用户名: 密码: 验证码:
分子筛纳米簇改性的NiMoW柴油加氢催化剂的制备与评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文在无碱体系中,制备出含有ZSM-5分子筛次级结构单元(或纳米簇)的溶液,系统考察了制备方法、制备温度、硅铝比、晶化温度、晶化时间等条件对分子筛纳米簇物化性质的影响;采用XRD、IR等手段对所制备的纳米簇进行表征。结果表明,在一定条件下合成的前驱体溶液中确实含有ZSM-5分子筛次级结构单元,且没有分子筛晶粒生成。
     本论文利用其对γ-Al2O3载体进行表面改性,分别考察不同制备条件的纳米簇以及不同的改性手段对氧化铝物化性质的影响。其中纳米簇制备,主要考察了晶化温度、晶化时间、硅铝比等因素的影响;改性方法,主要考察了室温浸渍、超声波分散、高温晶化、稀释法浸渍、机械混合等的影响,采用XRD、IR、Py-IR、NH3-TPD、BET等手段对样品进行表征。结果表明,经过表面改性后,分子筛纳米簇均匀分布于氧化铝载体表面,并没有形成晶粒;改性载体酸性明显增强,且有B酸性位出现,但孔结构与比表面积没有明显的变化。
     以分子筛纳米簇改性后的氧化铝作为载体,制备负载型Ni-Mo-W加氢催化剂,以4,6-DMDBT作为模型化合物,利用高压微反对催化剂的HDS活性进行评价,并利用气相色谱与质谱对脱硫反应产物进行定性与定量分析。其结果表明,与传统氧化铝为载体的催化剂相比,纳米簇改性后所制备的催化剂具有较高的活性,其对4,6-DMDBT的转化率提高了52.4个百分点,同时提高了对4H-4,6-DMDBT及6H-4,6-DMDBT等部分加氢产物的脱硫活性,使得脱硫率/转化率有明显的提高。表明改性后载体由于具有较强的酸性,可以促进C-S键的断裂,同时由于金属组分与载体之间的相互作用减弱,活性相的堆垛数增加,使其加氢/氢解比例增大。
In this paper, the precursor solution containing the ZSM-5 secondary structural unit(or zeolite nanocluster)was firstly synthesized in the system without alkali metal. The influences of the preparation methods, crystallizing time, crystallizing temperature and the ratio of Si/Al on properties of zeolite nanoclusters were studied. The results of XRD and IR indicated that the zeolite nanoclusters did exist in the precursor solution but the zeolite crystalline particles didn’t exist.
     The effects of nanoclusters prepared at different conditions and the modify methods on the acidity ofγ-Al2O3 were investigated. The modification methods of room temperature impregnation, ultra-audible sound assistanted dispersion , crystallizing at high temperature, dilution method impregnation, mechanically blending were examinated. The characterization results of XRD, IR, Py-IR and TPD indicated that some Br?nsted acid sites formated on the surface ofγ-Al2O3 where ZSM-5 nanoclustes dispersed, and at the same time the ZSM-5 minicrystal particles didn’t form. The acidity of modified support rised remarkably but the changes of pore diameter and BET surface were unconspicuous.
     The Ni-Mo-W hydrodesulfurization catalysts were prepared with the modifiedγ-Al2O3 as support. Then the performances of HDS were evaluated in high pressure micro-reactor with 4,6-DMDBT as model compound, and the products of reaction were analyzed qualitatively and quantitatively using the GC and MS. Compared to the traditional HDS catalyst supported on theγ-Al2O3, the novel catalyst supported on the carrier modified with zeolite nanocluster presented higher conversion and desulfurization of 4,6-DMDBT. The conversion ratio of 4,6-DMDBT rised by 52.4 percentages,and meanwhile the removal ratio of partly hydrogenation sulfcompounds increased. The results revealed that the catalyst supported on modifiedγ-Al2O3 had higher HYD/DDS ratio, wich attributed to the catalyst’s stronger acidity and metal compound’s higher stacking number originated from the weaker interaction between metal compound and carrier.
引文
[1]艾中秋.国外生产清洁柴油的加氢工艺及催化剂.石化技术与应用. 2006, 24 (1): 60-64
    [2] Matmquin Sanchex, G. Ancheyta Jurares, J. Applied Catalysis A: General, 2001, 207(1): 407-420
    [3]王倩.氮化物、H2S和芳烃对深度加氢脱硫的影响.石化技术与应用,2004,24(1): 60-64
    [4] Osakis S, Nonaka T, Takashima N, et al. Oxidative Desulfurization of Light Gas Oil and Vacuum Gas Oil by Oxidation a Solvent Extraction J. Energy Fuels, 2000, 14: 1232-1239
    [5] Ma XL, Sun L, Song C Sh. A new approach to deep desulfurization of gasoline ,diesel fuel and jet fuel by selective ad-sorption for ultra - clean fuels and for fuel cell. Applications Catalysis Today, 2002 , 77: 107-116
    [6] Mille V, Schulz E, Variant M, Loamier M. A new route towards deep desulphurization: selective charge transfer complex formation J. Chemical Communication , 1998(12): 305-306
    [7]赵延飞,晏乃强,吴旦,等.石油的非加氢脱硫技术研究进展(J).石油与天然气化工, 1998(33): 305-311
    [8]王雪松,钟雄辉,王志良,等.柴油加氢脱硫催化剂的研究进展.当代化工2006 , 35(3): 198-201
    [9] Mille V, Schulz E, Variant M, et al. A new route towards deep desulphurization: selective charge transfer complex formation. Chemical Communication, 1998, 25(3): 305-306
    [10]万国赋,段爱军,赵震,等.柴油超深度脱硫技术进展.黑龙江大学自然科学学报,2006,10(12): 30-32
    [11]唐有祺,谢有畅,桂琳琳.氧化物和盐类在载体表面的自发单层分散及其应用.自然科学进展-国家重点实验室通讯,1994, 11(4): 12-18
    [12] Topse H, ClausenB S, MassothFE.In: AndersonJR, BoudartM. Catalysis: Scienceand Technology, Vol(11). NewYork: Springer, 1996.228
    [13]左东华,谢玉萍,聂红,等. 4,6-二甲基二苯并噻吩加氢脱硫反应机理的研究.催化学报. 2002, 23(3): 121-130
    [14] Arins B, Grange P, Delmon B. Pro 9th Symp Iberoamer, Catal Lisben, 1984:1064
    [15] Weihua Qian, Atsushi Ishihara, Guangde Wang et al, Elucidation of Behavior of Sulfur on Sulfided Co–Mo/Al2O3 Catalyst Using a35S Radioisotope Pulse Tracer Method. Catalysis Today, 1997, 170: 286-294
    [16]柴永明.过渡金属硫化物催化剂催化加氢作用机理.化学进展, 2007, 19(3): 183-190
    [17]孙福侠,李灿.过渡金属磷化物的加氢精制催化性能研究进展.石油学报(石油加工), 2005, 21(6): 1-11
    [18]刘继华,关明华.柴油深度加氢脱硫脱芳烃工艺技术的研究与开发.炼油技术与工程. 2003, 33 (10): 1-5
    [19] Wang AJ, Ruan L F, Teng Y, et al, Hydrodesulfurization of Dibenzothiophene over Siliceous MCM-41 Supported Nickel Phosphide Catalysts J. Journal of Catalysis, 2005, 229: 314-321
    [20] MoralesA, RamirezMM, Hernandez. [J]. Appllied Catalyst A:General,1988, 41:261-271
    [21] P. Atanasova,T.Tabakova,Ch.Vladov,et al.Applied Catalysis A:General, 1997(61): 105-119
    [22] Topse H, Candia R, Topse NY, et al. [J].Bull.Soc. Chim.Belg. 1984, 93:783-790
    [23]周亚松,刘全昌,马海峰. NiW/ CTS-n催化剂的加氢脱芳性能研究.石油学报(石油加工), 2006, 22(3), 223-230
    [24]潘惠芳,唐爱军,李丙兰,等.磷改性γ-Al2O3的酸性调变和积炭行为.石油学报(石油加工), 1996, 12(3): 1-7
    [25] Cuevas R, Ramirez J, Busca G, et al. J. Fluorine Chemistry. [J], 2003, 122: 151-153
    [26]李洪宝,黄卫国,康小洪.含氮化合物对NiW体系催化剂芳烃加氢性能的影响.石油炼制与化工,2006, 7(10): 26-30
    [27]王广建,常俊石,曹长青.钾对Co-Mo/γ-Al2O3催化剂催化活性的影响.青岛化工学院学报, 2001, 22(2): 149-151
    [28]袁强,杨乐夫等.改性氧化铝为载体的钯催化剂对甲烷催化氧化作用的研究.厦门大学学报(自然科学版), 2003, 41(2): 199-203
    [29]加部利明,姚平经(译).柴油深度加氢脱硫催化剂载体全硅MCM-41的合成.大连理工大学学报, 2001, 6: 41-45
    [30]朱银华,周亚新.新型Mo/ TiO2的噻吩加氢脱硫性能,石油学报(石油加工),2007,23(4): 76-80
    [31]魏昭彬,辛勤. CoMo/A12O3和CoMo/TiO2-A12O3加氢脱硫催化剂的研究.催化学报. 1994,15(3): 161-164.
    [32]李国然,李伟,张明慧. CoMo/ZrO2-Al2O3催化剂的加氢脱硫活性.石油学报(石油加工),2003,19(5): 22-26
    [33]商红岩,刘晨光,徐永强.活性炭负载的Co-Mo催化剂的加氢脱硫性能Ⅰ.活性炭载体与γ-Al2O3的对比.催化学报,2004,25(5): 363-368
    [34] Volpe L. Compounds of Molybdenum and Tungsten with high Specific Surface Area [J ] . J . solid state chemistry. 1985, 59: 332-347
    [35] Trawczynski J. Effect of Synthesis Conditions on the Hydrodesulfurization and Hydrodenitrogenation Activities of Alumina Supported Mo and CoMo Nitrides[J]. Applications Catalysis Today, 2000, 197: 289-293
    [36] R. Cid, F.J. Gil Llambias, M. Gonzales, A. Lopez Agudo, Catalyst Letters. 24(1994)147.
    [37]韩继红,顾昌鑫. EXAFS研究加氢处理催化剂载体中Y型分子筛对催化性能的影响.真空科学与技术, 2000, 20(4): 232-237
    [38] Eric J. Markel, Susan E. Burdick. Synthesis, Characterization, and Thiophene Desulfurization Activity of Unsupported Mo2N Macrocrystalline Catalysts. Journal of Catalysis 182, (1999): 136-147
    [39]朱金玲,王甫村.生产低硫柴油技术的新进展.化工科技市场, 2004(8): 1-8
    [40]左东华,谢玉萍,聂红,等. 4,6-二甲基二苯并噻吩加氢脱硫反应机理的研究.催化学报, 2002, 23(3): 211-219
    [41] Maceud, M. Milmkovic, A.; Schulz, E. et. al. Journal of Catalysis, 2000, 193(1): 255-263
    [42]徐永强. 4,6-二甲基二苯并噻吩在Co-Mo/γ- Al2O3上加氮脱硫反应机理的研究.炼油技术与工程, 2003, 33(8): 21-26
    [43] Klimova T, Calderon M, Ramirez J. Ni and Mo interaction with Al-containing MCM-41support and its effect on the catalytic behavior in DBT hydrodesulf -urization [J]. Applied Catalysis A:General, 2003, 240: 29-40
    [44] Larrubia M A, Gutierrez-Alejandre A, Rarrirez J, Busca G. Applied Catalysis A: General, 2002, 224(1): 167-178
    [45]王锦业,李大东. Ni含量及预硫化对NiW/γ- Al2O3催化剂上噻吩加氢脱硫反应活性的影响.催化学报, 2002, 23(2): 153-157
    [46]李矗,王安杰,鲁墨弘.加氢脱氮反应与加氢脱氮催化剂的研究进展.化工进展, 2003, 22(6): 583-588
    [47] Han Y, Wu S, Sun Y Y et al., Hydrothermally stable ordered hexagonal mesoporous aluminosilite assembled from a triblock copolymer and preformed aluminosilicate precursors in strongly acidic media. Chemical Matters, 2002, 14:1144-1148
    [48]杨锡尧.固体催化剂的研究方法-第十三章程序升温分析技术(下).石油化工, 2002, 31(1):63-72
    [49]梁文杰.石油化学[M].北京:石油大学出版社, 1995. 291-292
    [50]蔡芙蓉.红外光谱法研究改性Y型分子筛表面酸性与活性的关系.华东理工大学学报(自然科学版), 2006, 32(9): 1034-1040
    [51] Roel Prins. The effects of fluorine, phosphate and chelating agents on hydretreating catalysts and catalysis. Catalysis Today, 86(2003):173-189
    [52]林森,肖丰收. Beta沸石分子筛前驱体修饰的SBA-15介孔分子筛及其催化性质.山东大学学报(理学版), 2005, 40(3): 101-103
    [53]李工,阚秋斌.含有沸石结构单元体介孔材料的合成及催化性能[J].化学学报, 2002, 60(5): 759-763
    [54]赵琰.氧化铝、改性氧化铝及硅酸铝的酸性特征.工业催化,2002,10(2):54-60
    [55]余夕志,董振国,仁晓乾.柴油馏分加氢脱硫动力学及反应器研究进展[J].燃料化学学报, 2005, 33(3): 372-378
    [56] Michaud P, Lemberton J L, Perot G . Applied Catalysis, 1998,169:343-351
    [57]徐永强,赵瑞玉,商红岩.二苯并噻吩合成方法的改进.化学试剂, 2003 ,25 (3) ,163-165
    [58]徐如人,庞文琴.分子筛与多孔材料化学[M].北京:科学出版社, 2004: 610-611.
    [59]石方,孙鹤,王榕树.化学修饰的功能性介孔分子筛研究进展[J].化学通报, 1999, No.c99006
    [60]黄立民,陈海鹰,李全芝.中孔、微孔复合分子筛MCM-41/ZSM-5的合成.第九届全国催化会议学术论文集,北京:海潮出版社, 1998. 500-501
    [61]张玲玲,李凤艳.纳米与非纳米ZSM - 5分子筛的表征及催化性能.石油化工高等学校学报, 2007, 2 0 (1): 29-34
    [62] Taramasso.M., Pergo, G., Notari, B. Proceedings of the 5th International Conference on Zeolites. London P. 40 ,1980
    [63] A.M. Camilotia. Acidity of Beta zeolite determined by TPD of ammonia and ethylbenzene disproportionation. Applied Catalysis A: General, 182 (1999) 107-113
    [64]刘志红,王豪,鲍晓军.提高柴油加氢精制催化剂活性的方法[J].化工进展, 2008, 27(2): 173-179
    [65] Eijsbouts S. Heinerman J J L. MoS2 structures in high-activity hydrotreating catalysts: I. Semi-quantitative method for evaluation of transmission electron microscopy results. Correlations between hydrodesulfurization and hydrodenitro -genation activities and MoS2 dispersion [J]. Applied Catalysis A: General , 105(199): 53-57
    [66] Rodolfo Go′mez-Reynoso. Characterization and catalytic activity of Ni/SBA-15, synthesized by deposition–precipitation. Catalysis Today, 107–108 (2005), 926–932
    [67]Trawczynski J. Effect of synthesis conditions on the hydrodesulfurization and hydrodenitrog- enation activities of alumina supported Mo and CoMo nitrides[J]. Applied Catalysis A: General ,2000(197):289-293
    [68] Guo J W, Wang L, Huang Z T, et al., Transition metal-containing mesoporous molecular Sieves prepared by electrostatic S+X-I+ assembly pathway. Chin. Journal of Catalysis, 2000(9):393-394
    [69]徐如人,庞文琴.分子筛与多孔材料化学[M].北京:科学出版社, 2004: 610-611
    [70] Xie You-chang,Tang You-qi, Advcanced of Catalysis. 1990,37:1-3
    [71]田部浩三,小野嘉夫.新固体酸和碱及其催化作用.郑禄彬.北京.化学工业出版社,1970, 35(7): 163-168
    [72]余夕志,董振国,仁晓乾,等.柴油馏分加氢脱硫动力学及反应器研究进展[J].燃料化学学报, 2005, 33(3): 372-378
    [73]徐永强.二苯并噻吩类硫化物在负载型CoMo催化剂上加氢脱硫反应机理[D].东营:中国石油大学(华东), 2003, 8(1): 234-240
    [74] Wang AJ, Ruan L F, Teng Y, et al, Hydrodesulfurization of dibenzothiophene over siliceous MCM-41-supported nickel phosphide catalysts J. Journal of Catalysis, 2005,229:314-321
    [75]牛崇业,牛国兴.镍钼系列加氢处理催化剂的还原性、酸性及加氢脱硫性能[J].复旦学报,1995, 10(5): 112-120
    [76]高军.利用先进的加氢工艺生产清洁柴油[J].辽宁化工, 2006, 9(35): 543-547
    [77]孙书红,王宁生,闫伟建.ZSM-5沸石合成与改性技术进展[J].工业催化, 2007, 15(6): 6-12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700