用户名: 密码: 验证码:
乙酰丙酮金属盐和硫醇体系液相一锅法合成金属硫族半导体纳米晶
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于尺寸和形状依赖效应及其广阔的应用前景,纳米晶态材料引起了来自不同研究领域科研工作者的广泛兴趣。近年来的研究工作主要集中于寻找有效方法来合成具有可控尺寸和形状的高质量纳米晶。合成方法很多,如气-液-固生长法(VLS)、化学气相沉积法(CVD)、热蒸发法、水相和非水相介质中的液相凝胶法等。其中液相凝胶合成法是合成形貌可控纳米晶的一种非常有效的方法,此种制备方法简便、可重复,不仅可在纳米尺度上准确地调节所得纳米晶的尺寸、形状和组成,而且使所得纳米晶既能溶于水相介质中也能使其溶于油相介质中。此外,胶体纳米晶也被称为“纳米晶分子”,它可以和其它的功能材料化学方法复合起来应用于电学或生物系统中。在这里,我们使用的是溶剂热法来合成金属硫族半导体纳米晶。本论文的工作主要包括以下几个部分:
     1、利用乙酰丙酮铜和十二烷基硫醇(DDT)体系液相一锅法反应成功的制备单分散Cu_2S纳米晶,并通过TEM、HRTEM、XRD、SAED表征其形貌和结构。改变反应物DDT的浓度可获得不同粒径的Cu_2S纳米晶(粒径变化范围4nm-17nm),实现了对其尺寸的可控。当DDT的量处在较低水平时,制备的Cu_2S纳米晶的粒径随着DDT的增加而增加,当DDT的量处在较高水平时,制备的Cu_2S纳米晶的粒径会随着DDT量的增加而减小。另外,制备的Cu_2S纳米晶很容易组装为二维和三维的超晶格结构。
     2、利用乙酰丙酮氯化锡和十二烷基硫醇(DDT)体系液相一锅法反应成功的制备SnS纳米片,并通过TEM、HRTEM、XRD、SAED表征其形貌和结构。我们对影响纳米晶形状和尺寸的反应条件如表面活性剂种类、单体浓度、温度等进行了初步的研究和探讨,研究结果表明反应物的量和表面活性剂种类对生成的SnS纳米晶的形貌具有显著影响,后续研究工作仍在进行。
Nanocrystalline materials have attracted a great deal of attention from researchers in various areas forboth their fundamental size-and shape-dependent properties and their many important technologicalapplications. During the last few years, researchers have been extensively studying efficient syntheticroutes to well-defined nanocrystals with controlled size and shape. The typical synthesis methods aregas-phase syntheses utilizing vapor–liquid–solid (VLS) methods, chemical vapor deposition (CVD),thermal evaporation, and liquid-phase colloidal syntheses in aqueous or non-aqueous media. Theliquid-phase colloidal synthetic approach is an especially powerful tool for the convenient and reproducibleshape-controlled synthesis of nanocrystals not only because this method allows for the resultingnanocrystals to be precisely tuned in terms of their size, shape, and composition on the nanometer scale butalso because it allows them to be dispersed in either an aqueous or a nonhydrolytic media. Moreover, thesecolloidal nanocrystals are often referred to as “molecular nanocrystals” and can be modified by chemicalhybridization with other functional materials for applicationsin electronics and biological systems. Here,the nonhydrolytic high-temperature thermal reaction method was used to obtain the colloidal metalcalcogenide semiconductor nanocrystals. This thesis includes the following main aspects:
     1. In chapter2, monodisperse Cu_2S nanocrystals were synthesized by one-pot reaction between cupricdiacetylacetonate(Cu(acac)_2) and dodecanethiol (DDT) in1-octadecene (ODE). We could adjust the size ofthe synthesized namocrystals (size from4nm to17nm) by adjust the concentration of DDT, when DDTwas set at lower concentration, the average diameter of as-synthesized Cu_2S nanocrystals was increased asthe increasing amount of DDT, while it was decreased when the amount of DDT was set at a relativelyhigher concentration. Furthermore, the obtained Cu_2S nanocrystals could easily assemble intotwo-dimensional and three-dimensional superlattice structures.
     2. In chapter3, SnS nanosheets were synthesized by one-pot reaction between cupricBis(acetylacetonato)dichlorotin(Sn(acac)_2Cl_2) and dodecanethiol (DDT) in1-octadecene (ODE).Transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM),X-ray diffraction (XRD), and selected area electron diffraction (SAED) were used to confirmthemorphology and crystal structure of as-obtained SnS nanosheets.The influences of variable reaction parameters such as types of surfactant, monomer concentration, temperature, etc on the size and shape ofthe synthesized nanocrystals are still obscure.
引文
[1]张立德,牟季美,纳米材料和纳米结构,科学出版社,2001。
    [2] R. Kubo, J. Phys. Soc.,1962,17,975.
    [3] K. Kimoto, Y. Kamiya, M. Nonoyama, et al. Japan J. Appl. Phys.1963,2,702.
    [4] R. Birringer, H. Gleiter, Phys. Lett.1984,102,365.
    [5] R. W. Siegel, J. Mater. Res.1988,3,1367.
    [6] A. P. Newbery, B. Q. Han, E. J. Lavernia, et al., Mater. Process. Handb.2007,13,1.
    [7] Q. Zhang, J. Kano, F. Saito, Handb. Powder Technol.2007,12,509.
    [8] A. Gutsch, H. M. hlenweg, M. Krmer, Small,2005,1,30.
    [9] D. Vollath, Nanomaterials, Wiley-VCH, Weinheim,2008,71.
    [10] C. Burda, X. Chen, R. Narayanan, et al. Chem. Rev.2005,105,1025.
    [11] D. Vollath, Nanomaterials, Wiley-VCH, Weinheim,2008.
    [12] B. L. Cushing, V. L. Kolesnichenko, C. J. Connor, Chem. Rev.2004,104,3893.
    [13] T. Dwars, E. Paetzold, G. Oehme, Angew. Chem.2005,117,7338.
    [14] U. Jeong, Y.Wang, M. Ibisate, Adv. Funct.Mater.2005,15,1907.
    [15] J. Park, J. Joo, S. G. Kwon, Angew. Chem.2007,119,4714.
    [16] N. Pinna, M. Niederberger, Angew. Chem.2008,120,5372.
    [17] T. F. Tadros, Applied Surfactants, Wiley-VCH, Weinheim,2005.
    [18] Y. Yin, R. M. Rioux, C. K. Erdonmez,et al. Science2004,304,711.
    [19] P. R. Selvakannan, M. Sastry, Chem. Commun.2005,1684.
    [20] Y.W. Jun, J. S. Choi, J. Cheon, Angew. Chem.2006,118,3492.
    [21] S. E. Skrabalak, J. Chen, L. Au, et al. Adv. Mater.2007,19,3177.
    [22] D. Kim, J. Park, K. An, et al. J. Am. Chem. Soc.2007,129,5812.
    [23] X.Wang, H. Fu, A. Peng, et al Adv. Mater.2009,21,1636.
    [24] V. K. LaMer, R. H. Dinegar, J. Am. Chem. Soc.1950,72,4847.
    [25] W. Ostwald, Z. Phys. Chem.1879,22,289.
    [26] A. R. West, Solid State Chemistry and its Applications, Wiley, Chichester,1990, p.263.
    [27] C. B. Murray, D. B. Norris, M. G. Bawendi, J. Am. Chem. Soc.1993,115,8706.
    [28] C. de Mello Doneg, P. Liljeroth, D. Vanmaekelbergh, Small,2005,1,1152.
    [29] D. Myers, Surfaces, Interfaces and Colloids, Wiley-VCH,Weinheim,1999.
    [30] H. Weller, Angew. Chem., Int. Ed. Engl.1993,32,41–53.
    [31] A. P. Alivisatos, Science,1996,271,933–937.
    [32] A. P. Alivisatos, J. Phys. Chem.,1996,100,13226–13239.
    [33] M. Antonietti, C. Goltner, Angew. Chem., Int. Ed. Engl.1997,36,910–928.
    [34] J. Z. Zhang, Acc. Chem. Res.1997,30,423–429.
    [35] M. Nirmal, L. Brus, Acc. Chem. Res.1999,32,407–414.
    [36] S. Empedocles, M. Bawendi, Acc. Chem. Res.1999,32,389–396.
    [37] A. L. Efros, M. Rosen, Annu. Rev. Mater. Sci.2000,30,475–521.
    [38] C. B. Murray, C. R. Kagan, M. G. Bawendi, Annu. Rev. Mater. Sci.2000,30,545–610.
    [39] P. Moriarty, Rep. Prog. Phys.2001,64,297–381.
    [40] T. Trindade, P. O’Brien, N. L. Pickett, Chem. Mater.2001,13,3843–3858.
    [41] D. M. Adams, L. Brus, S. Creager, etc, J. Phys. Chem. B,2003,107,6668–6697.
    [42] M. Law, J. Goldberger, P. D. Yang, Annu. Rev. Mater. Res.2004,34,83–122.
    [43] J. Stangl, V. Holy, G. Bauer, Rev. Mod. Phys.,2004,76,725–783.
    [44] D. J. Norris, Y. A. Vlasov, Adv. Mater.,2001,13,371–376.
    [45] C. Burda, X. B. Chen, R. Narayanan, et al. Chem. Rev.2005,105,1025–1102.
    [46] Y. Yin, A. P. Alivisatos, Nature,2005,437,664–670.
    [47] Y. W. Jun, J. S. Choi, J. Cheon, Angew. Chem., Int. Ed.2006,45,3414–3439.
    [48] D. V. Talapin, J. S. Lee,M., V. Kovalenko et al. Chem. Rev.2010,110,389–458.
    [49] A. L. Efros, Soviet Physics Semiconductors,1982,16,772-775.
    [50] A. henglein, Physical Chemistry Chemical Physics,1982,86,301-305.
    [51] R. Rossetti, L. Brus, Journal of Physical Chemistry,1982,86,4470-4472.
    [52] R. Rossetti, S. Nakahara, L. E. Brus, Journal of Chemical Physics,1983,79,1086-1088.
    [53] C. B. Murry, D. J. Norris, M. G. Bawendi, Journal of American Chemical Society,1993,115,8706-8715.
    [54] C. B. Murry, C. R. Kagan, M. G. Bawendi, Annual Reviews of Materials Science,2000,30,545-610.
    [55] Y. Yin, A. P. Alivisatos, Nature,2005,437,664-670.
    [56] M. Green, Chemical Communications,2005,24,3002-3011.
    [57] J. Park, J. Joo, S. G. Kwon, T. Hyeon, Angewandte Chemie-International Edition,2007,46,4630-4
    [1] L. Brus, J. Phys. Chem.1986,90,2555-2560.
    [2] C. B. Murray, C. R. Kagan, M. G. Bawendi, Annu. Re. Mater. Sci.2000,30,545-610.
    [3] A. P. Alivisatos, Science,1996,271,933-937.
    [4] V. L. Colvin, M. C. Schlamp, A. P. Alivisatos, Nature1994,370,354-357.
    [5] S. Coe, W. K. Woo, M. G. Bawendi, V. Bulovic, Nature2002,420,800-803.
    [6] S. M. Lee, Y. W. Jun, S. N. Cho, J. Cheon, J. Am. Chem. Soc.2002,124,11244.
    [7] S. M. Lee, S. N. Cho, J. Cheon, Adv. Mater.2003,15,441.
    [8] J. Aldana, N. Lavelle, Y. Wang, X. Peng, J. Am. Chem. Soc.2005,127,2496.
    [9] H. T. Zhang, G. Wu, X. H. Chen, Langmuir,2005,21,4281.
    [10] Y. W. Jun, Y. Y. Jung, J. Cheon, J. Am. Chem. Soc.2002,124,615.
    [11] L. Chen, Y. B. Chen, L. M. Wu, J. Am. Chem. Soc.2004,126,16334.
    [12] T. H. Larsen, M. B. Sigman, A. Ghezelbash, et al. J. Am. Chem. Soc.2003,125,5638.
    [13] M. B. Sigman, A. Ghezelbash, T.Hanrath, et al. J. Am. Chem. Soc.2003,125,16050.
    [14] A. Ghezelbash, M. B. Sigman, B. A. Korgel, Nano. Lett.2004,4,537.
    [15] A. Ghezelbash, B. A. Korgel, Langmuir,2005,21,9451.
    [16] M. B.Sigman, B. A. Korgel, Chem. Mater.2005,17,1655.
    [17] M. A. Hines, G. D. Scholes, Adv. Mater.2003,15,1844.
    [18] T. Kuzuya, S. Yamamuro, T. Hihara, et al. Chem. Lett.2004,352.
    [19] T. Kuzuya, Y. Tai, S. Yamamuro, et al. Sci. Tech. Adv. Mater.2005,6,84.
    [20] T. Mirkovic, M. A.Hines, P. S.Nair, Chem. Mater.2005,17,3451.
    [21] F. Zhao, H. L. Sun, G. Su, Small,2006,2,244.
    [22] Z. Liu, D. Xu, J. Liang, et al. J. Phys. Chem. B,2005,109,10699.
    [23] Z. Liu, J. Liang, D. Xu, Chem. Commun.2004,2724.
    [24] A. Shavel, N. Gaponik, A. Eychmu, J. Phys. Chem. B,2004,108,5905.
    [25] J. H. Yu, J. Joo, H. M. Park, et al. J. Am.Chem. Soc.2005,127,5662.
    [26] Q. Lu, F. Gao, D. Zhao, Nano. Lett.2002,2,725.
    [27] Z. A. Peng, X. Peng, J. Am. Chem. Soc.2001,123,183.
    [28] Y. W. Jun, S. M. Lee, N. J. Kang, etc, J. Am. Chem. Soc.2001,123,5150.
    [29] J. Joo, H. B. Na, T. Yu, et al. J. Am. Chem. Soc.2003,125,11100.
    [30] Y.C. Cao, J. Wang, J. Am. Chem. Soc.2004,126,14336.
    [31] L. S. Li, H. Wang, Y. Liu, J. Colloid Interface Sci.2007,308,254.
    [32] L. S. Li, N. Pradhan, Y. Wang, et al. Nano. Lett.2004,4,2261.
    [33] R. C. Neville, Solar Energy Conversion: The Solar Cell, second ed., Elsevier, Amsterdam,1995.
    [34] N. S. Xu, S. E. Huq, Mater. Sci. Eng. R,2005,48,47.
    [35] T. Sakamoto, H. Sunamura, H. Kawaura, et al. Appl. Phys. Lett.2003,82,3032.
    [36] Y. Wu, C. Wadia, W. Ma, etc, Nano Lett.2008,8,2551.
    [37] G. Liu, T. Schulmeyer, J. Br tz, et al. Thin Solid Films,2003,431-432,477.
    [38] Y. He, W. Kriegseis, J. Bl sing, et al. J. Appl. Phys.2002,41,4630.
    [39] Z. B. Zhuang, Q. Peng, Y. D. Li, J. Am. Chem. Soc.2008,130,10483-10484.
    [40] T. H. Larsen, M. Sigman, A. Ghezelbash, et al. J. Am. Chem. Soc.2003,125,5638-5639.
    [41] X. Sheng, Z. Z. Yu, A. Dasari, et al. Chem. Mater.2006,18,5156-5158.
    [42] Z. P. Liu, D. Xu, J. B. Liang, et al. J. Phys. Chem. B,2005,109,10699-10704.
    [43] Y. Zhang, T. Qiao, X. Y. Hu, J. Cryst. Growth Des.2004,268,64-70.
    [44] Z. C. Wu, C. Pan, Z. Y. Yao, et al. Cryst. Growth Des.2006,6,1717-1719
    [45] S. Li, H. Z. Wang, W. W. Xu, et al. J. Colloid Interface Sci.2008,330,483-487
    [1] E. H. Sargent, Adv. Mater.2005,17,515.
    [2] D. V. Talapin, J. S. Lee,M. V. Kovalenko, et al. Chem. ReV.2010,110,389.
    [3] E. H. Sargent, Nat. Photonics,2009,3,332.
    [4] R. D. Schaller, M. Sykora, J. M. Pietryga, et al. Nano Lett.2006,6,424–429.
    [5] R. J. Ellingson,M. C. Beard, J. C. Johnson, et al. Nano Lett.2005,5,865–871.
    [6] J. E. Murphy, M. C. Beard, A. G. Norman, etc, J. Am. Chem. Soc.2006,128,3241–3247.
    [7] Y. Xu, N. Al-slim, C. W. Bumby, et al. J. Am. Chem. Soc.2008,130,14978
    [8] S. G. Hickey, C. Waurish, B. Rellinghaus, et al. J. Am. Chem. Soc.2008,130,15990.
    [9] M. A. Franzman, C. W. Schlenker, M. E. Thompson, et al. J. Am. Chem.Soc.2010,132,4060.
    [10] W. J. Baumgardner, J. J. Choi, Y. F. Lim, et al. J. Am. Chem. Soc.2010,132,9519-9521.
    [11] S. M. Yoon, H. J. Song, H. C. Choi, Adv. Mater.2010,22,216.
    [12] L. Makinistian, E. A. Albanesi, J. Phys.:Condens. Matter.2007,19,186211.
    [13] L. Makinistian, E. A. Albanesi, Phys. Rev. B2006,74,045206.
    [14] M. Prenteau, C. Carlone, Phys. Rev. B1990,41,5227-5234.
    [15] M. Tanusevski, D. Poelman, Solar Energy Mater. Solar Cells2003,80,297-303.
    [16] J. B. Johnson, H.Jones, B. S. Latham, et al. C. Semicond. Sci. Technol.1999,14,501-507.
    [17] M. B. Prince, J. Appl. Phys.1955,26,534-540.
    [18] J. J. Loferski, J. Appl. Phys.1956,27,777-784.
    [19] M. M. El-Nahass, H. M. Zeyada, M. S. Aziz, et al. Opt. Mater.2002,20,159-170.
    [20] M. Jayalakshmi, M. Rao Mohan, B. M. Cloudary, Electrochem. Commun.2004,6,1119-1122.
    [21] C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, et al. Angew. Chem.,Int. Ed.2009,48,7752.
    [22] M. Osada, T. J. Sasaki, Mater. Chem.2009,19,2503.
    [23] J. W. Seo, Y. W. Jun, S. W. Park, et al. Angew. Chem. Int. Ed.2007,46,8828.
    [24] K. Pyler, X. Ke, I. T. Sines, Chem. Mater.2009,21,3655.
    [25] D. M. Kaschak, J. T. Lean, C. C. Waraska, et al. J. Am. Chem. Soc.1999,121,3435.
    [26] L. Li, R. Ma,Y. Ebina, K. Fukuda, et al. J. Am. Chem. Soc.2007,129,8000.
    [27] O. C. Compton, C. H. Mullet, S. Chiang, et al. J. Phys. Chem. Soc,2008,112,6202.
    [28] X. Li, H. Shen, J. Niu, et al.J. Am. Chem. Soc.2010,132,12778-12779.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700