].北京:机械工业出版社. 1991.
    [42]张国胜,牛秦玉,方宗德,杨剑.最佳燃油经济性换档规律理论及其应用研究[J].中国机械工程. 2005(5): 446-449.
    [43]肖耘亚.客车专用变速器动力性匹配的研究[D].湖南大学硕士学位论文. 2004.
    [44]周学建,付主木,张文春,周志立.车辆自动变速器换档规律的研究现状与展望[J].农业机械学报. 2003,34(3): 139-141.
    [45]葛安林,李焕松,武文治等.动态三参数最佳换档规律的研究.汽车工程. 1992, 14 (4) : 239-247.
    [46]张勇,刘杰,宋健,卢新田.汽车不同质量参数的最佳动力性换档规律[J].同济大学学报. 2002,30(9): 1009-1102.
    [47]宋国民,王锦雯,何仁.基于模糊综合评判的汽车换档规律研究[J].江苏理工大学学报. 1998, 19(2):27-31.
    [48]余志生.汽车理论[M].北京:机械工业出版社,2000.
    [49]王伟,王庆年,王鹏宇,于远彬.基于车辆循环工况并联混合动力汽车感应电机额定功率和效率的匹配[J].吉林大学学报(工学版). 2008, 2(38):12-17.
    [50]曾小华,王庆年,李 骏,王伟华,赵子亮.城市混合动力客车功能样车的典型模式调试及动态过程分析[J].汽车工程. 2005, 27(5):575-578.
    [51]刘志茹.混合动力汽车动态过程主动控制研究[D].吉林大学博士学位论文, 2006.
    [52]周磊,罗禹贡,杨殿阁,李克强,连小珉.混联式混合动力车多能源动力控制系统的开发[J].机械工程学报. 2007, 43(4):125-131.
    [53]郑毅.混合动力客车动力系统参数匹配与控制策略研究[D].广西大学硕士学位论文, 2007.
    [54]吉林省科技发展计划项目合同书“一汽解放牌混合动力客车新型整车技术开发”.2008.
    [55]国家高技术研究发展计划(863计划)课题任务合同书“一汽第二代混合动力客车关键技术预研”.2007.
    [56]王子才,仿真科学的发展及形成[J].系统仿真学报. 2005(6):9-12.
    [57]李君,喻凡,殷承良,张建武.混合仿真技术在车辆电子控制系统快速开发中应用[J].汽车工程. 2001, 23(5): 306-310.
    [58]何洪文,孙逢春,余晓江.车辆动力-传动系性能仿真的方法研究[J].北京理工大学学报. 2002, 22(5): 582-586.
    [59]王行仁,文传源,李伯虎等.我国系统建模与仿真技术的发展[J].系统仿真学报, 2009, 21(21).
    [60]王行仁.建模与仿真的发展和应用[N].科技导报, 2007(2).
    [61]张翔.电动汽车建模与仿真的研究[D].合肥工业大学博士后研究工作报告. 2004.
    [62] Chan-Chiao Lin, Zoran Filipi et al. Integrated, Feed-Forward Hybrid Electric Vehicle Simulation in SIMULINK and its Use for Power Management Studies. SAE Paper, 2001-01-1334.
    [63]邹渊,孙逢春,王军,何洪文.电动汽车用仿真软件技术发展研究[J].机械科学与技术, 2004, 23(7): 761-764.
    [64]王庆年,刘志茹,王伟华,曾小华,混合动力汽车正向建模与仿真[J].汽车工程, 2005,27(4):392-398.
    [65]童毅,欧阳明高.前向式混合动力汽车模型中传动系建模与仿真[J].汽车工程, 2003, 25(5): 419-423.
    [66] Aymeric R , Phil S , Maxime P. Validation Process of a HEV System Analysis Model: PSAT. Special Publication 1607, Warrendale, PA: SAE Press, 2001.
    [67]刘振军,赵海峰,秦大同.基于CRUISE的动力传动系统建模与仿真分析[J].重庆大学学报(自然科学版), 2005, 28(11):8-11.
    [68]王园,贺岩松,王保华.基于CRUISE的PHEV控制策略参数仿真[J].重庆大学学报(自然科学版), 2006, 29(12):22-29.
    [69]周苏,张晔,牛继高,王廷宏,陈凤祥.基于Cruise /Simulink的FCHEV燃料电池和动力蓄电池功率匹配研究[J].青岛大学学报(工程技术版), 2010, 25(4):20-27.
    [70]王锐,何洪文.基于Cruise的整车动力性能仿真分析[J].车辆与动力技术, 2009, 15(2):24-27.
    [71] Wang jiaxue, Wang qingnian, Zeng xiaohua. Forward Simulation Model Precision Study for Hybrid Electric Vehicle. IEEE ICMA 2009.
    [72]曾小华,王庆年,王伟华,初亮.基于ADVISOR软件的双轴驱动混合动力汽车性能仿真模块开发[J].汽车工程,2003(5):424-427.
    [73]黄贤广,何洪文.混合动力车辆动力系统建模与仿真[J].车辆与动力技术,2008(2):43-48.
    [74]浦金欢.混合动力轿车的控制策略与建模[J].上海交通大学学报, 2004, 38(11):1917-1921.
    [75]于俊伟.并联混合动力汽车传动系统建模机控制策略研究[D].武汉理工大学硕士学位论文,2005年.
    [76]胡彦超.工程车辆动力传动系统的建模与仿真[D].吉林大学硕士学位论文,2003.
    [77]朱庆林,王庆年,曾小华,于远彬,王鹏宇.基于V模式的混合动力汽车多能源动力总成控制器开发平台[J].吉林大学学报(工学版),2007(6)1242-1246.
    [78]郭孔辉.汽车操纵动力学[M].吉林科学技术出版社.1991.
    [79]刘舒燕,杨克俭,王少梅.系统仿真可信性评估理念与方法[J].武汉理工大学学报, 2002,24(5):98-101.
    [80]王维平,朱一凡,华雪倩等.仿真模型有效性确认与验证[M].长沙:国防科技大学出版社,1998.
    [81]魏华梁.系统仿真置信度研究中的若干问题与准则[J].系统仿真学报, 2000(1):39-42.
    [82] Velayas J M, Levary R R. Validation of simulation models using decision theory.SIMULATION,1987,87-92.
    [83]威鲁麦特(德).车辆动力学模拟及其方法[M].北京:北京理工大学出版社, 1998.
    [84] Ng H K, Vyas A D, Santini D J. The Prospects for Hybrid Electric Vehicles, 2005-2020:Results of a Delphi Study, Argonne National Laboratory, ANL/ES/CP-99612,1999.
    [85]周龙保,内燃机学[M].北京:机械工业出版社,1999.
    [86] K.福格特(民主德国).电机学-旋转电机设计[M].北京:机械工业出版社, 1986.
    [87] Mehrdad Ehsani(美), Yimin Gao, Sebastien E. Gay, Ali Emadi.现代电动汽车、混合动力电动汽车和燃料电池车—基本原理、理论和设计[M].北京:机械工业出版社,2008.
    [88] Fahim.A. Khalifa. Sobhy Serry Effect of Temperature Rise on the Performance of Induction Motors[J]. Computer Engineering & Systems, 2009: 549-552.
    [89] Williamson, Sheldon S. Efficiency modeling and analysis of power electronic converters and electric motor drives for parallel hybrid electric and fuel cell vehicles[D]. Illinois Institute of Technology, 2006.
    [90]葛安林,李焕松,武文治等.动态三参数最佳换档规律的研究[J].汽车工程, 1992,14(4):239-247.
    [91]过学讯,吴涛.汽车自动变速器在中国的发展现状及前景[J].汽车研究与开发,1999(6):7-10.
    [92]任传祥,程秀生,范跃祖,张吉国.汽车机械式自动变速器换档规律的动态评价方法研究[J].公路交通科技,2004(3):117-120.
    [93]雷雨龙,葛安林,秦贵和,范巨新,刘长春.提高电控机械式自动变速器换档品质实验方法的研究[J].中国公路学报,1999(2):95-99.
    [94]孔慧芳.电控机械变速器中传动与控制的关键技术研究[D].合肥工业大学博士学位论文,2007.
    [95]周云山.汽车电子控制技术[M].北京:机械工业出版社,2004.
    [96]王红岩.金属带式无级变速传动系统分析、匹配与综合控制的研究[D].吉林工业大学博士学位论文,1998.
    [97]周云山,裘熙定等.无级变速传动控制系统的数学模型[J].中国机械工程学报,1998.
    [98]薛殿伦,张友坤.金属带式无级变速器速比控制[J].农业机械学报,2003.
    [99]王加雪,基于CAN总线的金属带式无级变速器电液控制系统研究[D].吉林大学硕士学位论文,2007.
    [100] Ryuhei Kataoka, Kazuya Okubo and Toru Fujii. A Study on a Metal Pushing V-belt type CVT. SAE,2002-01-0697.
    [101] Talcheol Kim and Hyunsoo Kim,Jaeshin Yi and Heebock Cho. Ratio Control of Metal Belt CVT. SAE,2000-01-0842.
    [102]葛安林,雷雨龙,高义峰等.电控机械式自动变速器车辆坡上起步控制研究[J].汽车工程,1998,20(3):150-155.
    [103]姚晓涛,秦大同,刘振军.双离合器自动变速器起步控制仿真分析[J].重庆大学学报(自然科学版),2007,30(1):13-17.
    [104].Toshimichi Minowa, Tatsuya, Ochi, Hiroshi Kuroiwa. Smooth Gear Shift Control Technology for Clutch-to-Clutch Shifting [J]. SAE,1999-01-1054.
    [105] Shushan Bai, Robert Moses, Todd Sehanz. Development of a New Clutch-to-Clutch Shift Control Teehnology [J]. SAE,2002-01-1252.
    [106]雷雨龙,葛安林,李永军.离合器起步过程的控制策略[J].汽车工程,2000,22(4):266-269.
    [107]李永军,陈树星,崔勇.机械式自动变速器起步过程综合控制[J].汽车工程, 2003,25(2):178-181.
    [108]王加雪,王庆年,周云山,王晓昱.基于发动机外特性的无级变速器速比控制方法研究[J].汽车技术,2009(3):1-4.
    [109]牛铭奎,程秀生,高炳钊,葛安林,徐彩琪.双离合器式自动变速器换档特性研究[J].汽车工程,2004(4):453-457.
    [110]吴光强,杨伟斌,秦大同.双离合器式自动变速器控制系统的关键技术[J].机械工程学报,2007(2):13-19.
    [111]杨伟斌,陈全世,吴光强,秦大同.双离合器式自动变速器起步的智能控制及性能仿真[J].机械工程学报,2008(11)178-185.
    [112] Uwe Wagner and Alfons Wagner. Electrical Shift Gearbox (ESG)–Consistent development of Dual Clutch Transmission to a Mild Hybridsystem. SAE,2005-01-4182.
    [113] Zhang Song, Wu Guangqiang, Zheng Songlin. Study on the Energy Management Strategy of DCT-based Series-Parallel PHEV. 2010 International Conference on Computing, Control and Industrial Engineering:25-29.
    [114] Jalil N,Kheir N A,Salman M. A rule-based energy management strategy for a series hybrid vehicle.Proc of the American Control Conference, Albuquerque,New Mexico, USA, 1997:689-693.
    [115] Theo Hofman, Man, Steinbuch. Rule-based energy management strategy for a series hybrid vehicle.Int. J. Electric and Hybrid Vehicles,2007,1(1).
    [116] Liang Chu, Qingnian Wang, Minghui Liu et al. Control Algorithm Development for Parallel Hybrid Transit Bus. IEEE, 2005.
    [117] Ehsani M, Gao Yimin, Butler K L. Application of electrically peaking hybrid (ELPH) propulsion system to a full-size passenger car with simulated design verification. IEEE Transactions on Vehicular Technology, 1999, 48(6): 1779-1787.
    [118] Salman M A, Schouten N J, Kheir N A. Control strategies for parallel hybrid vehicles.Proc American Control Conference, Chicago, USA, 2000. 524-528.
    [119] Wang A, Chen Y, Zhang R. A novel design of energy management system for hybrid electric vehicles using evolutionary computation. Proc of the 18th International Electric Vehicle Symposium, Berlin, Germany, 2001.
    [120] Niels J. Schoutena, Mutasim A. Salmanb, Naim A. Kheira. Energy management strategies for parallel hybrid vehicles using fuzzy logic. Control Engineering Practice, 11(2003), 171-177.
    [121] Niels J. Schouten, Mutasim A. Salman, and Naim A. Kheir. Fuzzy Logic Control for Parallel Hybrid Vehicles. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 10, NO. 3, MAY 2002.
    [122]浦金欢,殷承良,张建武.并联型混合动力汽车燃油经济性最优控制[J].上海交通大学学报,2006,40(6):947-121.
    [123] Chan-Chiao Lin,Huei Peng, Jessy W. Grizzle et al. Control System Development for an Advanced-Technology Medium-Duty Hybrid Electric Truck. SAE,2003-01-3369,2003.
    [124] Johnson V H, Wipke K B, Rausen D J. HEV control strategy for real-time optimization of fuel economy and emissions. SAE,2000-01-1543,2000.
    [125] Joonyoung Park, Youngkug Park, Jahng-Hyon Park. Real-Time Powertrain Control Strategy for Series-Parallel Hybrid Electric Vehicles. SAE,2007-01-3472,2007.
    [126] Naim A. Kheir a, Mutasim A. Salman b, Niels J. Schouten. Emissions and fuel economy trade-off for hybrid vehicles using fuzzy logic. Mathematics and Computers in Simulation 66 (2004) 155-172.
    [127] S. M. Mehdi Ansarey M, Mohsen Mohammadian, S. M. Taghi Bathaee. Power Flow Distribution For Hybrid Fuel Cell Vehicle Via Genetic Algorithm Method. SAE Paper 2004-01-3040, 2004.
    [128] Amir Poursamad, Morteza Montazeri. Design of genetic-fuzzy control strategy for parallel hybrid electric vehicles. Control Engineering Practice 16 (2008) 861-873.
    [129] Lee H-D, Sul S-K. Fuzzy-logic-based torque control strategy for parallel-type hybrid electric vehicle. IEEE Transactions on Industrial Electronics, 1998, 45(4): 625-632.
    [130] Paganelli G, Ercole G, Brahma A, et al. General supervisory control policy for the energy optimization of charge-sustaining hybrid electric vehicles. JSAE Review, 2001, 22(4): 511-518.
    [131].Michele Anatone, Roberto Cipollone et al. Control-Oriented Modeling and Fuel Optimal Control of a Series Hybrid Bus. SAE,2005-01-1163, 2005.
    [132] Laura V. P′erez, Guillermo R. Bossio et al. Optimization of power management in an hybrid electric vehicle using dynamic programming. Mathematics and Computers in Simulation 73 (2006) 244-254.
    [133] Antonio Sciarretta, Michael Back, Lino Guzzella. Optimal Control of Parallel Hybrid Electric Vehicles. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 12, NO. 3, MAY 2004.
    [134]王伟华.并联混合动力汽车的控制[D].长春:吉林大学,2006.
    [135]高为炳.变结构控制理论基础[M].中国科学技术出版社,1990.
    [136]高为炳.变结构控制的发展与现状[J].控制与决策,1993,8(4):241-248.
    [137]高为炳.非线性系统的变结构控制[J].自动化学报,1989,15(5):408-415.
    [138]康宁.滑模变结构理论的研究与运用[D].合肥工业大学硕士学位论文, 2002.
    [139]李清泉编著.自适应控制系统理论、设计与应用[M].科学出版社,1990.
    [140]孙德保,汪秉文.自适应控制原理[M].华中理工大学出版社,1990.
    [141]谢新民,丁锋编著.自适应控制系统[M].清华大学出版社,2002.
    [142]吴广玉等编著.系统辨识与自适应控制[M].哈尔滨工业大学出版社,1987.
    [143]姚琼荟,黄继起,武汉松编著.变结构控制系统[M].重庆大学出版社,1997.
    [144]田宏奇著.滑模控制理论及其应用[M].武汉出版社,1995.
    [145]章仁华,马静.航空发动机准滑动模态变结构控制[J].计算机仿真,2011,28(1):103-106.
    [146]胡良军,刘付.大型卫星姿态机动的滑模变结构控制技术[J].上海航天,2011(1):23-27.
    [147]王洪强,方洋旺,伍友利.滑模变结构控制在导弹制导中的应用综述[J].飞行力学,2009,27(2):11-15.
    [148]马传翔杨名利.双轮自平衡机器人的滑模变结构控制研究[J].微计算机信息,2011,27(1):62-63.
    [149]王其东,章贵华,陈无畏,祝辉.基于滑模变结构控制的车辆动力学稳定性控制研究[J].中国机械工程,2009,20(5):523-625.
    [150] Shkolnikov I A, Shtessel Y B, Brown M D J. A second-order smooth sliding mode control [C]∥Proc 40th IEEE Conf on Decision and Control. Orlando, Florida, USA: IEEE Press,2001:2803-2808.
    [151]蒋日东,叶鲁卿,魏守平.变结构控制及其在水电站机组控制中的应用[J].水力发电学报,1992(1):28-37.
    [152]黄妙华.混合动力电动汽车多能源动力总成控制系统的研究与实现[D].华中科技大学博士学位论文,2002.
    [153]曾家有,陈洁,赵红超.自适应变结构控制的切换函数研究[J].航天控制, 2004,22(4):57-61.
    [154] Gang Tao, Ruiyun Qi, Chang Tan. A parameter estimation based adaptive actuator failure compensation control scheme. Journal of Systems Engineering and Electronics. Vol.22, No.1, February 2011,pp.1-11.
    [155] Ronghu, Zhongsheng. Optimal higher order learning adaptive control approach for a class of SISO nonlinear systems. Journal ofControl Theory andApplications3(2005)247-251.
    [156]吴宏鑫,袁著祉,王先来等.自适应控制技术的应用和发展[J].控制理论与应用,1992,9(2):105-115.
    [157]舒歌群,孙建民.自适应模糊控制车辆悬架系统试验[J].天津大学学报,2006,39(6):651-656.
    [158]赵子亮,李骏,刘明辉等. CA6100SH8并联混合动力客车工作模式与功率分配研究[J].汽车工程,2007,29(8):664-668.
    [159] Satish Rajagopalan and Thomas G. Habetler Monitoring and Diagnostics for Electric Drivetrain Components in HEVs. SAE 2003-01-1360
    [160] Tomoyuki Hanyu, Hiroshi Iwano, Hiraku Ooba, Shinobu Kamada. A Study of the Power Transfer Systems for HEVs. SAE 2006-01-0668
    [161] Sorin C. Bengea. Optimal control of switched/hybrid system with applications to the control o hybrid electric vehicles [D]. West Lafayette: Purdue University, 2004.
    [162]金启前,混合动力客车试验与评价问题研究[D].长春:吉林大学, 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700