用户名: 密码: 验证码:
分子筛催化噻吩类硫化物烷基化反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
烷基化脱硫(Olefinic Alkylation of Thiophenic Sulfur,OATS)是FCC汽油非加氢脱硫方法中的一种,即采用酸性催化剂使FCC汽油中的噻吩类硫化物与烯烃烷基化反应,改变噻吩类硫化物的沸点,通过蒸馏切割,达到脱硫目的。
     本文主要利用USY分子筛催化剂易于调变的优势,考察了USY分子筛制备过程中的水蒸汽处理条件和烷基化反应温度对其催化性能的影响,还考察了不同馏分段FCC汽油烷基化反应情况,但是易失活是影响催化剂使用的主要因素,本文通过各种催化剂表征手段研究USY催化剂失活的原因。考虑到USY催化剂的失活,考察MgY和Hβ催化FCC汽油烷基化反应的效果。
     实验结果表明:水蒸汽处理温度350℃,水蒸汽处理时间5 h,反应温度120℃时,USY分子筛催化效果最佳;催化效果不同的USY吡啶吸附红外表征结果表明,含较多的酸中心,特别是强B酸中心的USY分子筛催化烷基化反应时效果更佳。考察不同馏分段FCC汽油烷基化反应情况时发现,当噻吩类硫化物烷基化性能减弱时,烷烃或芳烃的烷基化和烯烃聚合程度就会逐渐加深。USY分子筛催化剂反应三次后,催化剂已经失活,表明USY分子筛催化剂的稳定性不好,对新鲜及失活后的催化剂的表征结果为:大分子有机物质或烷基化过程大分子中间产物,不能及时扩散到孔外,随着时间的延长而堵塞孔道、减少活性中心,是导致活性降低的主要原因。
     经马弗炉焙烧而得Hβ-1催化剂表现出很好的催化性能。与USY分子筛相比,C4~C5烯烃反应程度较大。连续反应三次后,Hβ催化剂的活性明显下降,表明Hβ催化剂的稳定性较差。考察在不同制备条件下的MgY分子筛催化性能,在已选取的制备条件下,MgY分子筛的催化活性较低,有待继续研究,以寻求脱硫效果最佳时条件。
Olefinic Alkylation of Thiophenic Sulfur (OATS) is a kind of non-hydrodesulfurization process. Sulfur species present in cracked naphthas are converted and removed by passing the naphtha over acid catalyst to alkylate the thiophenic compounds in the naphtha using the olefins present in the naphtha. Alkylated thiophenes are concentrated in the heavy portion by distillation and then removed by hydrodesulfurization.
     The advantage of USY zeolite easily modulated property was applied to prepare catalyst by steaming. The effects of different conditions of reaction temperature and USY steaming treatment on alkylation performance were investigated. The alkylation reactions performance of different fractions in the FCC gasoline was also studied. The deactivation of USY was the main factor to limit its industrialization. The modern analyses such as SEM, TG, XRD, IR were taken to study the reasons of deactivation. Considering the disadvantage of USY, MgY and Hβwere used to carry on subsequent studies.
     The results showed that the desulfurization performances of USY zeolites were optimum under the conditions as follows: the steaming temperature as 350℃, the steaming time as 5 h, reaction temperature as 120℃. The pyridine adsorption infrared spectrogram suggested that USY zeolite with larger acid sites, especially strong Bronsted acid sites, performed better function on the alkylation reactions. It was suggested that the decrease in alkylation capability of thiophene derivatives enhanced other two parallel competitive reactions: the aromatics alkylation and hexene alkylation(or called hexene oligomerlzation). The USY zeolite was deactivated after three times reactions. It was indicated that the USY was instability. The fresh,the deactivated and the regenerated were characterized by a lot of techniques such as SEM, TG, XRD, IR. On the basis of the characterization, the mechanism of the deactivation was proposed. The deactivation of USY can be attributed to the deposition of slowly diffusing organic by products inside USY framework.
     Hβ-1 zeolite prepared by calcining had better alkylation performance, but the olefin of C4 and C5 fractions were decreased more. The Hβzeolite was deactivated after three times reactions. It was the same as the USY zeolite on stability. The alkylation performance of MgY zeolite was investigated under different conditions. The results indicated that the catalytic performance was lower and it should be studied further to obtain the optimum preparation condition.
引文
[1]苗毅,关明华,罗一斌.清洁燃料的开发与生产.石油炼制与化工[J],2000, 31(8):1~7
    [2]杨洪江,郑绍宽,张孔远.低硫高辛烷值车用汽油的生产方法.齐鲁石油化工[J],1998,26(1):60~63
    [3]刘立新,张建洲.清洁汽油的发展现状.安徽化工[J],2001, 112 (4):25~27
    [4] Patrick Briot, Pierre Boucot, Alain Forestiere et al.Integral method for desulfurization of a hydrocarbon cracking or steam cracking effluent[P] . US 0230286,2005
    [5] Quentin Debuisschert,Denis Uzio,Jean-Luc Nocca et al.Process for the production of gasoline with a low sulfur content comprising a stage for transformation of sulfur-contenting compounds, An acid-catalyst treatment and a desulfurization[P].US 0166798.2002
    [6] Alexander Bruce D.Multiple stage sulfur removal process[P].WO 00/14181,2000
    [7] Alexander B D ,Huf G A,Pradhan V R,eta1.Sulfur removal process[P].US 6024865,2000
    [8] Alexander Bruce D,Huff George A,Pradhan Vivek R,eta1.Multiple stage sulfur removal process[P].US 6059962,2000
    [9] Lappas A A,Valla J A,Vasalos I A,et a1.The effect of catalyst properties on the in situ reduction of sulfur in FCC gasoline [J].Applied Catalysis 2004,262: 3l~41
    [10] Changlong Yin, Daohong Xia.A study of the distribution of sulfur compounds in gasoline produced in China. Part 1. A method for the determination of the distribution of sulfur compounds in light petroleum fractions and gasoline. Fuel, 2000,80, 607~610
    [11]梁咏梅,刘文惠,刘耀芳.重油催化裂化汽油中含硫化合物的分析[J].色谱,2002,20(3):283~285
    [12] Collins Nick A,Trewella Jeffrey C.Alkylation process for desulfurization of gasoline[P].US 5599441,1997
    [13] Huff G A. Sulfur removal process [P].US 6048451,2000
    [14] Chunshan Song. An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel [J].Catalysis Today, 2003,8(6)211~233
    [15] Virginie Bellie`re, Christophe Geantet, Michel Vrinat,et al.Alkylation of3-Methylthiophene with 2-Methyl-2-butene over a Zeolitic Catalyst[J]. Energy & Fuels,2004, 18, 1806~1813
    [16]许昀,龙军,张久顺等.分子筛催化体系中汽油噻吩类含硫化合物烷基化反应脱硫的研究[J].石油炼制与化工,2005,36(2):38~42
    [17]王素珍,罗国华,徐新等.介孔分子筛MCM-41的合成及其催化噻吩与异丁烯烷基化反应性能[J].石油化工,2004,33(2):113~117
    [18]罗国华,徐新,佟泽民等.分子筛催化噻吩类硫化物与烯烃烷基化脱硫研究[J].化学反应工程与工艺,2005,20(2):132~137
    [19]罗国华,徐新,靳海波等.FCC汽油中的噻吩类硫化物烷基化硫转移反应脱硫[J].过程工程学报,2005,l5(1):32~35
    [20]罗国华,徐新,杨春育等.大孔磺酸树脂固载AlCl3用于噻吩与烯烃的烷基化反应[J].过程工程学报,2003,3(1):8~23
    [21]黄蔚霞,李云龙,汪燮卿.离子液体在催化裂化汽油脱硫中的应用[J].化工进展,2004,23(3):297~299
    [22] Stuntz Gordon F. The production of low sulfur naphtha streams via sweetening and fractionation combined with thiophene alkylation[P].WO 2005019387,2005
    [23] Stuntz Gordon F,Smiley Randolph J,Halbert Thomas R.Olefin addition for selective naphtha desulfufization with reduced octane loss[P].WO 20050l9390,2005
    [24] Stuntz Gord F,Smiley Randolph J,Halbert Thomas R.Naphtha desulfunzation with no octane loss and increased olefin retention[P].WO 200501939l,2005
    [25] Magne-Drisch Julia , Picard Florent.Process for desulfurization of gasolines[P].US 2005006l7ll,2005
    [26] Pradhan Vivek R,Burnet Ptoshia A,Mcdaniel Stacey, et a1.Multistage process for removal of sulfur from components for blending of transportation fuels[P].WO 03012010,2003
    [27] Pradhan Vivek R,Burnet Ptoshia A,Mcdaniel tacey,et a1.Multistage process for removal of sulfur from components for blending of transportation fuels[P].US 6733660,2004
    [28] Pradhan Vivek R,Bumet Ptoshia A,Mcdaniel Staey,et a1.Multiplestage process for removal of sulfur from components for blending of transportation fuels[P].US 6736963,2004
    [29]柯明,周爱国,赵振盛等,FCC汽油烷基化脱硫技术进展,化工进展,2006, 25(4):357~361
    [30]商红岩,徐永强,刘晨光.炭负载Co-Mo催化剂的二苯并噻吩加氢脱硫性能研究[J].石油大学学报(自然科学版),2004,28(2):103~107
    [31]商红岩,刘晨光,徐永强等.活性炭负载的Co-Mo催化剂的加氢脱硫性能-活性炭载体与γ-Al2O3的对比[J].催化学报,2004,25(5):263~268
    [32]徐志达,陈冰,陈燕萍等.活性碳纤维用于汽油脱硫醇的研究Ⅰ.静态吸附[J].石油炼制与化工,1999,30(9):12~14
    [33]徐志达,陈冰,陈燕萍等.活性碳纤维用于汽油脱硫醇的研究Ⅱ.动态吸附[J].石油炼制与化工,2000,31(5):42~45
    [34]徐志达,曾汉民,冯仰桥等.活性碳纤维用于汽油脱硫醉的研究Ⅲ.催化剂和浸渍条件的影响[J].石油炼制与化工,2002,33(4):38~40
    [35]田龙胜,唐文成.FCC汽油溶剂抽提脱硫的研究[J].石油炼制与化工,2001,32(9):7~9
    [36]赵少云.改性蒙脱土汽油吸附脱硫技术的开发. [硕士学位论文].上海;华东理工大学,2006
    [37]黄丹,王玉军,骆广生.表面活性剂强化氧化萃取脱硫过程的实验研究,过程工程学报, 2006,6(3):384~387
    [38] DanielJ,Monticello.Riding the fossil fuel biodesulfurization w ave[J].Chem tech,1998,28(7):38~45
    [39] Kilbane,John J.Mutant microorganism useful for cleavage of rganic C-S bonds[P].US 5002888,1990
    [40] Kilbane,John J.Mutant microorganism useful for cleavage of o rganic C-S bonds[P].US 5104801,1992
    [41]钱伯章,吴虹.石油生物脱硫技术及其应用前景[J].炼油设计,1999,29(8):26~30
    [42] Okada, Nomura, Nobuhiko,et al.Analyses of microbial desulfurization reaction of alkylated dibenzothiophenes dissolved in oil phase[J].Biotechnology and Bioengineering, 2003,83(4): 489~497
    [43]何国正.氧化亚铁硫杆菌的铁和硫氧化系统及其分子遗传学[J].微生物学报,2000, 40(5):563~566
    [44]刘万楹,雷正兰,吕伟等.有机硫化物的等离子体液相氧化脱硫[J].应用化学,1997,(5):83~85
    [45]陈焕章,李永丹,赵地顺等.汽油和柴油氧化脱硫技术进展[J].化工进展,2004, 23(9):913~916
    [46] Moulijn,Jacob A.,Makkee, et al.Science and technology of deep desulphiding of oil refinery streams[C] .AIChE Annual Meeting,2005,9708
    [47] He M Y.The development of catalytic cracking catalysts: acidic property related catalytic performance[J].Catal.Today,2002,73(1-2):49~55
    [48] Ward J W. The nature of active sites on zeolites:XII The acidity and catalytic activity of transition metal Y zeolites [J]. Catal.,1971,22 (2):237~244
    [49] Chen B Y, He M Y, Da Z J. The role of manganese contained zeolite catalysts in tuning bi/mono-molecular reaction pathway selectivity in FCC process[C]. In14thInternational Zeolite Conference. 2004,2302~2308
    [50] Scherzer J,Bass J L.Ion exchanged ultra-stable Y zeolites:the formation and structural characterization of lanthanum-hydrogen exchanged zeolites[J].Catal.,1977,46(2):100~108
    [51] Carvajal R, Chu P J, Lunsford J H. The role of polyvalent cations in developing strong acidity:A study of lanthanum-exchanged zeolites [J].Catal.,1990,125(1):123~131
    [52] Scherzer J ,Riter R E.Ion-exchanged ultra-stable Y zeolites gas oil cracking over rare earth-exchanged ultra-stable Y zeolites[J].Ind.E ng.Chem.Prod.Res.Dev.,1978, 17(3):219~223
    [53] Magee J S ,Cormier W E,Woltermann G M.Octane catalysts contain special sieves.Oil&Gas[J],1985,83(21):59~64
    [54]孙书红,庞新梅,郑淑琴等.稀土超稳Y性分子筛催化裂化催化剂的研究[J].石油炼制与化工,2001,32(6):25~27
    [55]姜升.超稳分子筛制备工艺的改进[硕士学位论文].浙江;浙江大学,2005
    [56] Scherzer J. Octane-enhancing, zeolitic FCC catalysts:Scientific and Technical Aspects[J]. Catal.Rev.-Sci.Eng.,1989,31(3):215~354
    [57]董松涛,李宣文,李大东.水热处理USY二次孔形成规律研究[J].物理化学学报,2002,18(3):201~206
    [58] Zukal A, PatzelovA V, Lohse U. Secondary porous structure of dealuminated Y zeolites[J]. Zeolites,1986,6(2):133~136
    [59] DonkS V ,JanssenA H ,BitterJ H ,et al. Generation,Characterization,and Impact of Mesopores in Zeolite Catalysts[J].Catal.Rev.,2003,45(2):297~319
    [60] Triantafillidis C S, Vlessidis A G, Evmiridis N P. Dealuminated HY zeolites:influence of the degree and the type of dealumination method on the structural and acidic characteristics of HY Zeolites[J].Ind.Eng.Chem.Res,2000,39(2):307~319
    [61] Patzelov A V, Jaeger N I.Texture of deep bed treated Y zeolites[J]. zeolites, 2001,7(3):240~242
    [62]黄暇,李全芝,关明华等.不同方法制备的脱铝Y沸石的孔结构[J].催化学报,1993, 14(2):143~146
    [63] Grobet P J, Geerts H, Tielen M,ea tl. Framework and non-framework Al species in dealuminated zeolite丫[J].Stud.Surf.Sci.Catal,1989,49:721~734
    [64] Remy M J, Stanica D , Grobet P J,et al.Dealuminated HY zeolites:Relation between Physicochemical Properties and Catalytic Activity in Heptane and Decane Isomerization[J].Phys.Chem,1996,100(30):12440~12447
    [65] Carvajal R ,Chu P J ,Lunsford J H .The role of polyvalent cations in developing strong acidity:A study of lanthanum-exchanged zeolites[J].Catal.,1990,125(1):123~131
    [66] Biaglow A I, Parrillo D J, Kokotailo G T, ea tl. A Study of Dealuminated Faujasites[J].Catal.,1994,148(1):213~223
    [67] Scherzer J, Bass J L. Infrared spectra of ulra-stable zeolites derived from type Y zeolites[J]. Catal.,1973,28(1):101~115
    [68] Pine L A,Maher P J,Wachter W A.Prediction of cracking catalyst behavior zeolite unit cell size model[J].Catal.,1984,85(2):466~476
    [69]高滋,唐颐.Y沸石的酸性[J].化学学报,1990,48(7):632~638
    [70] Gao Z, Tangg Y.Influence of Si/AI ratio on the properties of F aujasites enriched in silicon[J].Zeolites,1988,8(3):232~237
    [71] Corma A,Melo F V,Rawlence D J.Efect of the nonuniform dealumination on the acidity and catalytic activity of faujasite[J].Zeolites,1990,10(7):690~694
    [72] Corma A, Melo F V, Rawlence D J. Efect of the nonuniform dealumination on the acidity and catalytic activity of faujasite : Part2.Accessibility of acid sites[J].Zeolites,1992, 12(3):261~264
    [73] Cruz J M, Corma A, Fomes V. Framework and extra-framework aluminum distribution in diammonium silicon hexa fluoride-dealuminated Y zeolites: relevance to cracking catalysts[J].Appl.Catal.,1989,50(l):287~293
    [74] Beyerlein R A, MeVicker G B, Yacullo L N, ea tl. Influence of Framework and Nonframework Aluminum on the Acidity of High-Sllica、Proton-Exchanged FAU-Framework Zeolites[J].Phys.Chem,1988,92 (7):1967~1970
    [75] Addison S W, Cartlidge S, Harding D A. Role of zeolite non-framework aluminium in catalytic cracking[J].Appl.Catal,1988,45 (2):307~323.
    [76] Corma A, Grande M, Fomds S V Cardidge.Gas oil cracking at the zeolite-matrix in terface[J].Appl.Catal.,1990,66(1):247~255
    [77]刘兴云,裴站芬,佘励勤等.新型高硅Y(NHSY)沸石的研究Ⅰ.NHSY沸石的结构特点[J].催化学报,1994,15(4):278~283
    [78]何杰,邱金恒,范以宁.负载型Nb2O5对异丁烯与异丁醛缩合反应催化性能[J].安徽理工大学学报(自然科学版),2006,26(2):52~57
    [79] Dath J,Vermeiren w, Herrebout K.Production of olefins, especially propylenes, by cracking an olefin-containing hydrocarbon feedstock which is selective towards light olefins in the effluent[P]. WO 200078894.2000
    [80]刘雷,张高勇,董晋湘.模板剂对全硅MCM-41介孔分子筛结构的影响[J].物理化学学报,2004,20(1):65~69
    [81]张泽凯,刘盛林,杜喜研等.芳烃烷基化反应性能对烷基化脱硫汽油中硫化物过程的影响[J].石油化工,2006,35(2):113~117
    [82]姜蕾,张占柱,毛俊义等.采用改性磺酸树脂催化剂的催化裂化汽油的烷基化脱硫[J].石油学报(石油加工),2006,22(1)22~26
    [83]李春林,伏义路.水蒸汽对Ni/Ce-Zr-A1-Ox催化剂上CO2-CH4反应积碳的影响[J].物理化学学报,2004,20(专刊):906~910
    [84]李永昕,张艳华,薛冰.NaY/MCM一48复合分子筛的合成与表征[J].无机材料学报,2006,21(5):1209~1216
    [85]陈洪林,申宝剑,潘惠芳.ZSM-5/Y复合分子筛的酸性及其重油催化裂化性能[J].催化学报,2004,25(9):715~720
    [86]卢涌泉,邓振华.实用红外光谱解析[M].北京:电子工业出版社.1989,21~25

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700