用户名: 密码: 验证码:
硫化铋精矿低温碱性熔炼新工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对火法炼铋存在的冶炼温度高,能耗大、消耗多、生产成本高、环境污染严重等缺点,提出了低温碱性炼铋新工艺,该工艺采用纯碱、烧碱为主要成分的熔炼体系,在780-830℃温度下进行碱性熔炼,一步产出粗铋,精矿中硫少部分转变为Na_2SO_4,大部分生成Na_2S;精矿中的钼、钨则生成钼酸钠、钨酸钠进入炉渣中,便于回收。
     对主要元素在低温碱性熔炼中的反应进行了热力学分析:计算结果表明硫化铋精矿的低温碱性熔炼反应自还原和碳还原兼可自发进行,碳还原占主导;碳还原反应的可能途径有三种,通过比较每种途径控制步骤的△G~θ发现900K以下途径(二)为主要通过途径,900K以上途径(三)为主要通过途径;计算结果表明AgS、PbS、Cu_2S碱性熔炼条件发生反应生成金属Ag、Pb、Cu;FeS_2、ZnS在碱性熔炼的条件不发生反应进入渣和锍中。
     进行了硫化铋精矿低温碱性熔炼的实验室试验,采用单因素试验法考察了W_(NaOH)/W_(Na2CO3)、碱量、温度和时间等因素对铋直收率和粗铋质量的影响。最佳工艺条件为:W_(NaOH)/W_(Na2CO3)=20/133、碱量为1.64倍理论量、温度780-830℃、时间1.5h。
     在最佳条件下进行了综合扩大试验和对比试验,综合实验结果良好,金属铋的直收率和铋金属的品位分别为94.43%、98.00%;对比试验表明低温碱性熔炼工艺明显优于传统火法炼铋工艺。试验结果通过投入产出元素硫和铍的分析可知,固硫率达99%,基本消除了二氧化硫对空气的污染;原料中的铍在低温碱性熔炼中其结构没有被破坏,基本全部留在浸出渣中,不会对水造成污染。
     该工艺熔炼温度大幅降低,这不仅减少能源消耗,而且消除了低浓度SO_2烟气对环境的污染,大幅提高铋的直收率,对铋冶炼的技术进步具有重要意义。
A new process for bismuth sulfide concentrate alkaline smelting at low temperature was presented in this paper to avoiding the shortcomings of the traditional pyrometallurgical process for bismuth extraction, which including high smelting temperature, high energy and material consumption, high production cost and severe environmental pollution. In the process, the raw bismuth was produced one step at the temperature of 780℃~830℃in the smelting system of soda and caustic soda. Sulfur in the bismuth sulfide concentrate was partially transformed into Na_2SO_4 and the others mostly transformed into Na_2S. Molybdenum and tungsten in the concentrate could easily be recovered as sodium molybdate and sodium tungstate in the slag.
     The thermodynamic analysis of major elements in the reaction for alkaline smelting was calculated. The calculation results show that both self-reduction and carbon-reduction can proceed spontaneously in the process of bismuth sulfide alkaline smelting at low temperature, and the carbon-reduction was the main reaction. There were three possible approaches for carbon-reduction. By comparing theΔG~θof each possible approaches, it is found that the reactions follow the second approach and third approach when the temperature was lower and higher than 900K, respectively. The results also shown that AgS, PbS, Cu_2S formed Ag, Pb, Cu in the alkali smelting medium; While the FeS_2, ZnS directly entered into slag and sulfur without any reaction occured.
     The effects of W_(NaOH)/W_(Na2CO3) solvent, alkaline dosage, temperature, duration on the direct recovery of bismuth and the quality of raw bismuth were investigated using the unitary factor testing in the laboratory scale. The optimal conditions were W_(NaOH)/W_(Na2CO3)= 20/133, alkaline dosage of 1.64 times the theoretical value, temperature of 780~830℃, time of 1.5h.
     The pilot tests and contrast tests have been done under the optimal conditions, and the results showed the tests had good effects, the direct recovery rate of bismuth and the content of bismuth was 94.43%, 98.00%, respectively. The contrast tests show that the new process is significantly superior to the conventional pyro-refining bismuth technology. The analysis of input and output of sulfur and beryllium showed that the efficiency of sulfur retention was 99%, which means that the pollution of sulfur dioxide was basically eliminated; the structure of beryllium in the raw material wasn't destroyed, mostly reserved in the leaching residue, having no water pollution.
     The new process has advantage of sharp decrease of smelting temperature, which not only reducing the energy consumption but also eliminating the environmental pollution of low concentration SO_2, greatly increasing the direct recovery rate of bismuth. It has a great importance for the technology of bismuth smelting.
引文
[1] 汪立果.铋冶金[M].北京:冶金工业出版社,1986
    [2] 郑国渠.氯化-干馏法处理柿竹园铋精矿的基础理论及工艺研究[D].中南大学博士学位论文,1996
    [3] 陈萃.铋粉低温氧化制备氧化铋的理论与工艺研究[D].中南大学硕士学位论文,2008
    [4] Funshuo K, Objebuoboh. Bismuth-production, properties, and applications[J]. JOM, 1992,(4):4-49
    [5] 姚守拙.元素化学反应手册(M).长沙:湖南教育出版社,1998
    [6] 段学臣,杨向萍.新材料IYO薄膜的应用和发展[J].稀有金属与硬质合金,1999,138:58
    [7] Lam L T,Lim O V,et al.Power Sources[J],1999,78:139-140
    [8] 胡汉祥,丘克强,何晓梅,张荣良.金属铋的结构与磁致电阻及热电效应[J].有色金属,2005,57(4):13-15
    [9] 邓亲贤.国内外铋生产铋市场情况综述[J].株冶科技,1992,20(4):258-265
    [10] U.S.Geological Survey,Mineral Commodity Summariesjanuary 2007
    [11] 唐谟堂,鲁君乐.由柿竹园高硅含铍含氟铋精矿直接制取铋品[J].中南工业大学学报,1995,26(2):186-191
    [12] 金胜明,唐谟堂,阳卫军.从氯盐体系制备丙烯氨氧化用催化剂-含铋催化剂的活性评价[J].中南工业大学学报,2001,32(4):247-250
    [13] 杨汉培,范以宁,林明等.铋铝符合氧化物催化剂的结构及其对丙烷选择氧化反应的催化性能[J].化学学报,2002,60(6):1006-1010
    [14] Manuel D. Wildberger, Marek Maciejewski, Jan-Dierk Grunwaldt, et al. Sol-gel bismuth-molybdenum- titanium mixed oxides[J]. Applied Cataysis A, 1999,(1179): 189-202
    [15] 秦小梅,赵骧,左良等.固相法制备含铋层状结构PBN压电陶瓷[J].东北大学学报,2002,17(1):51-55
    [16] 康云川,梁汉贤,李月秀等.氧化铋制备工艺的研究[J].云南师范大学学报,1994,14(3):58-60
    [17] 李茹民,刘致阳,徐春旭等.铁氧体SrNi_2Fe_((16))O_((27))超微粉的制备与磁性能研 究[J],功能材料,2007,38(7):1082-1150
    [18] 邵宗平,熊国兴,杨维慎.铋基混合导体透氧陶瓷膜的研究进展[J].无机材料学报,2001,16(1):23-27
    [19] Dorrian J F, Newnham R E, Sndth D K. Ferroelectricea,1971,(3):17-27
    [20] Jiang N., Buchanan.R.M.,Sieveon D.A.et al.Anion Ordering in Aged Stabilised Bismuth Oxide[J].Materils Letters, 1995,(22):215-219
    [21] 艾尔金斯.沃斯.钒铋酸和其他无铅色漆用颜料[J].中国涂料,2001(1):34-36
    [22] Tompson C.W.,Mildner D.F.R.,Mehregany Metal.A Position-sensitive Dector for Neutron Powder Diffraction[J].J Appl Cryst,l984,(17):385-394
    [23] O P Thakur, Devendra Kumar, Om Parkash, et al. Electrical characterization of strontium titanate borosilicate glass ceramics system with bismuth oxide addition using impedance spectroscopy[J]. Materials Chemistry and PhYsics 2003, 78: 751-759
    [24] Szu hwee Ng J M Xue, John Wang. Hight temperature piezoelectric strontium bismuth titanate from mechanical activation of mixed oxides[J]. Materials Chemistry and Physics 2002, 75: 131-135
    [25] 霍振武.日本的电子陶瓷工业[J].新材料产业,2002(4):20-22
    [26] 唐安平,周如梅.钒酸铋颜料[J].涂料工业,2002(6):27-28
    [27] 李卫,周科朝,杨华.氧化铋应用研究进展[J].材料科学与工程学报,2004,22(1):154-156
    [28] 陈丹平,姜雄伟,朱从善.Bi_2O_3-Li_2O玻璃的结构研究[J].无机材料化学报,2002,17(2):202-209
    [29] Dumbaugh W H,Lapp J C.Am.Ceram.Soc., 1992,75:2315-2326
    [30] Tanabe S,Sugimoto N,OChiai Ketal.OFC,2001,15:l-4
    [31] Tomohiro Watanabe,Tokuro Nanba,Yoshinari Miura.X-ray neutron scattering study of the structure of lithium bismuth oxide glass[J].Journal of Non-Crystalline Solids,2002,(297):73-83
    [32] Hellwig H, Liebert J,Bohaty L. Linear optical properties of the monoclinic bismuth borate BiB_3O_6[J]. Journal of Applied Physics,2000,88:240-244
    [33] Y.Zeng.Y.S.Lin.Stability and surface catalytic catalytic properties of fluorite-structured yttria, and P_2O_5-doped bismuth oxide under reducing environment[J]. Journal of Catalysis,1999,(182):30-36
    [34] N.M.Sammes. Bismuth Based Oxide electrolytes-structure and ionic conductivity[J]. Journal of the European ceramic society, 1999,19:1801-1826
    [35] 赵兵.中低温固体氧化物燃料电池电解质衬料[J].稀土,1998,19(4):55-61
    [36] 夏定国,武少华,于志辉.化学改性二氧化锰的循环伏安特性[J].北京工业大学学报,2000,26(1):28-30
    [37] G A Tompsett, N M Sammes, Y Zhang, et al. Characterzation of WO3-V2O5-doped bismuth oxides by x-ray diffraction and roman spectroscopy[J]. Solid State Ionics, 1998, (113): 631-638
    [38] Yanhai Du, N M Sammes, G A Tompsett, et al. Phase stability of bismuth lead antimony oxide[J]. Solid State Ionics, 1999, (177): 291-299
    [39] Shaown Zha, Jigui Cheng, Yan Liu. Electrical properties of pure and Sr-doped Bi_2Al_4O_9 ceramics[J]. Solid State Ionics, 2003, (156): 197-200
    [40] Chen Xia. Mossbaure study of electric field gradient in the high-Tc of Bi-system superconductor[J]. Physical Properties and structure of High Tc Superconductors, 1994,35(1):150-158
    [41] 林玉宝,林良真,肖立业.铋系高温超导支流电缆的研究[J].物理,2001,30(7):389-391
    [42] 陈宏生.高温超导线材及其强电应用研发与产业发展状况[J].新材料产业,2002,(1):15-19
    [43] Hellwig H, Liebert J, Bohaty L. Linear optical properties of the monoclinic bismuth borate BiB_3O_6[J]. Journal of Applied Physics, 2000, 88: 240-244
    [44] 洪良伟,赵凤起,刘剑洪等.纳米PbO和Bi_2O_3粉的制备及对推进剂燃烧性能的影响[J].火炸药学报,2001,(3):7-9
    [45] 涂海滨,张高科.铋系光催化剂研究进展[J].天津化工,2006,20(5):11-13
    [46] 石西昌,肖政伟,秦毅红.超细氧化铋制备研究[J].湖南有色金属,2003,19(4):15-16
    [47] Yukhin Yu.M.,Baryshinikov N.V.,Afoning L.Z.et al. Purification of bismuth by hydrolysis of nitric acid solutions[J]. Zh.prikl.Khim, 1990,63(1):14-18
    [48] 康云川,梁汉贤,李月秀等.氧化铋制备工艺的改进[J].化学试剂,1995,17(8):377-368
    [49] 纳米氧化铋的制备及应用[J].中国民族大学学报(自然科学版),2004,23(1):26-29
    [50] 倪天增,罗冬冬,范力仁等.纳米氧化铋的制备及应用[J].中南民族大学学报,2004,(1):27-29
    [51] 何伟明,潘庆谊,刘建强等.氧化铋系超细粉体制备研究进展[J].材料导报,2003,17:46-49
    [52] Yang F Y, Strijkers G J, Hong K ,et al. Large magnetoresistance and finite size effect in electrodeposited bismuth lines[J]. Journal of Applied Physics, 2001, 89(11): 7206-7208
    [53] Yang F Y, Kai Liu, Hong K, et al. Large magnetoresistance of electrodeposited single-crystal bismuth thin films [J ]. Science, 1999,284: 1335 - 1337
    [54] Heremans, Joseph Pierre, Thrush, et al. Enhanced thermoelectric power in bismuth nanocomposites[ P]. United States Patent, 6670539,2003 -12 - 30.
    [55] 张伟玲,王为,周立恒.纳米技术在高效温差电材料中的应用[J].化学通报,2002,(8):534-538
    [56] Boffoue M O, Lenoira B , Jacquot A, et al. Structure and transport properties of polycrystalline Bi films[J]. Journal of Physics and Chemistry of Solids, 2000, 61: 1979-1983
    [57] 李伟洲,李月巧,梁天权等.铋钒氧系颜料的研究进展[J].材料导报,2006,20(6):49-51
    [58] 麦国荣.铋类药物的研究[N].中国医药报,2002年12月26日
    [59] 吴海国,李婕.铋深加工产品的应用现状与展望[J].湖南有色金属,2006,22(1):25-27
    [60] Dubiel M, Brunsch S, Kolb U,et al. Experimental studies investigating the structure of soda-lime glasses after silver-sodium ion exchange[J]. Non-cryst solids, 1997, 220: 30
    [61] Hofmeister H, Tan G L, Dubiel M. Shape and internal structure of silver nanoparticles embedded in glass[J]. Mater Res, 2005,20(6): 1551
    [62] Estournbs C, Cornu N, Guille J L. Reduction of copper in soda-lime-silicate glass by hydrogen[J]. Non-Cryst Solids, 1994,170: 287
    [63] 江涛宏.以铋代铅前景广阔[J].中国金属通报,2005,(23):13
    [64] 顾豪爽,王世敏,吴新民.溶胶-凝胶法制备高取向Bi_4Ti_3O_(12)SrTiO_2薄膜[J].物理化学学报,1996,12(1):63
    [65] 唐谟堂.三氯化铋水解体系的热力学研究[J].中南矿业学院学报,1993,24(1):45
    [66] 李卫,黄伯云.化学沉淀法合成纳米Bi203粉末[J].功能材料,2005,2(36):279-281
    [67]朱慧仁,肖金娥.铋精炼银锌渣的处理[J].湖南有色金属,1991,(3):8-12
    [68]王成彦,邱定蕃,江培海.国内铋湿法冶金技术[J].有色金属,2001,53(4):15-18
    [69]杨新生.湿法炼铋工艺过程浅析[J].江西有色金属,1994,8(4):41-43
    [70]郑国渠,唐谟堂,赵天从.氯盐体系中铋湿法冶金的基础研究[J],中南工业大学学报,1997,28(1):34-36
    [71]李玉鹏,刘春艳,吴绍华等.金属铋制备方法研究现状及发展趋势[J].湿法冶金,2007,26(3):118-122
    [72]谢祥贵.铋矿浆电解实践[J].湖南有色金属,1999,15(6):28-30
    [73]王成彦,邱定蕃,张寅生[J].有色金属,1995,47(3):55-59
    [74]陈邦俊.重有色金属冶炼设计手册[M].北京:冶金工业出版社,2008
    [75]徐盛明,吴延军.碱性直接炼铅法的应用[J],矿产保护与利用,1997,(6):31-33
    [76]Margulis, Efim V. Low temperature smelting of lead metallic scrap[J]. Erzmetall, 2000,53(2): 85-89
    [77]徐盛明,肖克剑,汤志军,沈国励,俞汝勤.银精矿碱法熔炼工艺的扩大试验[J],中国有色金属学报,1998,(8):303-308
    [78]徐盛明,肖克剑,吴延军.从碱浮渣中回收碱和银的初步试验[J],矿产保护与利用,1999(1):41-43
    [79]李仕庆,何静,唐谟堂.火法-湿法联合工艺处理铅铋银硫化矿综合回收有价金属[J],有色金属,2003,55(3):39-40
    [80]唐谟堂,鲁君乐.由柿竹园高硅含铍含氟铋精矿直接制取铋品.中南工业大学学报,1995,26(2):186-191
    [81]彭容秋.有色金属提取冶金手册[M].北京:冶金工业出版社,1992.3-428
    [82]傅崇说.有色冶金原理[M].北京:冶金工业出版社,1993
    [83]彭容秋.重金属冶金学[M].长沙:中南大学出版社,1998
    [84]李洪桂.稀有金属冶金学[M].北京:冶金工业出版社,2001
    [85]张启修,赵秦生.钨钼冶金[M].北京:冶金工业出版社,2005
    [86]Khanturgaeva G I, Zoltoev E V, Urbazaeva S D, Ratushnaya S V. Technology for processing the bismuth-silver concentrates[J]. Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 2002 (1): 103 -107
    [87]唐朝波,唐谟堂,姚维义,阮越中,彭及.脆硫铅锑精矿短回转窑还原造锍熔炼半工业试验[J].矿业工程,2004,4(1):51-53
    [88]唐朝波.还原造锍熔炼的理论及工艺研究[D].长沙:中南工业大学博士论文,2003
    [89]唐朝波,唐谟堂等,脆硫铅锑精矿的还原造锍熔炼[J].中南工业大学学报,2003,34(5):502-505
    [90]TANG Chao-bo, TANG Mo-tang et al. The laboratory Research on Reducing-Matting Smelting of Jamesonite Concentrate[C]. Proceedings of TNS 2003 132th Annual Meeting and Exhibition in USA, 2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700