用户名: 密码: 验证码:
碱性加压氧化分离硫化铋精矿中钨钼与铋的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硫化铋精矿中常伴生有钨、钼、银等有价金属,目前工业上主要应用的是沉淀熔炼方法,但在提取铋的过程中钨、钼等金属会发生分散损失,不利于这些金属的综合回收,并且该方法存在能耗高、污染大、后续回收繁琐等问题。为了解决上述问题,提出本课题的研究。
     首先在碱性体系下加压氧化浸出硫化铋精矿中钨、钼、硫,得到含钨钼的加压浸出液和铋的加压氧化渣,实现精矿中钨、钼与铋的分离,同时使硫氧化为硫酸钠,解决了硫的污染问题,然后通过离子交换法从加压浸出液中回收钨、钼,并进行了从加压氧化渣中回收铋、银等有价金属的研究,实现了硫化铋精矿中有价金属的高效分离和提取。在上述研究过程中,得到了以下成果和结论。
     通过绘制温度分别为25℃、100℃、150℃、200℃的S-H2O、Bi-S-H2O和Fe-S-H2O的电位-pH图分析铋、铁、硫在加压氧化过程中的行为。在pH值较大、电位较高时,溶液中的硫主要以S042-存在;当pH较低且在有氧化剂存在时,Bi2S3将主要氧化为Bi2(SO4)3,而]pH值较高时,Bi2S3将转化为Bi2O3;溶液中的Fe3+在温度为25℃时易水解为FeO·OH铁,高温下主要转化为Fe2O3;温度的增加,将促使氧化反应所需的平衡电位降低,有助于Bi2S3和FeS2氧化反应的发生,硫将以8O42-离子进入溶液中,铋和铁以金属氧化物存在。
     通过比较几种碱性体系处理含钨钼硫化铋精矿的方案,选择氢氧化钠体系加压氧化浸出该精矿,确定其最佳条件为:液固比5:1,温度150℃,氢氧化钠浓度130g/L,填充比0.6,转速1000rpm,时间180min和氧分压0.7MPa。在此条件下,渣率基本稳定在82%左右,硫的浸出率达到96%以上,钨和钼的浸出率分别为93%和95%以上,浸出液中钨、铝的浓度分别为1.31g/L和2.76g/L,浸出渣中铋的含量达39.60%,银的含量为265.3g/t,铅和铜的含量分别为1.25%和2.48%,硫、钨和钼几乎全部进入浸出液中,实现了有价金属的初步分离,有利于后续分别回收加压浸出液中的钨、钼和加压氧化渣中的铋、银等金属。
     选择大孔阴离子树脂D363进行钨、钼的静态吸附实验,确定溶液pH在6.6至7.5范围内,树脂对钨的吸附较好,并且在溶液pH为6.66时,钨的吸附量达到236.3mg/g干树脂,钨钼分离因数较好;确定溶液pH在2.2至4.6范围,树脂吸附钼吸附性能较好,并且在pH值为3时,树脂对钼的吸附容量为356.4mg/g干树脂。进行了钨、钼的等温吸附实验研究,结果表明树脂相中离子的平衡吸附量与溶液中的离子浓度更符合Freundlich模型,通过热力学计算确定了树脂对钨、钼的吸附可以白发进行,该吸附过程是吸热过程,也是熵值增加的过程,温度升高有利于树脂对钨钼的吸附。
     进行了钨的动态吸附和解吸实验,在溶液pH为6.79、温度为25℃、树脂柱高径比为16:1、吸附接触时间为40min时,树脂对钨的穿透吸附容量为19.3mg/ml湿树脂,并且在流出液体积为416ml(树脂体积的26倍)时,钨的吸附率为85%、钨钼分离因数为7.4,实现了钨的有效回收和钨钼的初步分离;浓度为10%的氨水对钨的解吸率为94.6%;进行了铝的动态吸附和解吸实验,在溶液pH为3.02、温度为25℃、树脂柱高径比为16:1、吸附接触时间为40min时,D363树脂对钼的穿透吸附容量为55.2mg/ml湿树脂,流出液体积为384ml(树脂体积的24倍),树脂对钼的饱和吸附容量为124.6mg/ml湿树脂,实现了钼的有效回收:浓度为10%的氨水对钼的解吸率为87.2%。
     进行了氟硅酸体系处理加压氧化渣的实验探索,选择不同加压条件下得到的加压氧化渣进行氟硅酸浸出和通过控制终点pH分步水解两种方法不能有效地解决铋与铁在湿法过程中难以分离的问题,最终确定选择还原熔炼法从加压氧化渣中回收铋等有价金属。进行了CO还原氧化铋的热力学分析,并确定选择以FeO-SiO2-CaO为主的三元系渣型。通过实验确定了熔炼的最佳条件为:还原煤加入量为加压浸出渣重量的7%,渣型为CaO/SiO2=0.5、FeO/SiO2=1.5,熔炼温度1300℃,熔炼时间分别为40min。在上述条件下,铋的回收率为99.6%,银的回收率为99.8%,铜和铅的回收率分别为97.0%和97.3%,实现了铋、银、铅、铜的高效回收。
Bismuth sulfide concentrates, often coexists with tungsten, molybdenum, silver and other valuable metals, is mainly treated by the Precipitation Process in practice. However, the scattered losses of tungsten and molybdenum during the extraction process of bismuth are not conducive to the comprehensive recovery of these metals, and this method has some disadvantages of high energy consumption, severe environment contamination and tedious subsequent recovery process. In order to solve the above problem, this research was posed out.
     The bismuth sulfide concentrates was leached with pressure oxidation method in alkaline medium to get the leaching solution containing tungsten and molybdenum and the oxidation residue containing bismuth, which achieves the separation of tungsten, molybdenum and bismuth, and convert the sulfide into sodium sulfate simultaneously to avoid the sulfur pollution problem. Then the ion-exchange method was used to recover tungsten and molybdenum from the leaching solution, and the research about the recovery of bismuth, silver and other valuable metals from the oxidation residue was also carried out. The main purpose is to achieve the efficient separation and recovery of valuable metals from bismuth sulfide concentrates. The main research content and conclusion are as follows.
     The behavior of bismuth, iron and sulfur were analyzed through the potential-pH diagram of S-H2O, Bi-S-H2O and Fe-S-H2O which are drawn under the temperature of25℃,100℃,150℃,200℃. Under the condition of higher pH value and higher potential value, sulfur exists as SO42-. Under the condition of lower pH value and oxidants existing, Bi2S3can be oxided into Bi2(SO4)3, and as the pH value increasing Bi2S3can be converted into Bi2O3. Fe3+in solution can be converted into FeO—OH under25℃through hydrolysis reaction, and under higher temperature it will be changed into Fe2O3. The increasing temperature will reduce the equilibrium potential for oxidation reaction, which is conducive to the oxidation reaction of Bi2O3and Fe2O3, as a result sulfur enter into solution in the form of SO42-while bismuth and iron exist as metal oxides in the leaching residue.
     By comparing several alkaline system to treat the bismuth sulfide concentrate containing tungsten and molybdenum, sodium hydroxide system was selected with the optimum leaching conditions were:liquid to solid ratio5:1, temperature150℃, sodium hydroxide concentration of130g/L, fill ratio0.6, stirring speed10000rpm, time of180min, oxygen partial pressure of0.7MPa. Under this condition, the residue ratio is basically stable around82%, sulfur leaching ratio is more than96%, the extraction ratio of tungsten and molybdenum are93%and95%respectively, the concentration of tungsten and molybdenum in leaching solution are1.31g/L and2.76g/L respectively, and in residue the content of bismuth is39.60%and that of silver is265.3g/t, the content of lead and copper are1.25%and2.48%respectively. Nearly all the sulfur, tungsten and molybdenum enter leaching solution, which achieve the preliminary separation of valuable metals and is conducive to the subsequent recovery of tungsten and molybdenum from leaching solution and that of bismuth and silver from the oxide residue.
     A macroporous anion resin D363was selected to make static adsorption of tungsten and molybdenum. The results show that when the pH value of solution is6.6-7.5, D363has a good adsorption property for tungsten and the adsorption capacity reaches to236.3mg/g dry resin when pH is6.66; when the pH value of solution is2.2-4.6, D363shows great adsorption property for molybdenum and the adsorption capacity reaches356.4mg/g dry resin when pH is3. The results of adsorption isotherm experiments demonstrate that the adsorption process is close to the Freundich model, and the process is endothermic, higher temperature is conducive to the adsorption of tungsten and molybdenum by D363resin. Results of the dynamic adsorption and desorption experiment for tungsten show that the penetration adsorption capacity of tungsten by D363resin can reach19.3mg/ml wet resin when the pH of solution is6.79, temperature is25℃, the resin column ratio of height to diameter is16:1, the time for adsorption is40min and the volume of raffinate is416ml(26 times the volume of wet resin). The adsorption of tungsten reaches85%and the distribution ratio of tungsten and molybdenum is7.4, which achieve the goal of effective recovery of tungsten and preliminary separation of tungsten and molybdenum. Tungsten loaded on D363resin can be effectively desorbed by10%ammonia solution with the desorption ratio of94.6%. Results of the dynamic adsorption and desorption experiment for molybdenum show that the penetration adsorption capacity of molybdenum by D363resin can reach55.2mg/ml wet resin when the pH of solution is3.02, temperature is25℃, the resin column ratio of height to diameter is16:1, the time for adsorption is40min, and the volume of raffinate is384ml(24times the volume of wet resin), which make the effective recovery of molybdenum. Molybdenum loaded on D363resin can effectively desorbed by10%ammonia solution with the desorption ratio of87.2%.
     Fluosilicic acid system was used to treat the oxidative residue and the optimum condition was determined according to a series of experiment. However, the problem of difficult separation of bismuth and iron during wet process cannot be effectively solved neither by changing the leaching condition to change the composition of oxide residue nor by controlling the final pH value to make hydrolysis reactions. In order to resolve this difficult, the reducing smelting method is selected to recover bismuth and other valuable metals from tne oxide residue. The ternary slag type FeO-SiO2-CaO is selected according to the the compostions of oxidative residue. The corresponding optimum condition is determined as follows:the amount of coal added is7%of the weight of leaching residue, in slag the ratio of CaO to SiO2is0.5and FeO to SiO2is1.5, temperature is1300℃and time is40min. Under this condition the recovery ratio of bismuth, silver, copper and lead are99.6%,99.8%,97.0%and97.3%respectively, which achieve the efficient recovery of bismuth, silver, lead and copper.
引文
[1]彭容秋.有色金属提取冶金手册(锌镉铅铋卷)[M].北京:冶金工业出版社,1992:423-424.
    [2]汪立果.铋冶金[M].北京:冶金工业出版社,1986:3-6,18-46,72-98.
    [3]Funshuo K., Objebuoboh. Bismuth-production, properties and applications[J]. JOM,1992, (4):4-49.
    [4]杨道亨.铋的介绍[J].有色金属,1952,(1):59-64.
    [5]姚守拙.元素化学反应手册[M].长沙:湖南教育出版社,1998:422-426.
    [6]胡汉祥,丘克强,何晓梅,等.金属铋的结构与磁致电阻及热电效应[J].有色金属,2005,(4):13-15.
    [7]Padeletti G., Fermo P. Bismuth knowledge during the Renaissance strengthened by its use in Italian lustrous production[J]. Applied Physics A-Materials Science and Processing,2004,79(2):277-281.
    [8]彭寿清.绿色金属铋[J].金属世界,1997,(5):23.
    [9]汪立果.铋的应用[J].稀有金属,1991,(1):44-46,17.
    [10]彭支乾,铋的性能、用途及市场简述[J].中国钨业,1993,(1):13-16.
    [11]Whitlock J.L., Horwitz E.P. Production of bismuth-212 for therapeutic applica-tions[J]. European journal of nuclear medicine,2001,28(8):1069-1069.
    [12]Alharbi S.A., Mashat B.H. Bismuth-inhibitory effects on bacteria and stimulation of fungal growth in vitro[J]. Saudi journal of biological sciences,2012,19(2): 147-150.
    [13]Kim S.H., Tramontina V.A. Bismuth subgallate as a topical haemostatic agent at the palatal wounds:a histologic study in dogs[J]. International Journal of oral and maxillofacial surgery,2012,41(2):239-243.
    [14]杨楠,孙红哲,砷、锑、铋类药物的应用历史和现状[J].化学进展,2009,(5):856-865.
    [15]Yang N.,Sun H. Biocoordination chemistry of bismuth:Recent advances[J]. Coordination Chemistry Reviews,2007,251(17-20):2354-2366.
    [16]Yang N., Tanner J.A., Zheng B., et al. Bismuth complexes inhibit the SARS coronavirus[J]. Angewandte Chemie International Edition,2007,46:6464-6468.
    [17]Iffland R. Bismuth,Handbook on Metals in Clinical and Analytical Chemistry[M]. New York:Marcel Dekker,1994:269-281.
    [18]Kondo Y., Himeno S., Satoh M., etal. Citrate enhances the protective effect of orally administered bismuth subnitrate against the nephrotoxicity ofcisdiamminedich-Loroplatinum[J]. Cancer Chemother and Pharmacology, 2004,53:33-38.
    [19]沈国勇.低熔点合金的性能、用途和发展[J].机械工程材料,1981,(4):30-34.
    [20]Camurlu H.E, Timucin M.. Production and characterization of PMN-PT piezo-ceramics modified by yttrium and bismuth[J]. Euro Ceramics Viii,2004:264-268, 1193-1196.
    [21]Zhao S.W., Cheng J.G., Liu Y. Electrical properties of pure and Sr-doped Bi2Al4O9 ceramics[J]. Solid state ionics,2003,(156):197-200.
    [22]Manuel D., Wildberger, Jan-Dierk Grunwaldt, etal. Sol-gel bismuth-molybdenum-titanium mixed oxides Preparation and structural properties[J]. Applied Catalysis A,1998,175:11-19.
    [23]何周虎,李时谦,胡志科.关于铋矿床工业指标的讨论[J].华南地质与矿产,2004,(2):32-34.
    [24]王小飞,戚华文,胡瑞忠,等.北石英脉型钨多金属矿床中钨锡铋银铝的赋存状态研究[J].地质学报,2011,(3):405-421.
    [25]任英忱.我国南部-钨铋石英脉中的含铋矿物[J].地质科学,1965,(2):172-181.
    [26]朱惠娟,杨宝善,李玉衡,等.小秦岭金矿田中的两种罕见矿物-碲铅铋矿和自然碲[J].矿物学报,1989,(1):37-41,101.
    [27]何厚强,王静纯,江元成.湖南黄沙坪铅锌矿区南部铁钨铝铋(锡)多金属矿床成矿地质特征初析[J].矿产勘查,2010,(4):323-333.
    [28]任英忱.中国金属矿床中的铋硫盐矿物及其地质产出特征[J].地质找矿丛论,1999,(1):1-12,38.
    [29]蔡新华,张怡军,徐惠长,等.柿竹园钨锡钼铋多金属矿深边部铅锌找矿潜力分析[J].地质与勘探,2006,(2):29-32.
    [30]彭容秋.重金属冶金工厂原料的综合利用[M].长沙:中南大学出版社,2006:82.
    [31]余楚蓉.铅锌资源的综合利用[J].有色冶炼,1995,(3):36-40.
    [32]路殿坤,刘学山,叶国瑞,等.钙镁除铋机理的热力学分析[J].沈阳黄金学院学报,1997,(2):110-115.
    [33]路殿坤,叶国瑞,贺家齐.钙镁加入量对火法除铋深度的影响研究[J].有色 金属(冶炼部分),1998,(1):14-15,24.
    [34]美国地质调查局.http://minerals.usgs.gov/minerals/pubs/commodity/bismuth/.
    [35]夏振荣.中国铋工业资源利用现状与发展[J].中国金属通报,2011,(48):36-38.
    [36]北京有色冶金设计研究总院等编.重有色金属冶炼设计手册(铅锌铋卷)[M].北京:冶金工业出版社,1996:643-652,672-676.
    [37]李流锋,杨天足,刘伟锋.一种综合回收含铋复杂物料中有价金属的方法.中国:201010274161.1[P],2010-12-29.
    [38]刘静欣,田庆华,程利振,等.低温碱性熔炼在有色冶金中的应用[J].金属材料与冶金工程,2011,(6):26-30.
    [39]田庆华,郭学益,李菲.一种低温碱性熔炼法回收铝灰中铝的方法.中国:201010569436.4[P],2011-02-16.
    [40]徐盛明,吴延军.碱性直接炼铅法的应用[J].矿产保护与利用,1997,(6):33-35.
    [41]Margulis, Efim V.Low temperature smelting of lead metallic scrap[J].Erzmetall, 2003,53(2):85-89.
    [42]Pickles C.A., Toguri J.M. Soda ash smelting of lead chloride[J]. Canadian Metallurgical Quarterly,1988,27(2):117-122.
    [42]李淑梅,张福生,丛自范,等.固体氯化铅直接低温熔炼生产粗铅的研究[J].有色矿冶,2011,(2):28-30,37.
    [43]孙克萍,先晋聪.小型炼锑鼓风炉的应用[J].新疆有色金属,1997,(1):25.
    [44]夏家群,许季光.炼锑鼓风炉分析的研究[J].昆明理工大学学报,1995,(4):48-54.
    [45]徐盛明,肖克剑,汤志军,等.银精矿碱法熔炼工艺的扩大试验[J].中国有色金属学报,1998,(2):116-121.
    [46]徐盛明,肖克剑,吴延军.从碱浮渣中回收碱和银的初步试验[J].矿产保护与利用,1999,(1):43-45.
    [47]肖剑飞,唐朝波,唐谟堂,陈永明.硫化铋精矿低温碱性熔炼新工艺研究[J].矿冶工程,2009,29(5):82-85
    [48]唐朝波,唐谟堂,肖剑飞,等.一种低温碱性熔炼铋精矿提取铋的方法.中国:200810031487.4[P],2008-10-22.
    [49]Khanturgaeva G.L., Zoltoev E.V., Urbazaeva S.D., etal. Technology for processing the bismuth silver concentrates[J]. Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh,2002, (1):103-107.
    [50]唐谟堂,卢阶主,唐朝波,等.从碱性炼铋渣中选择性浸出钠盐和铝[J].中南大学学报:自然科学版,2011,(7):1847-1851.
    [51]陈芷如.三氯化铁浸取法处理含锡锑铅的复杂合金[J].有色金属(冶炼部分),1985,(6):18-24.
    [52]李玉鹏,吴绍华,黄燕.用FeCl3从复杂铋矿中浸出金属铋[J].云南化工,2007,(3):31-34.
    [53]王成彦,邱定蕃,江培海.国内铋湿法冶金技术[J].有色金属,2001,53(4):15-18.
    [54]吴绍华.低品位多金属铋矿的湿法浸出工艺及其基础理论研究[D].昆明:云南师范大学,2006:30-42.
    [55]吴萍,马宠,李华伦.从铋碲精矿分离回收铋碲的新工艺[Jr].矿产综合利用,2002,(12):22-24.
    [56]王继峰,李静,杨建广.用隔膜电积法从辉铋精矿中回收铋[J].湿法冶金,2012,(1):45-48.
    [57]杨建广,唐朝波,唐谟堂,等.一种铋或锑湿法清洁冶金方法.中国:201010132390.X[P],2010-07-14.
    [58]杨建广,唐朝波,唐谟堂,等.一种从铋精矿或含铋物料中提取铋的方法.中国:200810143009.2[P],2009-03-04.
    [59]邱定蕃.矿浆电解[M].北京:冶金工业出版社,1999:111-135.
    [60]李洪桂等.有色金属提取冶金手册(钨铝铼钛).北京:冶金工业出版社,1999:18-26,274-278.
    [61]彭容秋.锌冶金[M].长沙:中南大学出版社,2005:67-69.
    [62]Liang D.Q.,Wang J.K, Wang Y.H. Difference in dissolution between germanium and zinc during the oxidative pressure leaching of sphalerite [J]. Hydrometallurgy, 2009,95:5-7.
    [63]Liang D.Q.,Wang J.K, Wang Y.H., etal. Recovery of silver and zinc by acid pressure oxidative leaching of silver-bearing low-grade complex sulfide ores[J]. Int. J Miner. Process,2008,89:60-64.
    [64]Padilla R., Vega D., Ruiz M.C. Pressure leaching of sulfidized chalcopyrite in sulfuric acid-oxygen media[J]. Hydrometallurgy,2007,86:80-88.
    [65]Jin, B.J., Yang X.W., Shen Q.F. Pressure oxidative leaching of lead-containing copper matte. Hydrometallurgy,2009,96:57-61.
    [66]Baghalha, M., Papangelakis V.G., Curlook W. Factors affecting the leachability of Ni/Co/Cu slags at high temperature[J]. Hydrometallurgy,2007,85:42-52.
    [67]Balliett R.W., Kummer W., Litz J. E..Production of pure molybdenum oxide from low grade molybdinite concentrates[P]. United States:US 2003086864, 2003-05-08.
    [68]Amer A.M. Hydrometallurgical recovery of molybdenum from Egyptian Qattar molybdenite concentrate [J]. Physicochemical Problems of Mineral Processing, 2011,47:105-112.
    [69]Kholmogorov A.G, Kononova O.N.. Processing mineral raw materials in Siberia: ore of molybdenum, tungsten, lead and gold[J]. Hydrometallurgy,2005,76: 37-54.
    [70]张博亚,王吉坤,彭金辉.加压酸浸从铜阳极泥中脱除碲的研究[J].有色金属(冶炼部分),2007,(4):27-29.
    [71]Li YJ, Perederiy I., Vladimiros G, etal. Cleaning of waste smelter slags and recovery of valuable metals by pressure oxidative leaching[J], Journal of Hazardous Materials,2008,152(2):607-615.
    [72]Hoffmann J.E.. Recovering selenium and teleurium form copper refinery slime[J]. The journal of the minerals metals materials society,1989,41(7):33-38.
    [73]Saptharishi S., Mohanty D., Balachandran P., etal. Process for selenium recovery from copper anode slime by alkali pressure leaching[C]. In. F. konggoli R.G. Reddy. eds. Proceeding of sohn international symposium. New Orleans:TMS 2006 meeting,2006:175-184.
    [74]Kyung-Ho P., Debasish M., Ramachandra R., etal. A study on the oxidative ammonia/ammonium sulphate leaching of a complex (Cu-Ni-Co-Fe) matte [J]. Hydrometallurgy,2007,86:164-171.
    [75]刘伟锋.碱性氧化法处理铜/铅阳极泥的研究[D].长沙:中南大学,2011:79-104.
    [76]文剑锋.碱性加压氧化处理铅铜铳的工艺研究[D].长沙:中南大学,2011:59-70.
    [77]黄昆,陈景,陈奕然.加压碱浸处理-氰化浸出法回收汽车废催化剂中的贵金属[J].中国有色金属学报,2006,16(2):363-369.
    [78]黄昆.含铂族金属铜镍硫化矿加压湿法冶金的应用及研究进展[J].矿业研究与开发,2003,(S1):13-16.
    [79]黄昆.加压湿法冶金处理含铂族金属铜镍硫化矿的应用及研究进展[J].稀有金属,2003,27(6):752-757.
    [80]孙全庆.难处理金矿石的碱法加压氧化预处理[J-].湿法冶金,1999,(2):14-18.
    [81]Zhao Z.W., Li J.T., Wang S.B., etal. Extracting tungsten from scheelite concentrate with caustic soda by autoclaving process[J]. Hydrometallurgy,2011, 108:152-156.
    [82]李洪桂,羊建高,李昆.钨冶金学[M].长沙:中南大学出版社,2010:84-85.
    [84]Martins J.P.. Kinetics of soda ash leaching of low-grade scheelite concentrates[J]. Hydrometallurgy,1996,42:221-236.
    [85]Martins J.P., Martins F.. Soda ash leaching of scheelite concentrates:the effect of high concentration of sodium carbonate[J]. Hydrometallurgy,1997,46: 191-203.
    [86]Eung H.C. Kinetics of sodium carbonate leaching of scheelite[J]. JOM,1988, (7): 32-35.
    [87]唐忠阳,李洪桂,霍广生.高压氧分解-萃取法回收铜钼中矿中的钼[J].稀有金属与硬质合金,2003,(1):1-3.
    [88]蔡创开.碱性介质氧压煮-萃取法回收某非标准钼精矿中的钼[J].矿产综合利用,2010,(4):19-23.
    [89]牟德渊.高压氧碱浸处理辉钼矿的展望[J].钼业经济技术,1988,(2):20-22.
    [90]Rinat M., Katsutoshi I. Pressure oxidation leaching of molybdenite in alkaline media autoclave processing of low grade molybdenite concentrates[J]. Shigentosozai,2001,117:72-76.
    [91]吴辛友,袁盛铨,翟全铣.分析试剂的提纯与配制手册[M].北京:冶金工业出版社,1989:212-221.
    [92]北京矿冶研究总院分析室.矿石及有色金属分析手册[M].北京:冶金工业出版社,2001:59-85.
    [93]薛福连.湿法炼锑浸出液及电解液中硫化钠的测定[J].湿法冶金,1999,(2):55-56.
    [94]杨天足,刘伟锋,赖琼林,王志明,王卫东.空气氧化法生产焦锑酸钠过程氧化后液中硫的形态分析[J].湖南有色金属,2004,(4):41-44.
    [95]株洲冶炼厂等.有色冶金中元素的分离与测定[M].北京:冶金工业出版社,1977:10-80.
    [96]常铁军,祁欣.材料近代分析测试方法[M].哈尔滨:哈尔滨工业大学出版 社,2000:53-72.
    [97]李洪桂.冶金原理[M].北京:科学出版社,2007:39-43,172-188,190-213.
    [98]钟竹前,梅光贵.化学位图在湿法冶金和废水净化中的应用[M].长沙:中南大学出版社,1986:27-65.
    [99]李自强,何良惠.水溶液化学位图及其应用[M].成都:成都科技大学出版社,1991:94-150.
    [100]梁春馀,王魁.高温电位-pH图及其应用实例[J].化学通报,1977,(5):44-48.
    [101]杨显万,何蔼平,袁宝州,胡汉.高温水溶液的热力学计算[J].有色金属(冶炼部分),1979,(6):27-37.
    [102]Nazari G., Asselin E. Estimation of thermodynamic properties of aqueous iron and cobalt ammines at elevated temperatures[J]. Metallurgical and Materials Transactions B,2010, (3):520-526.
    [103]古岩,张廷安,吕国志,等.硫化锌加压浸出过程的电位-pH图[J].材料与冶金学报,2011,(2):112-119.
    [104]牟望重,张廷安,吕国志,等.硫化锌氧压浸出过程的φ—pH图[J].中国有色金属学报,2010,(8):1636-1644.
    [105]Mu W.Z., Zhang T.A., Liu Y., etal. E-pH diagram of ZnS-H2O system during high pressure leaching of zinc sulfide[J]. Transactions of Nonferrous Metals Society of China,2010, (20):2012-2019.
    [106]何蔼平.MeS-水系高温电位-PH图[J].昆明工学院学报(自然科学版),1979,(4):42-52.
    [107]周雪娇.V-S-H2O系E-pH图及V203溶解动力学研究[D].导师:魏昶.:昆明理工大学,2010:15-50.
    [108]金创石,张廷安,牟望重,等.难处理金矿浸出预处理过程的电位-pH图[J].东北大学学报:自然科学版,2011,(11):1599-1602.
    [109]彭少方,张正元,张达懋.高温pHt对pH25换算关系的探讨[J].成都科技大学学报,1981,(1):89-95.
    [110]何清鉴.Cu-Fe-S-O-H、Fe-S-O-H等体系Eh-pH图(150℃)及其在热液矿床中的应用[J].中南矿冶学院学报,1984,(1):54-64.
    [111]张鹤鸣,杨连喜.CN-Fe-H2O系与S-Fe-H2O系电位-pH平衡图[J].山东工业大学学报,1987,(3):1-9.
    [112]王方编译.离子交换应用技术[M].北京科学技术出版社,1990:185-207.
    [113]钱庭宝,刘维琳.离子交换剂应用技术.天津:南开大学出版社,1989: 631-649.
    [114]Li Q.G., Zhang Q.X., Zeng L.,etal. Removal of vanadium from ammonium molybdate solution by ion exchange[J]. Transactions of Nonferrous Metals Society of China,2009, (3):735-739.
    [115]李青刚,张启修,肖连生.离子交换树脂吸附镍钼矿氯浸液中钼的研究[J].稀有金属,2007,(3):351-356.
    [116]李青刚.从镍钼矿中制取钼酸铵的研究[D].长沙:中南大学,2010:54-83.
    [117]Kononova O.N., Kholmogorov A.G., Kachin S.V., etal. Ion exchange recovery of molybdenum from nitric acidic solutions using macroporous anion exchangers with long-chained cross-linking agents[J]. Hydrometallurgy,2003,68(1-3): 83-87.
    [118]Kholmogorov A.G., Kononova O.N., Kachin S.V., etal. Ion exchange hydrometallurgy of tungsten using anion exchangers with long-chained cross-linking agents[J], Hydrometallurgy,1999,53(2):177-187.
    [119]胡芳.高浓度钨酸钠溶液离子交换研究[D].长沙:中南大学,2010.
    [120]文颖频.离子交换法从解钼液中分离回收钨钼的研究[J].常州技术师范学院学报,2001,(2):22-26.
    [121]牟德渊.离子交换法从APT结晶母液中回收钨酸钠[J].离子交换与吸附,1995,(6):558-561.
    [122]肖连生,张启修,龚柏藩,黄芍英.密实移动床-流化床离子交换技术从钨酸盐溶液中除钼试验研究[J].矿冶工程,2001,(3):66-68,71.
    [123]许晓阳.离子交换法从镍钼矿浸出液提取钼的研究[D].长沙:中南大学,2011:20,42-47.
    [124]李洪桂.有色金属提取冶金手册一稀有高熔点金属(上)[M].北京:冶金工业出版社,1999:9-10,13.
    [125]霍广生.钨冶炼过程中钨钼分离新工艺及其理论研究[D].长沙:中南大学,2001.
    [126]Lassner E.,Schubert W.D. Tungsten:properities, chemistry, technology of the element, alloys, and chemical compounds [M]. New York:Kluwer Academic/Plunum Press,1999:189-209.
    [127]庄海兴,黄伦光.钨的常温溶剂萃取研究与实践[J].中国钨业,1992,(3):24-33.
    [128]马荣骏.离子交换在湿法冶金中的应用[M].北京:冶金工业出版社,1991:40-41.
    [129]张贵清.连续离子交换除镍电解液中微量铅锌的研究[D].长沙:中南大学,2003:38-49.
    [130]姜志新.离子交换分离工程[M].天津大学出版社,1992:42-120,459-557.
    [131]沈钟,王果庭.胶体与表面化学[M].北京:化学工业出版社,1997:184-186.
    [132]叶振华.化工吸附分离工程[M].北京:中国石化出版社,1992:37-50.
    [133]Sehmuchkler G, Nativ M., Goldstein S. The theory and practice of ion exchange[J]. London society of chemical industry,1976:171-175.
    [134]马弘.D113离子交换树脂吸附钯的基础研究[D].天津:河北工业大学,2007:11-29.
    [135]Xiong C.H., Yao C.P.. Study on the adsorption of cadmium(II) from aqueous solution by D152 resin[J]. Journal of Hazardous Materials,2009,166:815-820.
    [136]Garcla-Delgado R.A., Cotouelo-Minguez L.M., Rodfiguez J.J.. Equilibrium study of single-solute adsorption of anionic surfactants with polymeric XAD resins[J]. Separation Science and Technology,1992,27(7):975-987.
    [137]魏昶,王俊中,姜琪.氟硅酸及其盐的有关知识[J].昆明理工大学学报(自然科学版),2001,(3):97-100.
    [138]王俊中,魏昶.H2SiF6-Fe2(SiF6)3-H2O系中方铅矿的浸出热力学[J].有色矿冶,2001,(3):27-30.
    [139]王俊中.方铅矿及脆硫铅锑矿的浸出新工艺研究[D].昆明:昆明理工大学,2001:22-43.
    [140]于淑秋,陈家镛.稀贵金属湿法冶金中铁的控制[J].稀有金属,1987,(5):383-390.
    [141]Martell E., Smith R.M.. Critic, al stability constants (volume 1:Amino acids) [M]. New York and London:Plenum Press,1974:116-118.
    [142]叶大伦,胡建华.实用无机物数据手册[M].北京:冶金工业出版社,2002.
    [143]John A.Dean. Lange's chemistry handbook [M].New York:McGran Hill Educa-tion Co,1999.
    [144]梁英教,车荫昌无机物热力学数据手册[M].沈阳:东北大学出版社,1993.
    [145]Barin I., Knacke O., Kubaschewski O.Thermochemical properties of inorganic substance[M]. New York:Springer-Verlag press,1973.
    [146]陈新民.火法冶金过程物理化学[M].北京:冶金工业出版社,1984.167-195,212-284.
    [147]付一鸣.铅鼓风炉熔炼渣型的理论研究与生产实践[J].稀有金属与硬质合金,1993,(S1):115-119.
    [148]朱昌乐.鼓风炉炼粗铅渣型选择[J].矿产综合利用,1996,(4):48-49.
    [149]吴建军.纯精矿密闭鼓风炉熔炼渣型的选择[J].新疆有色金属,2009,(S1):150-151.
    [150]李清.铅鼓风炉炉渣的性质及渣型的选择[J].矿产保护与利用,2000,(3):36-38.
    [151]杨斌.浅析QSL炼铅工艺的渣型选择[J].中国有色冶金,2004,(4):27-28,90.
    [152]甘雪萍.金川镍闪速熔炼炉渣合理渣型的研究[D].长沙:中南大学,2002.
    [153]陈永强,王成彦,王忠.高硅铜钴矿电炉还原熔炼渣型研究[J].有色金属(冶炼部分),2003,(4):8,23-25.
    [154]王光忠.铅阳极泥富氧底吹还原熔炼-氧化精炼新工艺的生产实践[D].长沙:中南大学,2011:27-42.
    [155]马小波.红土镍矿焙烧-还原熔炼生产镍铁的研究[D].长沙:中南大学,2010:35-37.
    [156]Mansoor M.H. and David R.M.. Reduction of lead minerals by CO/CO2 gas mixtures:application of the Grain model[J]. Metallurgical Transactions B,1986, 17B:575-586.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700