用户名: 密码: 验证码:
铝合金高防护性阳极氧化复合膜及其原位偶合着色研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铝合金作为一种性能优异的轻质金属材料在建筑、机械、电子、航空及军事领域被广泛使用,应用领域的增加亦对铝合金表面的防护性能和装饰效果提出了更高的要求。铝合金表面可经阳极氧化形成具有较高耐磨性和耐蚀性的阳极氧化膜(AAO膜),还可通过多种方式对其增强改性和表面着色,以提高防护性能和装饰效果。近年来,对AAO膜的结构、形成机理及着色工艺的探索一直是该领域的研究热点之一。
     本文采用电化学方法,在含有无机酸和有机酸的混和电解液中加入带负电荷的含硅超微粒子和辅助添加剂,从而在铝合金表面形成具有高防护性能的掺硅复合AAO膜。与普通AAO膜相比,这种新型复合膜结构紧密、孔隙率低、硬度更高、防护效果优良、孔径分布均匀且易于着色。微观分析表明:掺硅复合AAO膜中硅元素主要是以NaAlSi_3O_8长石型结构存在。
     采用N,N′-二苯基丙二酰胺衍生物与取代苯重氮盐反应的方法得到了9种苯偶氮N,N′-二苯基丙二酰胺衍生物(AZO),核磁共振谱和质谱分析表明其中7种为新化合物。通过原位偶合反应的方法,将以上产物嵌入到掺硅复合AAO膜的微孔中从而形成耐光、色艳、色调丰富的着色膜。该着色膜克服电解着色和整体着色法获得的着色膜颜色发暗、色调单一、装饰效果不佳等缺点,同时具备化学染色法所不具备的优异耐候性能。配方的优化试验结果表明硫酸体系交流氧化制得的复合AAO膜着色效果最佳,呈均匀的黄色,其中电流密度和反应时间对着色效果影响较小,而温度影响较大,最佳着色反应温度在25℃~35℃。红外和电镜等微观分析表明:原位着色法的反应机理是先将有机颜料一组分(Ⅰ)通过化学键合和物理吸附作用,沉积在复合AAO膜孔中,作为有机颜料另一组分(Ⅱ)的锚基;然后在复合AAO膜上Ⅱ与锚基Ⅰ进行反应,生成有机颜料(Ⅲ),从而使Ⅲ象铆钉一样紧紧嵌入复合AAO膜的微孔中。
     对复合AAO着色膜的防护性能测试结果表明:336h耐盐雾实验腐蚀评级为10级,10周期(240h)的耐交变湿热实验试片膜层无变化,28d(672h)耐霉菌实验长霉为0级,连续1Y(365天)自然气候暴露实验腐蚀评级为10级。复合着色膜光谱性能测试结果表明:着色剂AZO在复合膜中光反射情况和从膜中剥离得到的着色剂在溶液中的光吸收情况相吻合,表现在380~480nm(λmax)有吸收,其互补色对应黄及黄绿色。总之,该膜防护性能优异,可满足多种严酷条件下(如潮湿、含工业气体、盐分和尘埃的大气中)的应用要求;装饰效果良好,可同时具备电解着色技术形成的着色膜的耐光性和化学染色(有机着色)技术形成的着色膜的丰富色调和艳丽色泽。本文中着色复合膜的制备工艺及方法为铝合金表面阳极氧化膜的增强改性和着色研究提供了一条具有特色的新思路,进一步推动了AAO着色膜技术的发展。
Aluminium anodizing oxide (AAO) film is a kind of porous ceramic film withexcellent wear resistance and corrosion resistance, which could be fabricated byanodizing the surface of aluminium alloy and be coloured with several coloringmethods to obtain colour film with good protective and decorative fuction. With theextensive uses of aluminum and alloy thereof in architecture, aviation and military,the requirements for the protective performance and decorative effect of AAO fiombecame much more stringent. Therefore, investigation of the AAO film and coloringtechnic was the hotpoint in this field.
     The main routes at present to improve the protective performance of AAO filmare hard anodic oxidation or composite anodic oxidation. Hard anodic oxidationcould form a compact hard oxide film with high hardness, high corrosion resistanceand high wear resistance on the surface of aluminum or alloy thereof by applyingdifferent oxidation electrolyte or changing the wave shape of power source. However,hard anodic oxidation films also give a poor mechanical strength and not easy topigment. Composite anodic oxidation is a kind of new route developed recently.When some insoluble powders such as Al2O3and TiO3were added into the oxidationsolution, the insoluble powder can be deposited on the film after electric reactionwith the oxidation film, which could improve the hardness, wear resistance andcorrosion resistance of oxidation film. Unfortunately, the composite anodic oxidationis not easy to be electrolytic colored twice. Generally, there are three colouringmethods for AAO film i.e. electrolytic colouring, chemical colouring and wholebody colouring. Films by electrolytic colouring have high corrosion resistance andlightfastness, but also show less varieties, dark tones and poor brilliance. Chemicalcolouring has the advantages of simple process, easy operation and brilliant colour,but the obtained film has poor lightfastness and weather resistance thus is notsuitable for use out-of-doors. The whole body colouring could obtain films withexcellent corrosion resistance, moisture resistance and lightfastness, but also has less varieties and poor brilliance, as well the high energy consumption. To improve theprotective performance and decorative effect, more research has emphasized on theprocess, reaction mechanism, structure and colouring routes of AAO film.
     When electrolytic mechanical route has been applied, several kinds ofnegatively charged silicon-containing superfine particle have been added toelectrolyte containing inorganic acid and organic acid to form a poroussilicon-containing composite AAO film on surface of aluminum or alloy. Accordingto the structure of AAO film obtained from different electrolyte such as inorganicacid, organic acid and alkali, the electrolyte composition and process technic tofabricate porous silicon-containing AAO film have been established. Furthermore,the structure and composition of AAO film have also been investigated. The resultsshow that the silicon contained in AAO film exists primarily of NaAlSi3O8withfeldspar structure. and the obtained composite AAO film gives apparent density of3.53g·cm~(-3), porosity of10.6%and thickness of over20μm.
     In the systhsis process for dying agents, malonic acid diethyl ester was used andreact with aniline derivant to prepare several kinds of N,N’-diphenylmalondiamidederivant. N,N’-diphenylmalondiamide derivant could further react with substitutedbenzene diazonium salt resulting in nine kinds of azobenzeneN,N’-diphenylmalondiamide derivant of which seven kinds are new compound. Thefactors influencing the synthesis of N,N’-diphenylmalondiamide derivant andazobenzene N,N’-diphenylmalondiamide derivant have been investigated detailly.Furthermore, UV-Vis spectra, IR spectra, HNMR and MS have been used to analyzethe structure of products.
     When azobenzene N,N’-diphenylmalondiamide derivant was embedded into themicropores of silicon-containing composite AAO film by in situ coupling reaction, akind of composite colouring film with high lightfastness, excellent brilliance andabundant varieties can be obtained. According to the research on the relationbetween structure and preparation condition, the optimal technic condition has been established. To investigate the structure of synthesized dying material, the colouringfilm was stripped from the surface of aluminum by chemical method and dyingmaterial was then obtained by extraction method. According to the analysis byUV-Vis spectra, IR spectra, HNMR and MS, it is determined that the dying materialis azobenzene N,N’-diphenylmalondiamide derivant
     The protective and decorative performance of silicon-containing compositecoloured AAO film has been investigated by a series of tests. After336h salt fog test,the grade of composite AAO film is level10. After ten period (240h) alternating hotand humid experiment, the composite AAO film gives no change. After28day(672h) mould test, the grade of composite AAO film is classified of level0. After1year (365day) physioclimate exposion test, the grade of composite AAO film isclassified of level10. Spectrum analysis results show that the reflect spectrum ofsilicon-containing composite AAO film is in line with the absorption spectrum ofcolorant in solution. Absoption is at λmax of380-480nm and the complementarycolours are yellow or yellow green, which is in accordance with visual inspection.
     Tests and analysises results show that, the coloured silicon-containingcomposite AAO film by in situ chemical reaction colouring method can meet thehigh requirement of protection at different stringent condition, such as humid,industrial gas contained, high salinity and dusted atmosphere. Furthermore,composite AAO film not only gives the high corosion resistance and lightfastnessequal to that of coloured film from electrolytic coloring method, but also shows theabundant varieties and bright colour equal to that of coloured film form chemicalcolouring method. Therefore, the in situ chemical reaction colouring method is aimportant progress of process and principle for high protective and decorativecomposite film on aluminum surface and will push forward the industrialdevelopment in this field significantly.
引文
[1] Yang W B, Zhu S F, Zhao B J, Ye J, Ni J, B Z W, Chen X M. Preparation and Characterizationof Anodic Aluminum Oxide Films with Nanopore Arrays[J]. Journal of Inorganic Chemistry,2003,19(4):366-370.
    [2] Nagayana N. Microstructure of Rulticell Anodic Oxide Film on Aluminum[J]. Journal of theMetal Finishing Society of Japan,1987,38(10):495-498.
    [3] Honicke D. Slit Structure of Anodic Oxide Film on Aluminum[J]. Journal of the Metal FinishingSociety of Japan,1989,65(11):1154-1157.
    [4]王莉贤,卢敏,梁燕萍.铝基化学高阻化学转化膜的制备及应用[J].上海应用技术学院学报,2001,1(1):68-71.
    [5] Han C Y, Xiao Z L, Wang H H, Willing G A. Anodic Aluminum Oxide Membranes AsTemplates for Nanoscale Structures[J]. Plating and Surface Finishing,2004,(6):40-45.
    [6]徐洪祥,袁淑娟,潘志峰,李清山.多孔阳极氧化铝膜的研究进展[J].聊城师院学报(自然科学版),2001,(4):41-43.
    [7]朱祖芳.铝型材阳极氧化工艺技术现状和展望[J].材料导报,1993,(3):26-31.
    [8]任刚,陈皓明.多孔型阳极氧化铝膜在纳米结构制备方面的研究和进展[J].材料导报,2002,(10):45-48.
    [9]刘复兴,夏正才.铝阳极氧化膜微观结构研究[J].材料保护,1994,27(10):19-22.
    [10]徐洮,赵家政,陈建敏,党鸿辛,姜节超.铝阳极氧化膜多孔质结构的电镜研究[J].电子显微学报,1994,(4):276-280.
    [11]胡正平.铝阳极氧化膜及结构[C].世界有色金属99全国有色金属加工学术会论文集.1999.96-97.
    [12]阎康平,涂铭旌.纳米微孔铝阳极氧化膜的制备及性能[J].功能材料,2000,(3):294-295.
    [13]马胜利,井晓天,葛利玲.铝阳极氧化膜的显微组织与性能研究[J].热加工工艺,1999,(1):10-12.
    [14] Ghorbani M, Nasirpouri F, Zad A I, Saedi A. On the growth sequence of highly orderednanoporous anodic aluminium oxide[J]. Materials&Design,2006,27(10):983-988.
    [15] Van Quy N, Hoa N D, Yu W J, Cho Y S, Choi G S, Kim D. The use of anodic aluminium oxidetemplates for triode-type carbon nanotube field emission structures toward mass-productiontechnology[J]. Nanotechnology,2006,17(9):2156-2160.
    [16] Singh G K, Golovin A A, Aranson I S. Formation of self-organized nanoscale porous structuresin anodic aluminum oxide[J]. Physical Review B,2006,73(20):5422-5434.
    [17] Timinskas A, Cesuniene A, Kurtinaitiene M, Kalinicenko A. Investigation of Co/Cu systemdeposition on continuous metal electrodes and into the pores of anodic aluminium oxide[J]. ChemineTechnologija,2006,(1):52-58.
    [18] Alaouie A M, Smirnov A I. Formation of a ripple phase in nanotubulardimyristoylphosphatidylcholine Bilayers confined inside nanoporous aluminum oxide substratesobserved by DSC[J]. Langmuir,2006,22(13):5563-5565.
    [19] Zakeri R, Kohli P. Preparation of programmed synthesis of anodic aluminum oxide nanoporesand corresponding metallic nanowires[J].1st ACS National Meeting, Atlanta, GA, United States, March26-30,2006,231.
    [20] Mukhurov N I, Efremov G I. Modeling and development of prospective microelectromechanicalstructures based on anodic aluminum oxide[J]. Nano-I Mikrosistemnaya Tekhnika,2006,(1):27-34.
    [21] Riveros G, Green S, Cortes A, Gomez H, Marotti R E, Dalchiele E A. Silver nanowire arrayselectrochemically grown into nanoporous anodic alumina templates[J]. Nanotechnology,2006,17(2):561-570.
    [22] Miao J Y, Cai Y, Chan Y F, Sheng P, Wang N. A novel carbon nanotube structure formed inultra-long nanochannels of anodic aluminum oxide templates[J]. Journal of Physical Chemistry B,2006,110(5):2080-2083.
    [23] Tee J C, Ismail A F, Aziz M, Soga T. Influence-of catalyst preparation on synthesis ofmulti-walled cCarbon nanotubes[J]. Ieice Transactions on Electronics,2009,(12):1421-1426.
    [24] Abdollahzadeh M, Nasirpouri F, Parvini-Ahmadi N, Almasi M J. A comparison betweenself-ordering of nanopores in aluminium oxide achieved by two and three step anodic oxidation[C].International Nanotech Symposium and Exhibition in Korea,5th. Goyang, Republic of Korea:2007.1-5.
    [25] Lee W, Nielsch K, Goesele U. Self-ordering behavior of nanoporous anodic aluminum oxide(AAO) in malonic acid anodization[J]. Nanotechnology,2007,18(47):5713.
    [26] Say W C, Chen C C. Formation of tin whiskers and spheres on anodic aluminum oxidetemplate[J]. Japanese Journal of Applied Physics Part1-Regular Papers Brief Communications\&Review Papers,2007,46(11):7577-7580.
    [27] Kim B, Park S, Mccarthy T J, Russell T P. Fabrication of ordered anodic aluminum oxide using asolvent-induced array of block-copolymer micelles[J]. Small,2007,3(11):1869-1872.
    [28] Yim S, Bonhote C, Lille J, Wu T. Parameter effects for the growth of thin porous anodicaluminum oxides[C]. Electrochemical Processing in ULSI and MEMS3.2007.267-274.
    [29] Wang M, Han G, Thompson C V, Tan L K, Jin C S. Growth and characteristics of ZnO nanotubearrays on Si substrates by atomic layer deposition in anodic aluminum oxide[C]. Materials ResearchSociety Symposium Proceedings.2008.1109.
    [30] Bestetti M, Cavallotti P L, Franz S, Dell'Oro E, Paleari D. Nanoporous anodic aluminum oxide:synthesis and applications[J]. Galvanotecnica E Nuove Finiture,2007,17(1):20-22,24-26.
    [31] Shadrov V G, Nemtsevich L V. Magnetic nanostructures on the surface of anodic aluminumoxide.[J]. Fizika I Khimiya Obrabotki Materialov,2007,(2):56-64.
    [32] Yakovleva N M, Anicai L, Yakovlev A N, Dima L, Khanina E Y, Buda M, Chupakhina E A.Structural study of anodic films formed on aluminum in nitric acid electrolyte[J]. Thin Solid Films,2002,416(1-2):16-23.
    [33] Kuo H H, Wang Y M. Batch and spot repairs for color-anodized panels[J]. Plating and SurfaceFinishing,2005,92(7):34-37.
    [34] Kuo H H, Wang Y M, Iglesia-Rubianes L, Lee H Y, Kia S F. Interference-colored finishes forautomotive aluminum alloys[J]. Plating and Surface Finishing,2004,91(12):28-31.
    [35] Maha F S, Nagwa N E, Mervat M B. Electrolytic coloring of anodized aluminum: a kineticstudy[J]. Metal Finishing,1900,(3):29-31.
    [36]吉村长藏.ァムシニフウムのミユウ酸浴酸化におけてる難溶性粉體の添加效果[J].表面技術,1989,40(1):150.
    [37] Montgomery D C. Basic information on finishing processes[J]. Plating and Surface Finishing,2004,(10):8-10.
    [38] Stojan S D. Chemical oxidation of aluminun in chromic acid solutions[J]. Plating and SurfaceFinishing,2005,(3):45-49.
    [39]梁坤,梁成浩,王华,赵宏娜.铝及其合金着色技术的研究进展[J].电镀与涂饰,2005,(5):28-31.
    [40]王莉贤,潘安健,杨志强.纳米级铝阳极氧化膜的结构及电解着色性能[J].上海应用技术学院学报,2003,3(4):234-237.
    [41] Moutarlier V, Gigandet M P, Ricg L, Pagetti J. Electrochemical characterization of anodicoxidation films formed in presence of corrosion inhibitors[J]. Applied Surface Science,2001,183:1-9.
    [42] Dimogerontakis T, Tsangaraki-Kaplanoglou I. The influence of "Light green" additive on theanodizing of aluminum in sulfuric acid[J]. Plating and Surface Finishing,2003,90(5):80-82.
    [43] Li L C. AC anodization of aluminum, electrodeposition of nickel and optical propertyexamination[J]. Solar Energy Materlais and Solar Sells,2000,64:279-289.
    [44]卢敏,梁燕萍,王莉贤.铝电解着色工艺中形成氧化膜的方法.中国,87103213[P].1987.
    [45]柯国平.交流电铝阳极氧化的研究[J].电镀与精饰,1996,(3):15-18.
    [46]王为,任殿胜,郭鹤桐,高俊丽.交、直流铝阳极氧化多孔膜的组成及结构比较[J].天津大学学报,2000,(4):520-522.
    [47] Runge J M, Pomis A. Anodic oxide finishes: Relating engineering performance to microstructure\&hardness[J]. Plating and Surface Finishing,2003,90(6):60-64.
    [48]董丽珠,王敏.铝合金常温脉冲硬质阳极氧化新工艺[J].昆明理工大学学报,1999,(3):126-130.
    [49]安家菊,魏晓伟.大电流下铝合金快速硬质阳极氧化工艺的研究[J].电镀与涂饰,2005,(6):29-31.
    [50]任锐,贺子凯.铝硬质阳极氧化新工艺的研究[J].电镀与涂饰,2003,(4):11-13.
    [51]吴敏,孙勇.铝及其铝合金表面处理的研究现状[J].表面技术,2003,32(3):13-15.
    [52]曾凌三,梁东.难溶粉体对铝阳极氧化膜交流电解着色的影响[J].材料保护,1997,30(3):14-16.
    [53] Wang L X, Lu M L, Liang Y P. Study on composite Al oxide film with permanent protection[C].The3rd International Conference on Thin Physics and Applications. Shanghai:1997:189.
    [54]文斯雄.铝及其合金硫酸阳极化工艺的改进[J].电镀与凃饰,2003,23(1):57-60.
    [55]许旋.影响铝合金阳极氧化膜质量因素的研究[J].电镀与涂饰,2005,24(2):7-10.
    [56] Wang Y M, Kuo H H, Kia S. Effects of alloy types on the gloss of anodized aluminum[J]. Platingand Surface Finishing,2004,91(2):34.
    [57]罗胜联,曾祥勇,旷亚非,曾凌三.铝在硫酸溶液中的复合阳极氧化研究Ⅳ.添加SiC粉体硫酸溶液中铝的阳极氧化工艺[J].电镀与精饰,2002,(2):1-4.
    [58] Adiga S P, Zapol P, Curtiss L A. Atomistic simulations of nanoporous anodic aluminumoxide[C].2005MRS Fall Meeting. Boston, USA:2005.12.
    [59] Yin A, Xu J. Fabrication of highly-ordered and densely-packed silicon nano-needle arrays forbio-sensing applications[C].2005MRS Fall Meeting. Boston, USA:2005.111.
    [60] Geiculescu A C, Stevens J L, Strange T F. Nano-composite barrier anodic aluminum oxide forICD capacitors[C]. NSTI Nanotechnology Conference and Trade Show. Boston, MA, United States:2006.170-173.
    [61] Kang H D. Method for manufacturing field emitter electrode and field emitter electrodemanufactured thereby capable of enhancing uniformity and density of carbon nanotube emitters onsubstrate by performing anodizing process[C]. Materials Research Society Symposium Proceedings(2006). Repub. Korean Kongkae Taeho Kongbo:2006.155-156.
    [62] Kim J, Choi Y C, Bu S D. Formation process of dielectric alumina nanowires: three critical stepsdepending on etching rates of oxide layers in anodic aluminum oxide membrane[J]. Journal of theKorean Physical Society (Suppl.),2006,49:529-535.
    [63] Park S H, Lee Y W, Lee J K, Kim K B. The formation of porous anodic aluminum oxideconfined in m-size contact and trench patterns[J]. Electrochemical and Solid-State Letters,2006,9(12):31-33.
    [64] Park D J, Kim S H, Lee J H, Lee S H, Choa Y H. The change of mechanical properties for anodicaluminum oxide by heat treatment[J]. Key Engineering Materials,2006:317-318.
    [65] Le Coz F, Arurault L, Datas L. Chemical analysis of a single basic cell of porous anodicaluminium oxide templates[J]. Materials Characterization,2010,61(3):283-288.
    [66] Wang H, Wang K, Yang L, An Y, Cao Y. Synthesis of the one-dimensional BSA-conjugatednickel nano self-assembly with hierarchical structure by anodic aluminum oxide templates[J]. MaterialsLetters,2010,64(2):181-184.
    [67] Bertholdo R, Assis M C, Hammer P, Pulcinelli S H, Santilli C V. Controlled growth of anodicaluminum oxide films with hexagonal array of nanometer-sized pores filled with textured coppernanowires[J]. Journal of the European Ceramic Society,2010,30(2):181-186.
    [68] Kant K, Low S P, Marshal A, Shapter J G, Losic D. Nanopore Gradients on Porous AluminumOxide Generated by Nonuniform Anodization of Aluminum[J]. Acs Applied Materials\&Interfaces,2010,2(12):3447-3454.
    [69] Wang G, Chou S. Electrophoretic deposition of uniformly distributed TiO2nanoparticles usingan anodic aluminum oxide template for efficient photolysis[J]. Nanotechnology,2010,21(11):1139.
    [70] Sulka G D, Brzozka A, Liu L. Fabrication of diameter-modulated and ultrathin porous nanowiresin anodic aluminum oxide templates[J]. Electrochimica Acta,2011,56(14):4972-4979.
    [71] Garabagiu S, Mihailescu G. Thinning anodic aluminum oxide films and investigating theiroptical properties[J]. Materials Letters,2011,65(11):1648-1650.
    [72] Kim D, Kim Y, Kim B M, Ko J S, Cho C, Kim J. Uniform superhydrophobic surfaces usingmicro/nano complex structures formed spontaneously by a simple and cost-effective nonlithographicprocess based on anodic aluminum oxide technology[J]. Journal of Micromechanics andMicroengineering,2011,21(4):506.
    [73] Tran H, Wang H H. Characterization of anodic aluminum oxide films used as precursors forpreparation of carbon nanotubes[J]. Abstracts of Papers of the American Chemical Society,2011,241.
    [74] Oinern G E J, Shackleton R, Mamun S I, Fawcett D. Significance of novel bioinorganic anodicaluminum oxide nanoscaffolds for promoting cellular response[J]. Nanotechnology, Science andApplications,2011,4:11-24.
    [75] Rumiche F, Wang H H, Hu W S, Indacochea J E, Wang M L. Anodized aluminum oxide (AAO)nanowell sensors for hydrogen detection[J]. Sensors and Actuators, B: Chemical,2008,134(2):869-877.
    [76] Fan L X, Guo D L, Ren F, Fu Q, Jiang C Z. Substrate grain boundary effects on the ordering ofnanopores in anodic aluminum oxide[J]. Solid State Communications,2008,148(7-8):286-288.
    [77] Perez I, Robertson E, Banerjee P, Henn-Lecordier L, Son S J, Lee S B, Rubloff G W. TEM-basedmetrology for HfO2layers and nanotubes formed in anodic aluminum oxide nanopore structures[J].Small,2008,4(8):1223-1232.
    [78] Han C Y, Willing G A, Xiao Z, Wang H H. Control of the anodic aluminum oxide barrier layeropening process by wet chemical etching[J]. Langmuir,2007,23(3):1564-1568.
    [79] Lu M, Wang L X. A new development method of vertical magnetic recording dielectric thinfilm[J]. Materia1S Science Progress,1993,7(1):38-44.
    [80]杨培霞,安茂忠.预处理工艺对制备多孔阳极氧化铝膜的影响[J].材料工程,2005,(9):26-29.
    [81]周海晖,邓伟,陈昭智,彭春玉,旷亚非.不对称正负脉冲电流铝阳极氧化研究[J].电镀与精饰,2004,(5):1-5.
    [82]安成强,崔作兴,袁艳.铝阳极氧化厚膜的制备工艺研究[J].表面技术,2002,(1):30-31.
    [83]李琪敏,王炯敏.铝及其合金硬质阳极氧化整体着色工艺[J].材料保护,2003,(6):51-52.
    [84]徐洮,陈建敏,赵家政,冶银平.铝阳极氧化膜的扩孔处理[J].材料保护,1994,(9):18-22.
    [85]郏宇飞.铝在混酸中的高压阳极氧化研究[J].电镀与涂饰,2005,24(7):1-4.
    [86]周宏志.高温快速铝阳极氧化的研究[J].轻合金加工技术,2002,(8):37-38.
    [87]徐洪详,袁淑娟,潘志峰.多孔铝阳极氧化膜的研究进展[J].聊城师院学报,2001,14(4):41-43.
    [88]王春涛,林伟国,曹华珍,郑国榘.含稀土介质中铝合金阳极氧化研究[J].表面技术,2003,(3):49-51.
    [89]王海潮,彭乔,李清启.多孔铝阳极氧化膜的制备及应用研究[J].辽宁化工,2004,(12):722-724.
    [90]许旋,陈学文,周爱群,罗丽卿,罗一帆.正交实验法优化铝合金阳极氧化工艺[J].电镀与涂饰,2005,(6):26-28.
    [91]卢静芳,郑有新,吴晓兵.铝和铝合金宽温阳极氧化[J].广东化工,1994,(2):30-33.
    [92]王莉贤,红王,马引民,金东元,宋陆梅.一种铝阳极氧化膜的着色方法.中国,200410052813[P].2004.
    [93]郭红霞.铝及铝合金着色工艺[J].表面技术,2004,(1):59-60.
    [94]张红鸣,徐捷.金属铝染色[J].上海染料,1999,27(5):26-29.
    [95]周谟银.铝阳极氧化膜电解着色[J].电镀与环保,2004,(2):21-24.
    [96]施愈德.阳极电泳涂漆工艺实践[J].涂料涂装与电镀,2005,(3):22-24.
    [97]缪建明.有机颜料概况及应用性能[J].涂料工业,2004,(9):20-23.
    [98]周学良.颜料[M].北京:化学工业出版社,2002.114-120.
    [99]秦云.重氮化与偶合反应的理论研究[J].保山师专学报,2002,22(2):10-13.
    [100] Kaupp G, Herrmann A, Schmeyers J. Waste-free chemistry of diazonium salts and benignseparation of coupling products in solid salt reactions[J]. Chemistry-a European Journal,2002,8(6):1395-1406.
    [101] Robert S L. Metallized azo dyes. USA,2556743[P].1952.
    [102] Resnick P, Maitner J J. Monoazo pigments from malonanilides. USA,3252968[P].1968.
    [103] Ferrari J E, Kurtz A P. Process for preparing azomalonanilide pigments. USA,3382228[P].1968.
    [104] Gautam R K. Studies in heterocyclic compounds-part XXVII synthesis and in vitro antimicrobialstudy of some new1,3-diaryl-5-(arylazo)dihydro-2-thioxo-4,6(1H,5H)-pyrimidinediones[J]. Journal ofIndian Chemitry Society,1978,55:1059-1061.
    [105]崔昌军,彭乔.铝及铝合金的阳极氧化研究综述[J].全面腐蚀控制,2002,16(6):12-17.
    [106] Wu H Q, Zhang Z, Hebert K R. Atomic force microscopy study of the initial stages of anodicoxidation of aluminum in phosphoric acid solution[J]. Journal of the Electrochemical Society,2000,147(6):2126-2132.
    [107] Kouklin N, Bandyopadhyay S, Tereshin S, Varfolomeev A, Zaretsky D. Electronic bistability inelectrochemically self-assembled quantum dots: A potential nonvolatile random access memory[J].Applied Physics Letters,2000,76(4):460-462.
    [108] Shelimov K B, Davydov D N, Moskovits M. Template-grown high-density nanocapacitorarrays[J]. Applied Physics Letters,2000,77(11):1722-1724.
    [109] Black M R, Padi M, Cronin S B, Lin Y M, Rabin O, Mcclure T, Dresselhaus G, Hagelstein P L,Dresselhaus M S. Intersubband transitions in bismuth nanowires[J]. Applied Physics Letters,2000,77(25):4142-4144.
    [110] Xu D S, Chen D P, Xu Y J, Shi X S, Guo G L, Gui L L, Tang Y Q. Preparation of II-VI groupsemiconductor nanowire arrays by dc electrochemical deposition in porous aluminum oxidetemplates[J]. Pure and Applied Chemistry,2000,72(1-2):127-135.
    [111] Li F Y, Metzger R M. Activation volume of alpha-Fe particles in alumite films[J]. Journal ofApplied Physics,1997,81(8):3806-3808.
    [112] Moutarlier V, Gigandet M P, Ricq L, Pagetti J. Electrochemical characterisation of anodicoxidation films formed in presence of corrosion inhibitors[J]. Applied Surface Science,2001,183(1-2):1-9.
    [113] Gao Y B, Peng Z, Song G J, Ma Y W, She X L. Preparation of highly ordered anodic aluminumoxide templates with different pore size by constant current density[J]. Qingdao Daxue Xuebao,Gongcheng Jishuban,2007,22(1):6-10.
    [114] Rumiche F, Wang H, Indacochea J E, Wang M L. Anodized aluminum oxide (AAO) basednanowells for hydrogen detection[C]. Proceedings of SPIE.2008.6932.
    [115] Schwirn K, Lee W, Hillebrand R, Steinhart M, Nielsch K, Gosele U. Self-ordered anodicaluminum oxide formed by H2SO4hard anodization[J]. Acs Nano,2008,2(2):302-310.
    [116] Dar M A, Ansari S G, Sohn J M, Shin H S. The influence of argon dilution on the dormation ofcarbon nanotubes in anodic aluminum oxide pores[J]. Science of Advanced Materials,2009,1(3):292-297.
    [117] Idriss H, Abdelrahman A E, Muniandy S V. Morphological studies of nanoporous anodicaluminium oxide membranes[J]. International Journal of Nano and Biomaterials,2009,2(1-5):354-359.
    [118] Pooladi R, Rezaei H, Aezami M, Sayyar M R. Fabrication of anodic aluminum oxidenanotemplate and investigation of their anodization parameters[J]. Transactions of the Indian Instituteof Metals,2009,62(3):241-244.
    [119] Kwon N, Kim K, Heo J, Chung I. Fabrication of ordered anodic aluminum oxide with matrixarrays of pores using nanoimprint[J]. Journal of Vacuum Science&Technology a,2009,27(4):803-807.
    [120] Ivanov R P, Eliseev A A, Napol'Skii K S, Petukhov D I, Lukashin A V, Tret'Yakov Y D.Formation of anodic aluminum films at high voltage levels[J]. Al'ternativnaya Energetika I Ekologiya,2010,10(74-78):259-265.
    [121] Song Y, Fang J, Chen Z. One-dimensional molecular junction arrays fabricated using anodicaluminum oxide templates[C]. ECS Transactions (2010).2010.25-32.
    [122] Barkey D, Mchugh J. Pattern formation in anodic aluminum oxide growth by flow instability anddynamic re-stabilization[C]. ECS Transactions (2010).2010.17-28.
    [123] Dionne M, Coulombe S, Meunier J. Porous aluminum oxide templates. USA,20100298135[P].2010.
    [124] Weng Y J, Huang J C, Weng Y C, Wong Y C, Liu H K, Yang S Y. A study on application ofmaking porous micro-structural aluminum oxide template by anodic aluminum oxide processingtechnology in cell reproduction[J]. Key Engineering Materials,2010:447-448.
    [125]曾三凌.铝阳极氧化膜的剥离与剥离技术[J].电镀与精蚀,1997,19(2):24-27.
    [126]孔令斌,陈淼,力虎林.用AFM研究阳极氧化铝的不稳定生长[J].化学学报,2004,(7):680-685.
    [127]王莉贤.双套管分离装置在咖啡因提取实验中的应用[J].实验室研究与探索,2004,23(9):32-33.
    [128]王莉贤,郭强,潘安健. N,N'-二苯基丙二酰胺的合成[J].化学世界,2006,(2):102-104.
    [129] Kim D S, Lee H S, Lee J, Kim S, Lee K H, Moon W, Kwon T H. Replication of high-aspect-rationanopillar array for biomimetic gecko foot-hair prototype by UV nano embossing with anodicaluminum oxide mold[J]. Microsystem Technologies,2007,13(5-6):601-606.
    [130] Kim Y D, Jung B B, Lee H K, Lee K H, Park H C. Anodic aluminum oxide-based capacitivehumidity sensor integrated with micro-heater[C]. NSTI Nanotech, Nanotechnology Conference andTrade Show, Technical Proceedings. Boston, MA, United States:2008.599-602.
    [131] Kim Y, Jung B, Lee H, Kim H, Lee K, Park H. Capacitive humidity sensor design based onanodic aluminum oxide[J]. Sensors and Actuators, B: Chemical,2009,141(2):441-446.
    [132] Yoo S, Liu L, Park S. Nanoparticle films as a conducting layer for anodic aluminum oxidetemplate-assisted nanorod synthesis[J]. Journal of Colloid and Interface Science,2009,339(1):183-186.
    [133] Lee B, Cha K J, Kwon T H. Fabrication of polymer micro/nano-hybrid lens array bymicrostructured anodic aluminum oxide (AAO) mold[J]. Microelectronic Engineering,2009,86(4-6):857-886.
    [134] Yan H D, Lemmens P, Dierke H, White S C, Ludwig F, Schilling M. Iron/Nickel nanowiregrowth in anodic aluminum oxide templates: transfer of length scales and periodicity[J]. Journal ofPhysics: Conference Series,2009,145(1):894.
    [135] Hyers M L, Gan Y X, Wei C S, Lewis P A, Flynn G, Zhong W H. Morphology and deformationstate of nanofibers in anodic aluminum oxide (AAO) templates[J]. Journal of Computational andTheoretical Nanoscience,2007,4(1):111-121.
    [136] Kim Y, Han Y, Lee H, Lee H. High density silver nanowire arrays using self-ordered anodicaluminum oxide (AAO) membrane[J]. Journal of the Korean Ceramic Society,2008,45(4):191-195.
    [137] Park J M, Kim N H, Lee B, Lee K, Kwon T H. Nickel stamp fabrication and hot embossing formass-production of micro/nano combined structures using anodic aluminum oxide[J]. MicrosystemTechnologies,2008,14(9-11):1689-1694.
    [138] Lopez V, Morant C, Marquez F, Zamora F, Elizalde E. Anodic aluminum oxide membranes usedfor the growth of carbon nanotubes[J]. Journal of Nanoscience and Nanotechnology,2009,9(11):6396-6400.
    [139] Lee K H, Huang Y P, Wong C C. Nanotip fabrication by Anodic Aluminum Oxide templating[J].Electrochimica Acta,2010,56(5):2394-2398.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700