用户名: 密码: 验证码:
低硫氮比酸雨对亚热带5种典型树种幼苗的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近半个世纪以来,随着工业的发展,酸雨污染日益加剧,酸雨对植物特别是森林植被的影响也越来越严重。近年来,国内外许多学者对酸雨在植物生理生态方面的影响做了大量的研究,并取得了显著的成果。随着经济的发展,我国东部地区大气中的NOx排放量已经超过SO2排放量,酸雨的硫氮比值正在逐步减小。而我们过去很多的模拟研究多集中在硫氮比(摩尔比)大于6的硫酸型酸雨,因此深入研究硫氮比值较低的酸雨对植物的影响具有重要的现实意义。
     通过对我国亚热带典型树种香樟(Cinnamomum camphora)、木荷(Schima superba)、枫香(Liquidambar formosana)、湿地松(Pinus elliottii)和水杉(Metasequoia glyptostroboides)一年生幼苗为期4个月的模拟酸雨处理,以当地水库水为对照,研究硫氮比(摩尔比)为1.58的酸雨胁迫(中度酸雨pH3.5、重度酸雨pH2.5)下,植物茎干生长参数、气体交换参数、质膜透性、养分元素等生理指标的变化规律。研究所取得的主要结论如下:
     1、低硫氮比酸雨能够引起植物产生一系列的形态和生理生态反应,主要表现在:
     (1)中度酸雨(pH3.5)对5种植物的茎干生长有一定的抑制作用,但均未出现显著伤害症状。重度酸雨(pH2.5)下,除湿地松外,其余幼苗的叶片均出现退绿、黄化、坏死斑等可见伤害症状;香樟、枫香、湿地松和水杉的茎干生长均有较大幅度的增加。
     (2)中度酸雨(pH3.5)下,植物的气体交换和光合响应均没有出现明显变化。除水杉外,中度酸雨(pH3.5)对其余幼苗的膜系统伤害较小。高浓度酸雨胁迫(pH2.5)诱导植物气孔部分关闭,引起植物体内外气体交换参数变化,导致叶片净光合速率、蒸腾速率和水分利用效率下降;另一方面,酸雨破坏叶片膜系统,加速脂质过氧化,降低叶绿素光合活性,并最终影响到叶片光合速率。但是重度酸雨(pH2.5)下植物的光合响应参数变化不明显。
     (3)中等强度的酸雨(pH3.5)对5种幼苗叶片的N、P含量均没有产生显著影响。枫香叶片的K含量和湿地松叶片的Al、Na含量显著上升,其余幼苗叶片的K、Ca、Na、Mg、Al、Mn、Fe、Zn含量均没有产生显著变化。重度酸雨(pH2.5)的氮肥效应使得木荷、枫香、水杉和湿地松的叶片N含量均呈现上升趋势。枫香的Ca、Mg、Mn含量,湿地松的Ca、Mn、Na含量和水杉的Al、Mg、Na含量显著升高。香樟的Al含量和枫香的K含量显著降低。
     (4)与以往高硫氮比(摩尔比大于6)酸雨研究结果相比发现,低硫氮比在一定程度上增加了植物生长的氮供给,提高了植物叶片的氮含量,在短期内可能会促进植物的茎干生长,减缓酸雨对植物的气体交换和膜系统的负面影响。但是对于较敏感的树种如水杉,中度酸雨(pH3.5)仍然造成植物叶片膜系统损伤。此外,低硫氮比还可能在一定程度上增强植物对酸雨的光合适应性。
     2、不同植物对低硫氮比酸雨的敏感性存在差异。在实验数据的基础上,综合多项指标发现:湿地松具有更高的抵御环境胁迫的能力,其次是香樟、枫香和木荷,水杉的适应能力较差。
The acid rain pollution is worsing increasingly with the development of industry in recent half century, and the impact of acid rain on plant especially forest vegetation have also become more severe. Based on field investigations and experiment results with simulated acid rain, the potential effects of acid rain with higher S/N ratio (molar ration>6) on plants have been shown intensively in China. However, few reports have focus on the effect of acid rain with lower S/N ratio on plants, which has important practical significance with the decreasing of S/N ratio in future.
     The purpose of this study was to investigate the possible effects of simulated acid rain with lower S/N ratio on five dominant species in subtropical forests. One-year-old seedlings of Cinnamomum camphora, Schima superb, Liquidambar formosana, Pinus elliottii and Metasequoia glyptostroboides were transplanted into pots with the local soil (yellow-red soil) at Tiantong National Station of Forest Ecosystem, Zhejiang Province. The molar ratio of sulfate to nitrate of the simulated acid rain used in our study was 1.58:1, similar to the ratio of NO3- and SO42- in ambient rainfall in Zhejiang. Seedlings were treated with simulated acid rain of pH 2.5 or 3.5, respectively, every other day from April 15 to August 24 in 2009, and local reservoir water of pH 5.0-5.4 as the control. The growth parameters of stem, gas exchange parameters, Photosynthetic pigment contents, membrane penetration, malondialdehyde(MDA) and nutrient elements content in leaves were investigated at the end of the experiment. The results showed that:
     1、The morphological and physiological changes of seedlings were caused by the simulated acid rain with lower S/N ratio
     (1) No visible foliar injury was observed, while the growth of stem was inhibited in some degree with the treatment of pH 3.5 acid rain for all five species. The pH2.5 threatment resulted in typical visible foliar injury symptoms, such as etiolation, shrinkages and brown dots, except P. elliottii. The stem growth of C. camphora, S. superb, L. formosana and P. elliottii increased largely.
     (2) Except M. glyptostroboides, no significant difference was observed in these parameters with the treatment of pH 3.5 acid rain for the species. The pH2.5 treatment altered gas exchange parameters, including net photosynthetic rate(Pn), stomata conductance (Gs), transpiration rate (Tr) and water use efficiency (WUE). Membrane penetration and MDA contents in the seedling leaves of seedlings were increased significantly, suggesting that the decrease of photosynthetic activity was probably caused by non-stomatal factors in combination with stomatal closure. Treated with nitrogen fertilizer, total chlorophyll content of the leaves were increased, and net photosynthetic rate on the basis of chlorophyll content declined significantly under pH 2.5 acid rain treatment. It can be concluded that acid rain treatments can induce partial closing of stomata, damage membrane system and decrease photosynthetic activity of plants
     (3) Treated with pH3.5 acid rain, the nitrogen (N) and phosphorus (P) content in leaves of five species were not affected significantly. The content of Potassium (K), sodium (Na), Calcium (Ca), Magnesium (Mg), Aluminum(Al), Manganese (Mn), Iron (Fe), Zinc(Zn) in leaves of seedlings did not change significantly at pH3.5, except the K content of L. formosana and Al、Na content of P. elliottii which increased significantly. The N content in leaves of seedlings grew under the pH2.5 treatment owing to the nitrogen fertilizer, except C. camphora. The Ca、Mg、Mn content of L. formosana, the Ca、Mn、Na content of P. elliottii and the Al、Mg、Na content of M. glyptostroboides rised obviously, whereas the Al content of C. camphora and K content of L. formosana reduced significantly.
     (4) Based on the results, we can conclude that lower S/N ratio increase the supply of nitrogen to plant and improve the N content in leaves, which may promote the stem growth compared with the treatment of higher S/N ratio(molar ration>6). Furthermore, lower S/N ratio may mitigate negative effects of acid rain on photosynthesis and membrane.
     2、The adaptability to acid rain were various with the species
     With the parameters measured, it can be found that P. elliottii has the best capacity to acclimate to acid rain stress followed by C. camphora, L. formosana, S. superb and M. glyptostroboides.
     This study improves our understandings in effects of acid rain on plant growth under lower S/N ratio.
引文
Back J, Neuvonen S, Huttunen S. Pine needle growth and fine structure after prolonged acid rain treatment in the subarctic. Plant Cell Environment,1994,17:10-21.
    Barnes J D, Brown K. A. The Influence of ozone, acid mist and soil nutrient status on Norway Spruee. Phytologist,1990,114:713-720.
    Berry J, Bjorkman O. Photosynthesis response and adaptation to temperature in higher plants. Plant Physiology and Biochemistry,1980,31:491-543.
    Beevers L, Hageman R H. Nitrate reduction in higher plants. Annu Rev Plant Physiol,1969,20: 495-522.
    Boyer J S. Water deficits and photosynthesis. Water Deficits and Plant Growth,1976,4:153-159.
    Coley P D. Hethivory and defensive charaeteristics of tree species in a lowland tropical forest. Ecological Monographs,1983,53(2):209-233.
    Cronan C S, Refiner W A. Canopy processing of acidic precipitation by coniferous and hardwood forests in New England. Oecologia,1983,59:216-223.
    Dai Q J, Peng S, Coronel A Q. Intraspecific response of 188 rice cultivars to enhanced UV-B radition. Environmental and Experimental Botany,1994,34:433-442.
    Dixon M J, Kuja A.L. Effects of simulated acid rain on the growth, nutrition, foliarPigment and Photosynthetie rates of sugar maple and whites Pruee seedlings. Water, Air, & Soil Pollution, 1995,83:219-236.
    DuBay D T, Heagle A S. The effects of simulated acid rain with and without ambient rain on the growth and yield of field-grown soybeans. Environmental and Experimental Botany,1987, 27(4):395-401.
    Evans L S, Lewin K F, Owen E M. Comparison of yields of several cuhivars of field grown soybeans exposed to simulated acidic rainfalls. New Phytologist,1986,102:409-417.
    Fan H.B, Wang YH.. Effeets of simulated acid rain on germination, foliar damage, chlorophyⅡ contents and seedling growth of five hard wood species growing in China. Forest Eeology and Management,2000,126:321-329.
    Farquhar G D, Caemmerer S, Berry J. A bioehemieal model of Photosyllthesis CO2 assimilation in leaves of C3 species. Planta,1980,149:78-90.
    Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis. Annual Review of Plant Physiology,1982,33:317-345.
    Ferenbaugh R W. Effects of simulated acid rain on Phaseolus vulgaris L. American Journal of Botany,1976.63:283-288.
    Galloway J N, Likens G E, Edgerton E S. Acid precipitation in the Northeastern United States:pH and acidity. Science,1976,194:722-724.
    Hogan G D. Physiological effeets of direct impact of acid deposition on foliage. Agriculture Ecosystems & Environment,1992,42:307-319.
    Huang K, Zhuang G, Xu C. The chemistry of the severe acidic precipitation in Shanghai, China. Atmospheric Research,2008,89:149-160.
    Jacobsen J S, Bethard T, Heller L I. Response of Picea rubens seedlings to intermittent mist varying in acidity, and in concentrations of sulfur-, and nitrogen-containing pollutants. Physiologia Plantarum,1990,78:595-601.
    Johnson A H, Siccama T G. Acid deposition and forest decline. Environmental Science & Technology,1983,17:294-305.
    Lee J J, Weber D E. The effects of simulated acid rain on seedling emergence and growth of eleven woody species. Forest Science,1979.25:393-398.
    Lee J J, Neely G E, Perrigan S C, Grothaus L C. Effect of simulated sulfuric acid rain on yield, growth and foliar injury of several crops. Environmental and Experimental Botany,1981, 21(2):171-185.
    Lee W S, Chevone B I, Seiler J R. Growth and Gas Exchange of Loblolly Pine Seedlings as Influenced by Drought and Air Pollutants. Water Air and Soil Pollution,1990,51(1-2): 85-116.
    Lichtenthaler H K. Chlorophyll and carotenoids:pigments of photosynthetic biomembranes. Methods in Enzymol,1987,148:350-382.
    Liu J, Zhou G, Yang C. Responses of chlorophyll fluorescence and xanthophyll cycle in leaves of Schima superba Gardn. & Champ. and Pinus massoniana Lamb. to simulated acid rain at Dinghushan Biosphere Reserve, China. Acta Physiol Plant.2007,29:33-38.
    Neufeld H S, Jernstedt J A, Haines B L. Direct foliar effects of simulated acid rain I. Damage, growth and gas exchange. New Phytologist,1985.99:389-405.
    Okada M, Kitajima M, Butler W L. Inhabition of Photosystem I and II in Chloroplasts by UV Radition. Plant Cell Physiol,1976,17(1):35-43.
    Ottar B. Organization of long range transport of air pollution monitoring in Europe. Water, Air and Soil Pollution,1976.6:219-229.
    Paoletti E. UV-band and acid rain effects on beach((Fagus sylvatiea L.)) and holm oak((Quereus ilex L.))leaves. Chemosphere,1998,36:835-840.
    Payer H D, Pfirrmann T, Kloos M. Clone and soil effects on the growth of young Norway spruce during 14 months exposure to ozone plus acid mist. Environmental Pollution,1990,64: 209-227.
    Quartacci M F, Pinzino C, Cristina L M. Growth in excess copper induces changes in the lipid composition and fluidity of PSII-enriched membranes in wheat. Physiologia Plantarum, 2000,108:87-93.
    Reddy G B, Reinert R A, Eason G E. Enzymatic changes in the rhizosphere of loblolly pine exposed to ozone and acid rain. Soil Biology & Biochem,1991,23:1115-1119.
    Rehfuess K E. Acidic deposiion:Extent and impact on forest soils, nutrition, growth and disease phenomena in central Europe:a review. Water, Air and Soil Pollution,1989,48:1-20
    Reich P B, Schoettle A W, Stroo H F. Effects of ozone and acid rain on white pine (Pinus strobus) seedlings grown in five soils. Canadian Journal of Botany,1987,65:977-987.
    Rochefort L, Vitt D H. Effects of Simulated Acid Rain on Tomenthypnum-Nitens and Scorpidium-Scorpioides in a Rich Fen. Bryologist,1988,91(2):121-129.
    Schweingruber F H. Tree rings and environment:Dendrology. Swiss Fedral Institute for Forest, Snow and Landscape Research. Birmensdorf. PaulHaup t Verlag, Berne,1996.
    Shan Y, Feng Z, Izuta T. The individual and combined effects of ozone and simulated acid rain on chloropHyll contents, carbon allocation and biomass accumulation of armand pine seedlings. Water, Air, & Soil Pollution,1995,85(3):1399-1404.
    Shelburne V.B, Reardon J.C, Paynter V.A. The effects of acid rain and ozone on biomass and leaf area parameters of short leaf pine (Pinus echinata Mill.). Tree Physiol.1993,12:163-172.
    Sheppard L J, Cape J N, Leith I D. Influence of acidic mist on frost hardiness and nutrient concentrations in red spruce seedlings. New Phytologist,1993,124:595-605.
    Siefermaim-Harms D. The yellowing of spruce in Polluted atmospheres. Photosythetica,1992,27: 323-341.
    Smith W H. Air pollution and forests-interactions between air contaminants and forest ecosystem. New York:Spring-Verlag,1990.
    Spidso T K, Korsmo H. Comparing the chemic compositions of Pinus sylve stris under different acid rain levers. Oecologia,1993,194:325-334.
    Takemoto B K, Hutton W J, Olszyk D M. Responses of field-grown Medicago sativa L. to acidic fog and ambient ozone. Environmental Pollution.1988,54(2):97-107.
    Tamm C O, Cowling E B. Acidic precipitation and forest vegetation. In:DochingerL S, Seliga TA. Proc Internat Symp Acid Precipitation and the Forest Ecosystem. Upper Darby:NE Eor Exp Sta,1976.845-855.
    Tarhanena S, MetsaErinne S, Holopainen T, Oksanen J. Membrane permeability response of lichen Bryoria fuscescens to wet deposited heavy metals and acid rain. Environmental Pollution,1999,104:121-129.
    Tomlinson G H. Air pollution and forest decline. Environmental Scicence & Technology,1983,17: 246-256.
    Ulrich B. An ecosystem hypothesis for the causes of silver fir (Abies alba) dieback [A]. In: Internat ional conference on silver fir dieback [C]. Kelheim, West Germany,1980,228-236.
    Westman W E, Temple P J. Acid mist and ozone effects on the leaf chemistry of two western conifer species. Environment pollution,1989,57:9-26.
    Wooddrow I E, Murphy D J, Latako E. Regulation of stromal sedohePtulose 1,7-bisphosphatase activity by pH and Mg2+ concentration. Joumal of Biological Chemistry,1984,259: 3791-3795.
    Wood T, Bormann F H.1976. Short-term effects of a simulated acid rain upon the growth and nutrient relations of Pinus strobus L. In:Dochinger, L.S., Seliga, T.A. (Eds.), Proc.1st Int. Symp. on Acid Precipitation and the Forest Ecosystem, U.S.D.A. Forest Service, Gen. Tech. Rep. No. NE-23, Upper Darby, Pennsylvania, pp.815-826.
    Zhao D W, Xiong J L, Xu Y, et al. Acid rain in southwestern China. Atmos. Environ,1988,22: 349-358.
    蔡世舫,任清文,欧红梅.酸雨对小麦生理特性影响的研究.安徽农业科学,2000,28(3):303-304.
    曹洪法.我国大气污染及其对植物的影响.生态学报,1990,10(1):7-12.
    曹洪法,高映新,舒俭民.大豆对模拟酸雨的反应, 中国环境科学,1986,6(4):13-17.
    陈美华,欧世金,蒋德书.模拟酸雨对芒果生长及土壤的影响.广西农业大学学报,1995,14(4):300-304.
    陈树元,徐和宝,史建文.110种树木对模拟酸雨和S02单一和复合暴露的反应.应用与环境生物学报,1997,3(3):199-203.
    杜英磊.模拟酸雨对岑叶械的作用和植物营养,植物学报,1999,41(1):80-87.
    杜字国,单运峰.酸雨的生态影响及防治对策.生态学杂志,1992,11(6):51-54.
    樊后保.模拟酸雨对5种阔叶树幼苗生长的影响.福建林学院学报,1996,16(4):289-292.
    冯宗炜主编.酸雨对生态系统的影响.北京:中国科学技术出版社.1993,108-177
    冯宗炜,陶福禄.酸沉降对中国南方森林的影响.中国林业科学研究院编.面向21世纪的林业一可持续发展全球战略下的林业科学技术.北京:中国农业科技出版社,1998,408-412.
    冯宗炜,小仓纪雄.重庆酸雨对陆地生态系统的影响和控制对策-中日酸雨合作研究总结.环境科学进展,1998,6(5):l-8.
    冯宗炜.酸沉降对生态环境的影响及其生态恢复.北京:中国环境科学出版社.1999,105-177.
    冯宗炜.中国酸雨对陆地生态系统的影响和防治对策.中国工程科学,2000,2(9):6-14.
    黄继山,温文保,蔺万煌.酸雨对树木叶细胞伤害的模拟研究.林业科学研究,2002,15(2):219-224.
    黄建昌,肖艳.模拟酸雨对6种园林植物的影响.西南农业大学学报,2002,24(4):360-362.
    黄益宗,李志先,黎向东.模拟酸雨对华南典型树种生长及营养元素含量的影响.生态环境,2006,15(2):331-336.
    黄智勇,田大伦.模拟酸雨对盆栽广玉兰幼苗叶矿质元素含量的影响.中南林业科技大学学报(自然科学版),2007,27(1):36-41.
    蒋高明.植物生理生态学.北京:高等教育出版社,2004:1-336.
    蒋益民,曾光明,张龚.长沙市大气湿沉降化学及变化特怔.城市环境与城市生态,2003,16(增刊):23-25.
    金清,江洪,余树全.酸雨胁迫对亚热带典型树种幼苗生长与光合作用的影响.生态学报,2009,29(6):3322-3327.
    李德军,莫江明,方运霆,蔡锡安,薛花,徐国良.模拟氮沉降对三种南亚热带树苗生长和光合作用的影响.生态学报,2004,24(5):876-883.
    李德军,莫江明,方运霆,李志安.模拟氮沉降对南亚热带两种乔木幼苗生物量及其分配的影响.植物生态学报.2005,9(4):543-549.
    李合生.植物生理生化实验原理和技术.北京:高等教育出版社.2000:260-263.
    李洪珍.我国酸雨的区域化研究.朱钟杰主编.酸雨文集.北京:中国环境科学出版社,1989.208-216.
    李万超,江洪,余树全,曾波.模拟酸雨对青冈和木荷幼苗光合响应特性的影响.西南大学学报(自然科学版),2008,30(7):99-105.
    李志国,翁忙玲,姜武,姜卫兵.模拟酸雨对乐东拟单性木兰幼苗部分生理指标的影响.生态学杂志,2007,26(1):31-34.
    林慧萍.酸雨对陆生植物的影响机理.福建林业科技,2005,32(1):60-64.
    林金科.茶树叶片净光合速率对生态因子的响应.生态学报,2000,20(3):404-408.
    刘厚田.重庆南山酸雨与马尾松衰亡的关系.环境科学学报,1988,8(3):331-339.
    刘金荣,杜建雄,谢晓蓉.干热胁迫和复水对草坪草光合生理生态特性的影响.生态学报,2009,29(5):2295-2299.
    刘可慧,于方明,彭少麟,方运霆,李富荣.模拟酸雨对珍稀濒危植物红豆杉幼苗的影响研究.生态环境2007,16(2):309-312.
    刘志强,陈纪玲.中国大气环境质量现状及趋势分析.电力环境保护,2007,23(1):23-28.
    鲁美娟,江洪,余树全,蒋馥蔚,李佳,曹全.模拟酸雨对山核桃和杨梅光合生理特征的影响.生态学杂志,2009,28(8):1476-1481.
    吕均良,李三玉,黄寿波.模拟酸雨对桃梨叶片和果实的影响.浙江农业大学学报,1998,24(6):603-607.
    宁波市环境质量公报.宁波市环境保护局,2007.
    齐泽民,钟章成,邓君.模拟酸雨对杜仲叶膜脂过氧化及氮代谢的影响.西南师范大学学报(自然科学版),2001,26(1):38-44.
    齐泽民, 钟章成.模拟酸雨对杜仲光合生理及生长的影响.西南师范大学学报(自然科学版),2006,31(2):151-156.
    邱栋梁,刘星辉,郭素枝.模拟酸雨对龙眼叶片气体交换和叶绿素a荧光参数的影响.植物生态学报,2002.26:441-446.
    沙晨燕,何文珊,童春富,陆健健.上海近期酸雨变化特征及其化学组分分析.环境科学研究,2007,20(5):31-35.
    单运峰.酸雨、大气污染与植物.北京:中国环境科学出版社,1994.
    宋永昌,王祥荣.浙江天童国家森林公园的植被和区系.上海:上海科学技术文献出版社,1995:11-12.
    ,田大伦,黄智勇,闫文德,项文化.模拟酸雨对3种盆栽灌木幼苗叶矿质元素含量的影响.中南林业科技大学学报(自然科学版),2007,27(1):1-8.
    田大伦,黄智勇,付晓萍.模拟酸雨对盆栽樟树(Cinnamomum camphora)幼苗叶矿质元素含量的影响.生态学报,2007,27(3):1099-1105.
    童贯和,梁惠玲.模拟酸雨及其酸化土壤对小麦幼苗体内可溶性糖和含氮量的影响.应用生态学报,2005,16(8):1487-1492.
    王沙生,高荣孚,吴贯明.植物生理学.北京:中国林业出版社,2000,213-218.
    王瑞斌,魏复盛,程春明.我国南北方降水化学组分某些特征的研究.朱钟杰主编.酸雨文集.北京:中国环境科学出版社,1989:227-239.
    王雁,马武昌.扶芳藤、紫藤等7种藤本植物光能利用特性及耐荫性比较研究.科学研究,2004,17(3):305-309.
    王文兴,丁国安.中国降水酸度和离子浓度的时空分布.环境科学研究,1997,10(2):1-6.
    王自发,高超,谢付莹.中国酸雨模式研究回顾与所面临的挑战.自然杂志,2007,29(2):78-83.
    肖艳,黄建昌.13种果树对酸雨抗性的研究.果树学报,2004a,21(3):191-195.
    肖艳,黄建昌,刘少娴.模拟酸雨对12种园林植物的伤害及敏感性反应.西南农大学报(自然科学版),2004b,26(3):270-276.
    肖艳黄建昌.模拟酸雨对3种果树的胁迫效应.热带亚热带植物学报.2004,12(4):351-354.
    谢绍东,郝吉明,周中平.1998.中国酸沉降临界负荷区划.环境科学,19(1):13-17.
    徐德应,尚鹤.酸雨对中国森林的影响.中国林业科学研究院.面向21世纪的林业——可持续发展全球战略下的林业科学技术.北京:中国农业科技出版社,1998:472-481.
    颜戊利,刘冬英,陈志澄.黄皮对酸雨的抗性.中国果树,2004a,(2):31-33.
    颜戊利,陈志澄,杨冰仪.酸雨对苋菜中微量元素的影响.广东微量元素科学,2004b,11(9):61-64.
    阳含熙.酸雨与农业.北京:中国林业出版社,1989:191.
    严重玲,李瑞智,钟章成.模拟酸雨对绿豆、玉米生理生态特征的影响.应用生态学报,1995,3(6):124-131.
    张香凝,崔令军,王保平,孟伟,孙向阳,乔杰.土壤干旱胁迫Larrea tridentata叶片矿质营养元素含量的影响.生态环境2008,17(6):2387-2390.
    张劲松,孟平,高峻.板蓝根光合及水分生理生态特性.东北林业大学学报,2004,32(3):26-28.
    张耀明,吴丽英,王晓霞.酸雨对农作物的叶片伤害及生理特征的影响.农业环境保护,1996,15(5):197-208.
    郑飞翔,温达志,旷远文.模拟酸雨对柚木幼苗生长、光合与水分利用的影响.热带亚热带植物学报,2006,14(2):93-99.
    周青,黄晓华,王冬燕.稀土元素La对酸雨损伤腊梅的影响.生态学杂志,1997,16(6):59-61.
    周青,黄晓华,曾庆玲.植物酸致损伤机理与化控减灾研究进展.农业环境科学学报,2003,22(5):632-635.
    朱钟杰.酸雨文集.北京:中国环境科学出版社,1989:494.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700