用户名: 密码: 验证码:
低品位多金属铋矿的湿法浸出工艺及其基础理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文归纳了铋湿法冶金的国内外研究现状。针对个旧多金属铋矿中铋品位低(7.25%)、硫含量高(25.53%)的特点,以降低投资成本,提高矿产资源综合利用率,减小环境污染为目的,提出了一种用二氧化锰浸出的湿法浸出工艺流程。
     在对铋浸出的热力学及浸出机理进行分析研究的基础上,考察了影响铋浸出率的诸多因素,低品位铋矿浸出受氧化剂种类、酸度、搅拌速度、矿物粒度、氯离子浓度、液固比、浸出时间、浸出温度等诸多因素的影响。实验中首先通过对影响浸出各因素的研究,确定最优化综合浸出条件:HCl起始浓度为4.0mol/L;800rpm的搅拌速度;氧化剂用量为1.5倍理论值用量;矿物粒度约为0.105-0.074mm;1.5mol/L的氯离子起始浓度;液固比为4:1;浸出时间为180min。此时综合浸出率可达96%以上。
     本文还研究了低品位铋矿浸出的化学反应动力学模型。从动力学的角度分析了整个浸出过程,结果表明,浸出过程符合缩小核模型1-(1-η)~(1/3)=kt,通过Arrhenius经验公式,由不同温度下的Ink-1/T图,求得活化能为56.868kJ/mol。浸出反应的速率常数与粒度直径的倒数呈线性关系,说明浸出属于化学反应控制。浸出的动力学方程为:
     利用从钢渣通过磁选回收的铁粉对浸出液进行置换,置换体系中,置换速率明显受到Bi~(3+)初始浓度、温度、溶液pH及搅拌速率的影响。比较适宜的置换条件是:温度为25℃,溶液pH范围在-1.0~0.5之间,搅拌速率为400rpm,Cl~-浓度<1.5mol/L,置换时间为60min。在此条件下,铋的置换率可达99%以上。通过Arrhenius图,计算得到了该置换反应得活化能E_a=14.61kJ/mol;反应机理符合扩散控制机理;动力学数据服从一级反应的规律。
The current situation of leaching of bismuth from the low-grade mineral was summed up. The low grade complex multi-metal bismuth ore used in this experiment contains 7.25 percent of bismuth and 25.53 percent of sulfur. The purpose of this experiment was to probe a new hydrometallurgical approach to extract bismuth from the low grade and complex multi-metal sulfide ores at high recoveries but low costs, low pollution by MnO_2
    Based on the analysis of thermodynamics and mechanism of the leaching process, laboratorial-scale experiments about new technology had been invested systematically in this paper under normal pressure and room temperature. The optimum conditions we obtained as follows: concentration of hydrochloric acid=4.0 mol/L, stirring speed=800 rpm, particle size=0.105-0.074 mm, concentration of sodium chloride=1.5 mol/L, solid/liquid ratio=1:5, leaching time=180 min. Under the optimum conditions, the comprehensive leaching rate is more than 96%.
    The kinetics of leaching bismuth from low grade and complex multi-metal sulfide ores was also investigated. Results showed that the leaching process can
    be simulated with a shrinking core model 1- (1-η)~(1/3) = kt. The activation energy calculated according to the Arrhenius equation was 56.868 kJ/mol. There was a linear relation between the apparent rate constant and the reciprocal of the mean particle diameter. The results of kinetic analysis of the leaching data under various experimental contions indicated a reaction controlled by the solution transport of protons through the product layer; the following rate equation was established:
    The cementation of bismuth on iron powder from solutions had been studied. Iron powder used in this experiment was recycled from steel slag by magnetic separation method. The influence of several parameters on the course of the
引文
[1] Funsho K. Ojebuoboh. Bismuth-Production, Properties, and Applications[J], JOM, 1992, 4: 46~49.
    [2] 汪立果.铋冶金[M],北京:冶金工业出版社,1986:7~14.
    [3] Smelting of sulfide ores, CA. CS, V49: 6055b.
    [4] Carlin. J. F. Jr. "Bismuth", Mineral Commodity Profiles[M], US, Government Printing Office, 1979: 216.
    [5] Fester, G. A.; Vazquez, R. Extraction of bismuth from tungsten concentrates[J], Roy. Fac. Ing. Quim, 1958(27): 49~50.
    [6] Batyrbekova, S. A.; Polyvyannyi, I. R.; Yusupova, E. N.; et al. Hydrometallurgical and microbiological processing of bismuth-containing ores[J], Deposited Doc. 1975, VINITI 1105~1175.
    [7] Wadia, B. H.; Olivarcs, F. E. Bull. Extraction of bismuth from Peruvian arsenopyrite[J], Bismuth Inst. (Brussels) 1975(9): 1~2.
    [8] Maslova, S. G.; Gulevitskaya, I. A.; Epshtein. L. A. Separation of bismuth and copper from complex ore according to combination flowsheet[J], Obogashch. Rud (Leningrad),. 1976, 21(6): 35~38.
    [9] Okabe, Taijiro; Mizoguchi, Tadaaki. Technol. New hydrometallurgy of bismuth[J], Rep. Tohoku Univ., 1973, 38(2): 699~732.
    [10] Hydrochloric acid treatment of copper-bismuth materials using various complexing agents[J]. Deposited Doc. 1973, VINITI 5590~13.
    [11] Ek, Corneille. Hydrometallurgical extraction of copper and bismuth from a complex ore[J], Ind. Miner. (St-Etienne. Fr. ), Minerallurgie, 1977(3): 204~212.
    [12] Buranbaev, M. E; Polyvyannyi, I. R; Batyrbekova, S. A. Vestn. Akad. Nauk Kaz. SSR, 1978(8): 22~25.
    [13] Polyvyannyi, I. R.; Batyrbekova, S. A..; Alekseev, S. D. Hydrometallurgical treatment of low-grade bismuth-containing concentrates using hydrochloric acid with Calcium chloride[J]. Kompleksn. Ispolz. MAner. Syrya, 1979(6): 39~42.
    [14] Rubtsov, Yu. I.; Vorosova, I. A.; Melnikova, Zh. V. Recovery of bismuth from sulfide ores concentrates and waste intermediates[J], U. S. S. R. SU 996: 496.
    [15] Kogan, V. S; Kantemirov, M. D.; Bazhov, A. S.; et al. Solvent for extracting bismuth from sulfide raw material[J]. U. S. S. R. SU1, 008: 263.
    [16] Batyrbekova, S. A.; Polyvyannyi, I. R.; Buranbaev, M. E. Hydrometallurgical processing of lean bismuth concentrate with hydrochloric acid in the presence of complexing agents[J]. Deposited Doc. 1983, VINITI 1913~83.
    [17] Batyrbekova, S. A.; Polyvyannyi, I. R.; Chimbulatov, N. G. Improvement of processing bismuth-containing material[J], Kompleksn. Ispolz. Miner. Syrya, 1988(9): 85~77.
    [18] Kogan, V. S.; Dorfman, Ya A.; Favorskaya, L. V.; et al. Hydrometallurgical selection of bismuth-pyrite concentrates by catalytic oxidation of bismuthinite[J]. Izv. Vgssh. Uchebn. Zaved., Tsvetn. Metall. 1988(4): 68~72.
    [19] Kogan, V. S.; Chanturiya, V. A.; Serdyukova, N. G. Chemical selection of copper-bismuth intermediate benefication products[J], Kompleksn. Ispolz. Miner. Syrya, 1989(12): 23~27.
    [20] Batyrbekova, S. A.; Chimbulatov, N. G.; Orasalina, K. N.; et al. Hydrometallurgical treatment of the high-Silicon low-grade bismuth raw material[J], Kompleksn. Ispolz. Miner. Syrya, 1991(1): 87~88.
    [21] Abishev, D. N.; Orasalina, K. N. Baltynova, N. Z. U. S. S. R. SU1, 632: 997.
    [22] 王成彦,邱定著,江培海.国内铋湿法冶金技术[J],有色金属,2001,5(4):15~18.
    [23] 李时晨,李崇元.低铋共生矿的FeCl_3浸出-铁置换工艺处理[J],有色金属(冶炼部分),1984(10):15~19.
    [24] 陈明瑞.三氯化铁浸出法从钨细泥硫化矿中提取铋[J],矿产综合利用,1994(5):20~23.
    [25] Kotah B.C.,徐家骥译.湿法冶金处理硫化矿精矿[J],江西有色金属,1991,5(2):58~60.
    [26] 钟启愚.硫化铋中矿氯气浸出置换法生产金属铋[J],有色金属:冶炼部分, 1996(4):19~21.
    [27] 曾达.用湿法氯化法回收硫化矿中的有价元素[J],有色金属,1985(3):27~31.
    [28] 王成彦,邱定蕃,张寅生,等.矿浆电解法处理铋精矿的研究[J],有色金属,1995,47 (3):55~59.
    [29] 刘忆嘉.矿浆电解法处理铋精矿的工艺研究[J],有色金属,1992,36 (2):8~12.
    [30] 许秀莲,唐冠中.低品位硫化铋矿氯盐浸出的动力学探析[J],南方冶金学院学报,1993,14(4):324~330.
    [31] 郑国梁,唐谟堂,赵天从.氯盐体系中铋湿法冶金的基础研究[J],中南工业大学学报,1997,28(1):34~36.
    [32] 倪贵祥.多金属硫化铋精矿氯化湿法冶金的热力学分析[J],江西有色金属,1992,6(4):106~202,212.
    [33] R. B. Gordon, J. W. Rutledge. Bismuth Bronze from Machu Picchu, Peru[J], Science, 1984, Vol223: 585~586.
    [34] Bamer H E. Handbooks of Thermochemical Data for Compounds and Aqueous Species[M], A. Wiley-Interscience Publication. New York, 1978: 126~134.
    [35] 叶大伦.实用无机热力学数据手册[M],北京:冶金工业出版社,1981:25~79.
    [36] 蒋汉滚.湿法冶金过程物理化学[M],北京:冶金工业出版社,1999:34~47.
    [37] 邓纶浩,杨显万.Bi_2S_3矿浆电解热力学[J],有色金属,1999,51(3):56~59.
    [38] 张驾等.重有色金属冶炼设计手册(铅、锌、铋卷)[M],北京:冶金工业出版社,1996:252~281.
    [39] Dobos, D. Electrochemical Data, a Handbook for Electrochemists in Industry and Universities[M]. Elsevier, New York, 1975: 221~226.
    [40] Gardner, W. L., Mitchell, R. E., Cobble, J. W. The thermodynamic properties of high temperature., aqueous solution: Ⅹ. The electrode potentials of sulfate ion electrodes from 0 to 100℃. Activity coefficients and the entropy of aqueous sulfuric acid[J], The Journal of Physical Chemistry, 1969, 73: 2021~2024.
    [41] Zemaitis Jr. J. F. Clark D. M; Ratal, M; Scrivner, N. C. Handbook of Aqueous Electrolyte Thermodynamics[M], American Institute of Chemical Engineers, New York, 1986, pp. 415~418.
    [42] 莫鼎成.冶金动力学[M],湖南:中南工业大学出版社,1987:283~339.
    [43] 陶东平.粗糙表面化学反应动力学模型[J].金属学报.2001,37(10):1073~1078.
    [44] 杨保俊,于少明,单承湘.蛇纹石硫酸浸出过程动力学研究[J].硅酸盐学报.1999.27(1):165~70.
    [45] F. Habashi. Principles of Extractive Metallurgy[M], Vol. 1 Gordon & Breach, 2nd edn., Gordon and Breach Science Publ., New York, 1980: 153~163.
    [46] O. Levenspiel. Chemical Reaction Engineering[M], 2nd edn., Wiley, New York, 1972: 84~96.
    [47] J. M. Smith. Chemical Engineering Kinetics[M], 3th edn., Mc-Graw-Hill Chem. Eng. Ser. 1981: 124~138.
    [48] Edward Olanipekun. A kinetic study of the leaching of a Nigerian ilmenite ore by hydrochloric acid[J], Hydrometallurgy, 1999, 53: 1~10.
    [49] Amer A. M. Investigation of the direct hydrometallurgical processing of mechanically activated low-grade wolframitc concentrate[J], Hydrometallurgy, 2000, 58: 251~259.
    [50] A. M. Amer. Hydrometallurgical processing of Egyptian black shale of the Quseir-Safaga region[J], Hydrometallurgy, 1994(36): 95~107.
    [51] M. Joana; Neiva Correia; Jorge R. Carvalho; A. John Monhemius. The leaching of tetrahedrite in ferric chloride solutions[J], Hydrometallurgy, 2000(57): 167~179.
    [52] V Annamalai; J B Hiskey; L E Murr. The effects of kinetics variables on the structure of copper deposits cemented on pure aluminum disc: a scanning electron microscopic study[J], Hydrometallurgy, 1978(3)163~180.
    [53] D J MacKinnon; T R Ingraham. Kinetics of Cu (Ⅱ) cementation a pure aluminum disc in acidic sulfate solutions[J], Can. Metall. 1970 (Q. 9): 443~448.
    [54] V Annamalai; J B Hiskey; A kinetic study of copper cementation on pure aluminum[J], Trans. Soc. Min. Eng. AIME, 1977(6): 124~130.
    [55] M L Episkoposyan; I A Kakovskii. An examination of copper and silver cemen- tation kinetics with metallic iron from chloride solutions[J], Soy. J. Non Ferous Met. 1965(38): 16~21.
    [56] E C Lee; F Lawson; K N Han. Effect of precipitant surface roughness on concentration kinetics[J], Hydrometallurgy, 1978(3): 7~21.
    [57] R M Nadkarni; M E Wadsworth. Kinetic study of the cementation of copper with iron[M]. In: Advances in Extraction Metallurgy, IMM, London, 1976: 919~941.
    [58] M Karavasteva. Kinetics and deposit morphology of copper cementation onto zinc, iron and aluminium[J], Hydrometallurgy, 2005(76): 149~152.
    [59] 陆跃华,水承静.氯盐溶液中铅置换银的动力学[J].贵金属,1996,17(2):26~31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700