用户名: 密码: 验证码:
共沉淀法制备非负载型Ni-Mo-W催化剂及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,越来越严格的环保法规和低质原油的增多使油品脱硫变得越来越重要,低硫化和零硫化的要求日益迫切。传统负载型加氢催化剂由于受其组成限制,所能提供的活性中心数量有限,存在一个特定的活性极限值。而非负载型催化剂是一种无载体的高活性催化剂,可提供的活性中心数量比传统负载型催化剂大大增加,借助适宜的新技术,使得大幅度提高加氢活性成为可能。因此,非负载型催化剂的研究成为当前油品加氢领域新的热点。
     本文制备了具有超高活性和合适性价比的非负载型Ni-Mo-W柴油超深度加氢脱硫催化剂,并对其进行了分析表征和加氢工艺条件考察。主要研究内容和结果如下:
     首先采用共沉淀法制备了催化剂前驱体,考察了原料来源、金属配比、沉淀剂种类、反应时间和反应温度等的影响。结果表明,适宜的制备条件是以硝酸镍、钼酸铵和偏钨酸铵为原料,Ni:Mo:W=2:1:1(摩尔比),NH3·H2O为沉淀剂,90℃下反应2h。
     然后对催化剂的成型技术进行了研究,考察了黏结剂的种类、用量、加入方式及元素改性的影响。结果表明,当黏结剂:前驱体=0.4:0.6(质量比),采用一次性加入复合黏结剂时,可获得具有超高活性和满意的物理性能的非负载型催化剂。
     对前驱体及催化剂采用了BET、XRD、TG/DTA、FT-IR、吡啶吸附-IR、SEM-EDXA、XRF等进行表征。结果表明,前驱体本身具有较大的比表面积和孔容,表面呈明显层状结构,表面粒径分布均匀,颗粒度小;相应的催化剂表面粗糙度和分层性也很明显。XRD显示催化剂具有类似NiO的晶型结构。催化剂的各项物性指标,如比表面积、孔容、堆密度、强度等均可满足工业剂的要求。
     最后,对催化剂加氢工艺条件进行了全面考察。结果表明,反应温度和体积空速对催化剂的脱硫、脱氮性能影响较大,反应压力和氢油比也有一定的影响,但相对较小。该催化剂能够在较大处理量的情况下仍保持很好的脱硫、脱氮性能,具有良好的活性稳定性和原料适应性。在常规条件下,以大庆催化柴油为原料能够获得硫含量低于10μg·g-1的超清洁柴油。
At present, with the stringent environmental regulations and low-quality crude oil increasing,desulfurization becomes more and more important. The requirements of clean fuel with ultra low sulfide or zero sulfide are urgent. However, the active sites providing by conventional supported catalysts are limited by their components. The activity of supported catalysts exists bottleneck which couldn’t exceed. Fortunately, unsupported catalyst is a kind of highly activity catalyst without any support in, which has more active sites than conventional supported catalyst. Unsupported catalyst can get ultra high hydrogenation activity by appropriate new technologies. Therefore, studies on the unsupported catalysts have become a new focus of oil hydrogenation.
     The Ni-Mo-W unsupported deep hydrodesulphurization (HDS) catalysts for ultra clean diesel fuels were studied in this paper. The main research content and results are as follows: Firstly, the precursors of catalyst were prepared by co-precipitation. The effects of metal source, metal ratio, precipitator species, reaction time and temperature were studies. The results indicated that optimal reaction conditions are that using nickelous nitrate, ammonium molybdate and ammonium metawolframate as raw materials, Ni:Mo:W=2:1:1(mol ratio), NH3·H2O as precipitator, the reaction time of 2h and the temperature of 90℃.
     Secondly, the shape process of precursor was studied. The effects of agglomerant species and amount, the addition mode of agglomerant and the modification elements were investigated. The results indicated that the catalysts with ultra-high activity and proper physical properties are obtained under the conditions of that the ratio of agglomerant to precursor is of 0.4 to 0.6 and the agglomerant is added one time.
     Moreover, the precursors and catalysts were characterized by BET, XRD, TG/DTA, FT-IR, IR-Py, SEM-EDXA and XRF. The results indicated that the precursor was of high specific surface area and pore volume, obvious multi-layered structure and even distribution of grains in appearance. The catalysts were of coarse appearance and obviously layered structure. XRD indicated that the morphology of catalyst was crystalline structure assembly analogous with NiO. The physical properties of catalyst such as specific surface area, pore volume, bulk density and bulk density meet the requirements of industrial applications.
     Finally, the hydrotreatment conditions of catalysts were studied comprehensively. The results indicated that reaction temperature and airspeed have obvious influences on the behavior of desulphurization and denitrification. In contrast, the effects of pressure and oil hydrogen ratio were weak.
     The prepared unsupported catalyst is of excellent behaviors of desulfurization, denitrification, activity stability and feedstock adaptability, even under the condition of large processing load. Under the conventional conditions, the sulfur content of hydrotreated diesel was lower than 10μg·g~(-1).
引文
[1] Song C S. An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel[J]. Catal.Today. 2003, 86, 211-263.
    [2] EPA,Control of Air Pollution from New Motor Vehicles Amendment to the Tier-2/Gasoline Sulfur Regulations, US Environmental Protection Agency, April 13, 2001.
    [3] Service R F. Hydrogen power: Bringing fuel cells down to earth[J]. Science. 1999, 285: 682
    [4] Yoosuk B, Kim J H, Song C S, Ngamcharussrivichai C, Prasassarakich P. Highly active MoS2, CoMoS2 and NiMoS2 unsupported catalysts prepared by hydrothermal synthesis for hydrodesulfurization of 4,6-dimethyldibenzothiophene[J]. Catalysis Today. 2008, 130(1): 14-23
    [5] S. Eijsbouts, S.W. Mayo, K. Fujita. Unsupported transition metal sulfide catalysts: From fundamentals to industrial application[J]. Applied Catalysis A: General 2007, 322: 58–66
    [6] Amorelli A, Amosy D, Halsig C P, et al. Estimate feedstock processability[J]. Hydrocarbon Processing, 1992, 71(6): 93-101.
    [7] Laudaum V. Deep hydrotreating of middle distillates from crude and shale oils[J]. Catal Today, 1997, 36: 393-429.
    [8] Leen A G, Frans L P. Catalysts to play a large part in ultra-low sulfur fuel[J].Oil and Gas Journal, 2000, 98(41): 76- 80.
    [9] Furimsky E, Massoth F E. Deactivation ofhydroprocessing catalysts[J]. CatalToday, 1999, 52: 381-495.
    [10] Shafi R, Hutchings G J. Hydrodesulfurization ofhindered dibenzothiophenes: an overview[J]. Catal Today, 2000, 59: 423-442.
    [11] Knudsen K G, Cooper B H,Topsoe H. Catalyst and process technologies for ultra-low sulfur diesel[J]. Appl Catal A: Gen, 1999, 189(2): 205-215.
    [12] Song C, Ma X. New design approaches to ultra-clean diesel fuels by deep desulfurization and deep dearomatization[J]. Appl Catal B, 2003, 41: 207-238.
    [13] Butaille F. Alkyldibenzothiophenes hydrodesulfurization-promoter effect, reactivity and reaction mechanism[J]. J Cat, 2000, 191: 409-422.
    [14] Brian M M. Process, catalyst choices key to producing 30ppm sulfur fuels[J]. Oil and Gas Joural 2000, 98(41): 72-74.
    [15] Babjch V J, Moulijn J A. Science and technology of novel processes for deep desulfurization of oil refinery streams: a review[ J]. Fuel, 2003, 82: 607-631.
    [16] Okamoto Y, Breysse M, Murali Dhar G, Song C. Effect of support in hydrotreating catalysis for ultra clean fuels[J]. Catal Today, 2003, 86 (1-4): 1-3.
    [17]程伟,张继炎,王日杰等.加氢脱硫催化剂各组份的相互作用与催化性能[J].物理化学学报. 1999,15 (7):647-651.
    [18]李翠清,王洪学,李成岳等.噻吩在不同负载磷化钨催化剂上的加氢脱硫[J].分子催化,2004, 18(1):15-18.
    [19] Layman K A, Russell M E, Spectroscopic Investigation of Thiophene Adsorption on Silica-Supported Nickel Phosphide Catalysts[J]. J Phy Chem B, 2004,108(40): 15791-15802.
    [20] Sawhill S J, Layman K A,Van Wyk D R, Engelhard M H, Wang C, Russell M E. Thiophene hydrodesulfurization over nickel phosphide catalysts: effect of the precursor composition and support[J]. J Catal, 2005, 231 (2): 300-313.
    [21] Pawelec, B., Mariscal, R., Fierro, J. L. G, Greenwood, A., Vasudevan, P. T. Carbon-supportedtungsten and nickel catalysts for hydrodesulfurization and hydrogenation reactions[J]. Appl. Catal. A: General, 2001, 206 (2), 295-307.
    [22] Kaluza, L., Zdrazil, M. Carbon-supported Mo catalysts prepared by a new impregnation method using a MoO3/water slurry: Saturated loading, hydrodesulfurization activity and promotion by Co[J]. Carbon.2001, 39 (13), 2023-2034.
    [23] Segawa K, Takahashi K, Satoh S. Development of new catalysts for deep hydrodesulfurization of gas oil[J]. Catal. Today, 2000, 63(2-4), 123-131.
    [24] Reddy K M, Wei B, Song C. Mesoporous molecular sieve MCM-41 supported Co-Mo catalyst for hydrodesulfurization of petroleum resides[J]. Catal. Today, 1998, 43(3-4): 261-272.
    [25] Sie, S. T. Reaction order and role of hydrogen sulfide in deep hydrodesulfurization of gas oils: Consequences for industrial reactor configuration[J]. Fuel Proc. Tech. 1999, 61(1-2), 149-171.
    [26] Horii Y, Onuki H, Doi S, Mori T, Takatori T, Sato H, Ookuru T, Sugawara T. Desulfurization and denitration of light oil by extraction[P]. USP 5, 494, 572. 1996-2-27.
    [27] Teh C. Deep desulfurization ofdistillate fuels[P]. USP 5,454,933, 1995-10-03.
    [28] Cyndit S E. Production ofultra-low sulfur fuels: today and tomorrow[A]. NPRA Annual Meeting[C]. Texas, 2003, AM-03
    [29]日志凤,战风涛,李林等. H2O2-有机酸氧化脱除催化裂化柴汕中的硫化物[J].石油大学学报(自然科学版),2001,25(3):26-28.
    [30]杨丽娜,李德飞,李东胜等.石油二厂催化裂化柴油化学方法脱硫[J].抚顺石油学院学报,2002,22(2):22-24.
    [31] Mei H, Mei B W, Yen T F. A new method for ohtaining ultra-low sulfur diesel fuel via ultrasound assisted oxidative desulfurization[J]. Fuel, 2003, 84(4): 405-414.
    [32]钱伯章,吴虹.石油生物脱硫技术及其应用前景[J].炼油设计,1999,29(8):26-31.
    [33] Parkinson G. Chemical Engineering, Terror-proofing CPI plants[J]. 2002, 109(1): 27-33.
    [34] Aldridge C L, Riley KL. Method for the preparation of supported hydrogenation and hydrotreating catalysts[P]. USP 5 336 654, 1994-8-9.
    [35] Huirache A R, Albiter M A, Ornelas C, et al. Ni(Co)-Mo-W sulphide unsupported HDS catalysts by ex situ decomposition of alkylthiomolybdotungstates[J]. Appl. Catal. A: Gen., 2006, 308: 134-142.
    [36]方维平,王家寰,陆秋韵等.加氢精制催化剂的制备方法[P]. CN 1 098 433,1995.
    [37] Nelson G V, Nongbri G, Pratt R E, et al. Hydroconversion process employing catalyst with specified pore size distribution[P], USP 5 435 908, 1995-7-25.
    [38] Slavik K. Metallic sulphide catalysts, processes for synthesising said catalysts and use thereof[P]. USP 6 562 752, 2003-5-13.
    [39] Dhar M G, Srinivas B N, RanaMS, et al. Mixed oxide supported hydrodesulfurization catalysts - A review[J]. Catal. Today, 2003, 86: 45-60.
    [40]邓存,周振华,童迅. TiO2调变对MoO3/γ-Al2O3和CoO-MoO3/γ-Al2O3催化性能的影响[J].分子催化,1998,12(2):107-112.
    [41]魏昭彬,蒋少聪,辛勤. Mo/Tio2-Al2O3催化剂加氢脱硫性能的研究[J].石油化工,1993,22(1):5-9.
    [42] Hugo V T, Philippe B, Christian L, et al. Silica-alumina carriers preparation, hydrogenation catalysts preparation therewith and their use for aromatics hydrogenation[P]. USP 6 479 004, 2002-11-12.
    [43] Corma A, Martinez A, Martinez-Soria V, et al. Hydrocracking of Vacuum Gasoil on the Novel Mesoporous MCM-41 Aluminosilicate Catalyst[J]. J. Catal., 1995, 153(1): 25-31.
    [44] Klimova T, Calderon M, Ramírez J. Ni and Mo interaction with Al-containing MCM-41 support andits effect on the catalytic behavior in DBT hydrodesulfurization[J]. Appl. Catal. A:General, 2003, 240(1-2): 29-40.
    [45] Ramírez J, Contreras R, Castillo P, et al. Characterization and catalytic activity of CoMo HDS catalysts supported on alumina-MCM-41[J]. Appl. Catal., 2000, 197(1): 69-78.
    [46] Song C S, Reddy K M. Mesoporous molecular sieve MCM-41 supported Co–Mo catalyst for hydrodesulfurization of dibenzothiophene in distillate fuels [J].Appl. Catal. A, 1999, 176(1): 1-10.
    [47]王安杰,王瑶,陈永英等.柴油深度加氢脱硫催化剂载体全硅MCM-41的合成[J].大连理工大学学报,2001,41(6):663-666.
    [48] Wang A J, WangY, Kabe T, et al. Hydrodesulfurization of Dibenzothiophene over Siliceous MCM-41-Supported Catalysts: I. Sulfided Co–Mo Catalysts [J]. J. Catal., 2001, 199(1): 19-29.
    [49] Wang A J, Wang Y, Kabe T, et al. Hydrodesulfurization of Dibenzothiophene over Siliceous MCM-41-Supported Catalysts: II. Sulfided Ni–Mo Catalysts[J]. J. Catal., 2002, 210(2): 319-327.
    [50] Sano Y, Choi K H, Korai Y, et al. Adsorptive removal of sulfur and nitrogen species from a straight run gas oil over activated carbons for its deep hydrodesulfurization[J]. Appl. Catal. B, 2004, 49(4): 219-225.
    [51] Hamdy F, Whitehurst D D, Kinya S, et al. Carbon versus alumina as a support for Co-Mo catalysts reactivity towards HDS of dibenzothiophenes and diesel fuel[J].Catal. Today, 1999, 50(1): 9-17.
    [52] Farag H, Mochida I, Sakanishi K. Fundamental comparison studies on hydrodesulfurization of dibenzothiophenes over CoMo-based carbon and alumina catalysts[J]. Appl. Catal. A, 2000, 194/195: 147-157.
    [53] Vissers J P R, Scheffer B, de Beer V H J,et al. Effect of the support on the structure of Mo-based hydrodesulfurization catalysts: Activated carbon versus alumina [J].J. Catal., 1987, 105(2): 277-284.
    [54] Rana M S, Maity S K, Ancheyta J, et al. MoCo(Ni)/ZrO2-SiO2 hydrotreating catalysts: Physico-chemical characterization and activities studies[J].Appl. Catal. A, 2004, 268(1-2): 89-97.
    [55] Li G R, Li W, Zhang M H, et al. Morphology and hydrodesulfurization activity of CoMo sulfide supported on amorphous ZrO2 nanoparticles combined with Al2O3 [J]. Appl. Catal. A, 2004, 273(1-2): 233-238.
    [56]李国然,李伟,张明慧等. CoMo/ZrO2-Al2O3催化剂的加氢脱硫活性[J].石油学报(石油加工),2003,19(5):22-26.
    [57]商红岩,徐永强,刘晨光等.碳纳米管负载的Co-Mo催化剂的HDS性能研究[J].分子催化,2004,18(1):42-46.
    [58] Rana M S, Maity S K, Ancheyta J, et al. TiO2-SiO2 supported hydrotreating catalysts: Physico-chemical characterization and activities[J].Appl. Catal. A: Gen., 2003, 253(1): 165-176.
    [59]肖丰收,应品良,辛勤等.利用CO和NO吸附的红外光谱表征还原态的Ru-Co-Mo/Al2O3催化剂[J].燃料化学学报,1992,20(2): 113-117.
    [60]赵璧英,徐献平,陆林等.制备条件对MoO3/γ-Al2O3结构的影响及ZnO改性作用的LRS研究[J].石油化工,1993,22(4):216-221.
    [61] Chan K, Mi Y K, Kyungil C, et al. Effect of phosphorus addition on the behavior of CoMoS/Al2O3 catalyst in hydrodesulfurization of dibenzothiophene and 4,6-dimethyl dibenzothiophene [J]. Appl. Catal. A, 1999, 185(1): 19-27.
    [62]建谋,石亚华,李大东.氟在γ-Al2O3及NiW/γ-Al2O3催化剂中的作用-Ⅰ.氟的存在形态与表面酸性分子催化[J]. 1990,4(2):104-111.
    [63] Clausen B S, Niemann W, Zeuthen P.et al. Xanes and EXAFS studies of the Ni-Mo-S (Co-Mo-S) structures in hydrotreating catalysts[J]. Preprints Div. Petrol. Chem. ACS, 1990, 35(2): 208-210.
    [64] Zeuthen P, Muegge P B, Blom P, Muegge B, Massoth F E. Temperature-programmed sulfidation and oxidation of Ni-Mo/alumina catalysts and reaction with ammonia [J].Appl. Catal., 1991, 68(1-2): 117-130.
    [65] Morales A, Agudelo M M R. promoter role of cctahedral Co (And Ni) in modified Co(Ni)Mo-Al2O3 catalysts for hydrodesulfurization reactions [J].Appl. Catal., 1986, 23(1): 23-24.
    [66] Benavente E, Santa Ana M A, Mendizábal F, et al. Intercalation chemistry of molybdenum disulfide [J]. Coordination Chem. Rev., 2002, 224(1-2): 87-109.
    [67] Dugulan A I, CrajéMWJ, Kearley G J. High-pressure in situ M?ssbauer emission spectroscopy study of the sulfidation of calcined Co–Mo/Al2O3 hydrodesulfurization catalysts[J]. J. Catal., 2004, 222(1): 281-284.
    [68] Byskov L S, Hammer B, N rskov J K, et al. Sulfur bonding in MoS2 and Co-Mo-S structures [J].Catal. Lett., 1997, 47(3-4): 177-182.
    [69] Eijsbouts S. On the flexibility of the active phase in hydrotreating catalysts[J]. Appl. Catal. A, 1997, 158(1-2): 53-92.
    [70]王瑶.用全硅MCM-41担载Co-Mo和Ni-Mo硫化物研制深度加氢脱硫催化剂[D].大连:大连理工大学博士论文,2004.
    [71]安高军,柳云骐,柴永明等.柴油加氢精制催化剂制备技术[J].化学进展,2007,19(2/3):243-249.
    [72] Bouwens S M A M, van Veen J A R, Koningsberger D C, et al. Extended X-ray absorption fine structure determination of the structure of cobalt in carbon-supported Co and Co-Mo [J].J. Phys. Chem., 1991, 95(1): 123-134.
    [73]张学军. FH-98型催化剂在大庆焦化-常顶混合汽油加氢精制中的应用[J].工业催化,2000,8(4):49-52.
    [74]王友法. FH-98催化剂在柴油加氢精制装置的应用[J].石化技术与应用,2003,21(6):428-430.
    [75] Soled S L, Riley KL, Schleicher G P. Hydroprocessing using bulk Group VIII/Group VIB catalysts (HEN-9901)[P]. USP 6 162 350, 2000-12-19.
    [76] Shinsky J K. Fixed-location method of composing and performing and a musical instrument[P]. USP 6 156 966, 2000-12-5.
    [77] Soled S L, Miseo S, Roman K, et al. Nickel molybodtungstate hydrotreating catalysts (law444)[P]. USP 6 299 760, 2001-10-9.
    [78] Eijsbouts S, Oogjen B G, Homan F H W, et al. Mixed metal catalyst, its preparation by co-precipitation, and its use[P]. USP 6 635 599, 2003-10-21.
    [79] Hou Z G, Bearden J R, David FT, et al. Slurry hydroprocessing using bulk multimetallic catalysts[P]. USP 6 712 955, 2004-3-30.
    [80] Eijsbouts S, Oogien B G, Homan FHW, et al. Process for preparing a mixed metal catalyst composition[P]. USP 6 652 738, 2003-11-25.
    [81] Demmin R A, Riley K L, Soled S L, et al. Hydroconversion process using bulk group VIII/Group VIB catalysts[P].USP 6,620,313, 2003-09-16.
    [82]方向晨.加氢精制[M].北京:中国石化出版社,2005:129-167.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700