用户名: 密码: 验证码:
大气CO_2浓度升高对拟南芥根毛发育与养分吸收的影响及根系对养分的响应机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大气CO浓度持续升高给人类生活和农业生产带来的深刻影响已经引起全球的广泛关注。CO2作为植物光合作用的原料之一,其浓度升高被多数研究证明对植物的生长和养分代谢产生了深刻的影响。CO2浓度升高会促进植物碳水化合物的积累,从而促进植物的生长,而这种持续生长需要更多的养分和水分供应。根系作为植物吸收养分和水分的重要器官,其生长发育在植物响应CO2浓度升高过程中扮演着重要的角色。根毛是根部特化的一种表皮细胞,在吸收土壤水分及养分,尤其是在吸收诸如磷(P),铁(Fe)等难移动营养元素时发挥着重要作用。同时,根毛的生长又容易受到外界生物和非生物因素的影响,尤其是土壤养分的供应水平。本研究选用模式植物拟南芥(Arabidopsis thaliana (L.) Heynh)作为主要研究材料,采用水培试验和可控培养箱试验,通过根系扫描、荧光显微镜、透射电镜和激光共聚焦镜观察、生理学、药理学以及分子生物学等方法与手段,开展了CO2浓度升高对拟南芥根毛生长发育的影响及其机理、CO2浓度升高对不同供氮形态下低供磷拟南芥磷吸收利用的影响及其机理以及Mg对拟南芥根毛生长发育的影响及其机理等研究,主要研究结果如下:
     1.CO2浓度升高对拟南芥根毛生长发育的影响及其机理
     与生长在正常CO2浓度(350gL L-1)条件下的拟南芥根毛相比,生长在升高CO2浓度(800μL L-1)条件下的拟南芥根毛长度和密度显著增加,而且‘H’型细胞(生毛细胞)数目也显著增多。CO2浓度升高提高了植物根系中生长素水平。在升高CO2浓度条件下,加入外源生长素极性输入阻断剂1-NOA或者生长素极性输出阻断剂NPA抑制了CO2浓度升高诱导的根毛形成。反之,在正常CO2浓度条件下,加入外源生长素类似物NAA则显著促进了根毛的形成。而且,CO2浓度升高处理下,生长素响应不敏感突变体axrl-3和axr4-1以及生长素极性运输突变体auxl-7和pin1-1根毛的长度和密度与生长在正常CO2浓度条件下的根毛相比没有显著差异。CO2浓度升高和NAA处理显著提高了根毛细胞分化和伸长促进基因CPC, TRY和ROP2的表达,同时降低了根毛分化抑制基因WER, GL2, GL3和TTG1的表达,但是,NPA处理得到与之相反的结果。总之,本研究发现CO2浓度升高通过生长素信号途径影响其下游的根毛细胞特化和伸长基因,从而促进根毛的生长发育。
     2.CO2浓度升高对不同供氮形态下低供磷拟南芥磷吸收利用的影响及其机理
     磷营养是植物响应大气CO2浓度升高的一个关键因子,然而,目前关于C02浓度升高对不同供N形态下植物P吸收利用的影响还不清楚。本研究选取5周龄拟南芥,在不同供N形态(NO3-和NH4+,2mM)和低P(0.5μM)条件下,分别在正常C02浓度(350μL L-1)和升高C02浓度(800μL L-1)条件下培养1周。研究结果表明,在供硝时,生长在正常CO2浓度下的拟南芥新叶呈暗绿色,而在升高C02浓度下,叶片生长正常呈嫩绿色。不同的是,在供铵情况下,无论是生长在正常C02还是升高C02浓度下,拟南芥叶片均呈暗绿色。同时,C02浓度升高降低了供硝拟南芥叶片中叶绿素和花青素的含量,而对供铵拟南芥叶片中的叶绿素和花青素含量没有影响。进一步研究结果显示,CO2浓度升高均促进了两种供N条件下植物的生长,但是降低了供铵植物每单位根重P吸收量和地上部P含量。与此相反,供硝植物的每单位根重P吸收量和植物组织中P含量均随CO2浓度升高而增加。而当P供应充足(0.5mM),其他处理条件与低P处理相同的情况下,发现C02浓度升高同样促进了两种供N条件下植物的生长,但是却降低了其体内P含量和P吸收量,且对叶片叶绿素和花青素含量没有显著影响。同时,CO2浓度升高增加了低P条件下供硝植物根冠比、根系总面积、酸性磷酸酶活性以及P吸收、运输、循环和再分配关键基因的表达。此外,与正常CO2浓度条件下相比,生长在高浓度CO2条件下的供硝植物根系中NO含量明显升高,而供铵植物根系NO含量却显著降低。升高CO2浓度条件下,加入外源NO清除剂cPTIO则抑制了两种供N条件下拟南芥根系对P的吸收。综合以上结果,本研究得出升高CO2浓度和硝态氮互作有助于植物从低P环境中吸收和利用P,从而缓解植物的缺磷症状,而在这一过程中,NO起到了很重要的介导调控作用。
     3.Mg对拟南芥根毛生长发育的影响及其机理
     根毛是植物根系吸收养分和水分的一个重要器官,根毛的生长容易受到土壤环境,尤其是养分水平的影响。Mg是植物所需的中量元素之一,但是目前有关Mg对植物根毛生长发育的影响及参与其中的生理和分子机制还不清楚。
     本研究利用模式植物拟南芥开展了Mg对其根毛生长的影响。选择拟南芥根毛生长较旺盛的时期(第5周)将其在7个不同供Mg水平(MgSO4,浓度从0.5至10000μM)下培养7d,观察其根毛生长变化。取最低Mg浓度(0.5μM M1),和最高Mg浓度(10000M7)处理下分别生长4d和7d的根系以及在正常Mg浓度(500μM M3)生长4d根系进行RNA全转录组分析,并将RNA转录组分析的数据已经上传至NCBI, GEO编号为GSE42899。
     生长在不同Mg浓度下的植物根毛在前4天并没有显示出生长差异,而从第5天开始根毛生长显示出处理间差异。处理7d后,统计检验结果显示供Mg水平越低,拟南芥根毛生长越旺盛,随着Mg浓度的提高,根毛逐渐减少。生长在低Mg下的拟南芥根毛长度和密度均显著增加,皮层细胞体积变小,‘H,型细胞(生毛细胞)数目增多且分化为成熟根毛的比例提高。而生长在高Mg(5000μM)下的拟南芥根毛稀疏且大部分根毛突体未伸长便停止生长。当供Mg浓度达到10000rtM时,根毛的生长完全被抑制,且皮层细胞体积变大,‘H,型细胞数目显著减少,部分根毛细胞壁瓦解,细胞质外流。拟南芥地上部和根系中总Ca浓度和根尖ROS水平随Mg浓度的增加而降低,生长在低Mg和正常Mg浓度下的拟南芥根毛突体和根毛细胞尖端均形成胞质Ca2+(cCa2+)梯度和ROS富集,而且。与此相反,生长在高浓度下的拟南芥根毛细胞起始和伸长部位未观察到cCa2+梯度和ROS富集。在低Mg处理下,加入外源BAPTA(Ca2+整合剂)或DPI(NADPH氧化酶抑制剂)会抑制低Mg对根毛生长的促进效应,同时根毛细胞尖端cCa2+梯度消失。反之,在高Mg浓度条件下,加入外源CaCl2或者ROS产生剂PMS时,被高Mg抑制的根毛恢复生长,虽然恢复程度随着Mg浓度的升高略有降低,同时根毛细胞伸长部位形成(Ca2+)c梯度和ROS。此外,不同供Mg处理对根毛缺陷突变体rhd2-1的根毛生长没有显著影响。
     RNA转录组测序数据差异表达分析结果显示共有557个基因在不同处理条件下存在差异表达(FDR<0.05),进一步对不同Mg处理条件之间差异表达基因的GO富集结果显示不同Mg处理对拟南芥根系基因变化涉及的生物功能主要包括‘胁迫响应’、‘氧化还原反应’、‘离子转运’和‘细胞壁组织’。其中“胁迫响应”出现在所有的处理条件下,而“离子转运”主要发生在L7(0.5μM Mg处理7d)处理下,而“氧化还原反应”则共同出现在L7和H7(10000μMMg处理7d)。此外,决定根毛形态和伸长的‘H’基因均在L7下高表达,H7下低表达。值得一提的是,“细胞壁组织”相关基因特异性在H7处理下富集,而且这些基因的表达均被H7严重抑制,表明高Mg对拟南芥根毛生长的抑制与细胞壁的合成和定位缺陷有关。
     综合以上,本研究得出Mg浓度会显著影响拟南芥根毛的生长发育,表现为Mg缺乏促进根毛的生长,而Mg过量抑制根毛的生长。低Mg提高了根系ROS和胞质Ca2+浓度并促进其在根毛尖富集,这些信号促进了根毛细胞分化和伸长基因,尤其是根毛伸长基因的表达从而促进根毛的生长。而长时期高Mg处理降低了根系的ROS和胞质Ca2+浓度,进而抑制根毛发育基因,特别是细胞壁合成和定位的关键基因,导致根毛形成受阻。而这一过程与植物细胞内Ca2+和ROS信号调控作用密切相关。
1. Development of root hairs in Arabidopsis thaliana (L.) Heynh. under elevated CO2
     Root hairs may play a critical role in nutrient acquisition of plants grown under elevated CO2. This study investigated how elevated CO2enhanced the development of root hairs in Arabidopsis thaliana (L.) Heynh. The plants under elevated CO2(800μL L-1) had denser and longer root hairs, and more H-positioned cells in root epidermis than those under ambient CO2(350μL L-1). The elevated CO2increased auxin production in roots. Under elevated CO2, application of either1-naphthoxyacetic acid (1-NOA) or N-1-naphthylphthalamic acid (NPA) blocked the enhanced development of root hairs. The opposite was true when the plants under ambient CO2were treated with1-naphthylacetic acid (NAA), an auxin analogue. Furthermore, the elevated CO2did not enhance the development of root hairs in auxin-response mutants, axrl-3, and auxin-transporter mutants, axr4-1, auxl-7and pinl-1. Both elevated CO2and NAA application increased expressions of caprice, triptychon and rho-related protein from plants2, and decreased expressions of werewolf, GLABRA2, GLABRA3and the transparent testa glabra1, genes related to root-hair development, while1-NOA and NPA application had an opposite effect. Our study suggests that elevated CO2enhanced the development of root hairs in Arabidopsis via the well-characterized auxin signalling and transport that modulate the initiation of root hairs and the expression of its specific genes.
     2. Effect of elevated CO2on phosphorus nutrition of phosphate-deficient Arabidopsis thaliana (L.) Heynh. under different nitrogen forms
     Phosphorus (P) nutrition is always a key issue regarding plants responses to elevated CO2. Yet it is unclear of how elevated CO2affect P uptake under different nitrogen (N) forms. This study investigated the influence of elevated CO2(800μL L-1) on P uptake and utilization by Arabidopsis grown in pH-buffered phosphate (Pi)-deficient (0.5μM) hydroponic culture supplying with2mM nitrate (NO3-) or ammonium (NH4+). After7-d treatment, elevated CO2enhanced biomass production of both NO3-and NH4+-fed plants but decreased Pi amount absorbed by per weight of roots and Pi concentration in shoots of plants supplied with NH4+. In comparison, elevated CO2increased amount of Pi absorbed by per weight of roots as well as Pi concentration in plants and alleviated P-deficiency-induced symptoms of plants supplied with NO3-. Elevated CO2also increased root/shoot ratio, total root surface area and acid phosphatase activity, and enhanced expressions of genes or transcriptional factors involving in P uptake, allocation and remobilization in Pi-deficient plants. Furthermore, elevated CO2increased the NO level in roots of NO3--fed plants but decreased it in NH4+-fed plants. NO scavenger cPTIO inhibited plant P acquisition by roots under elevated CO2. Considering all of these findings, this study concludes that a combination of elevated CO2and NO3-nutrition can induce a set of plant adaptive strategies to improve P status from Pi-deficient soluble sources and NO may be a signaling molecule that controls these processes.
     3. Regulation of root hair development in Arabidopsis thaliana (L.) Heynh. by magnesium
     Root hairs are frequently reported to be plastic in response to nutrient supply in most plants, but relatively little is known about their development along with magnesium (Mg) availability, and evidence is also scarce about the signals involved in this process. Here, we characterized the response of root hair development to Mg availability in Arabidopsis thaliana grown in hydroponic culture with varied Mg concentrations, ranging from0.5to10000μM. Both density and length of root hairs decreased logarithmically in response to increasing Mg concentrations within that range, which correlated with the initiation of new trichoblast files and likelihood of trichoblasts to form hairs. Low-Mg availability resulted in greater concentrations of reactive oxygen species (ROS) and Ca2+in the roots and displayed a stronger tip-focused gradient of ROS and cytosolic Ca2+during initiation and elongation of root hairs, and this gradient could be eliminated by DPI or BAPTA drugs. Application of either BAPTA or DPI to low Mg treatment blocked the enhanced development of root hairs. The opposite was true when the plants under high Mg were supplied with Ca2+or PMS. Furthermore, root hair development of atrbohC/root hair defective2-1(rhd2-1) mutant was not affected by Mg availability. Whole-genome transcriptome data indentified a total of557differentially expressed genes, and the maximum differential expressed genes involved in'stress response','oxidation reduction','ion transport' and 'cell wall organization'. A greater fraction of genes expressed at later developmental stages as well as hair cell genes involving cell wall organization were up-regulated by L7(0.5μM Mg for7d) and down-regulated by H7(10000μM Mg for7d). No change in expression of genes encoding Ca2+and Mg uptake. Taking all of these findings together, a distinct and previously poorly characterized response of Arabidopsis root hair development to Mg availability is presented where ROS and Ca2+were the signaling molecules that control this process.
引文
Abdolzadeh A, Wang X, Veneklaas EJ, Lambers H.2010. Effects of phosphorus supply on growth, phosphate concentration and cluster-root formation in three Lupinus species. Annals of Botany 105:365-374.
    Abel S, Ticconi CA, Delatorre CA.2002. Phosphate sensing in higher plants. Physiologia Plantarum 115:1-8.
    Aben SK, Seneweera SP, Ghannoum O, Conroy JP.1999. Nitrogen requirements for maximum growth and photosynthesis of rice, Oryza sativa L. cv. Jarrah grown at 36 and 70 Pa CO2. Functional Plant Biology 26:759-766.
    Acock B.1990. Effects of CO2 on photosynthesis, plant growth and other processes. In:Iraball B A, Rosenberg N J, Allen L H Jr (eds). In impact of CO2, trace gases, and climate change on global agriculture [M]. ASA special publication No.53. American Society of Agronomy, Madison, Wisconsin,45-60.
    Agren GI, Ingestad T.1987. Root:shoot ratio as a balance between nitrogen productivity and photosynthesis. Plant, Cell and Environment 10:579-586.
    Aloni R, Aloni E, Langhans M, Ullrich CI.2006. Role of cytokinin and auxin in shaping root architecture:regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Annals of Botany 97:883-893.
    Anthony RG, Henriques R, Helfer A, Meszaros T, Rios G, Testerink C, Munnik T, Deak M, Koncz C, Bogre L.2004. A protein kinase target of a PDK1 signaling pathway is involved in root hair growth in Arabidopsis. The EMBO Journal 23:572-581.
    Ao JH, Fu JB, Tian J, Yan XL, Liao H.2010. Genetic variability for root morph-architecture traits and root growth dynamics as related to phosphorus efficiency in soybean. Functional Plant Biology 37:304-312.
    Arnone J, Zaller J, Spehn E, Niklaus P, Wells C, Korner C.2000. Dynamics of root systems in native grasslands:effects of elevated atmospheric CO?. New Phytologist 147:73-85.
    Aung K, Lin SI, Wu CC, Huang YT, Su CL, Chiou TJ.2006. pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a MicroRNA399 target gene. Plant Physiology'141:1000-1011.
    Baluska F, Volkmann D, Barlow PW.2000. Actin-based domains of the "cell periphery complex" and their associations with polarized"cell bodies" in higher plants. Plant Biology 2: 253-267.
    Barber SA, Walker JM, Vasey EH.1963. Mechanisms for movement of plant nutrients from soil and fertilizer to plant root. Journal of Agricultural and Food Chemistry 11:204-207.
    Barber SA.1995. Soil nutrient bioavailability:a mechanistic approach, John Wiley & Sons Inc.
    Barrett DJ, Gifford RM.1999. Increased C-gain by an endemic Australian pasture grass at elevated atmospheric CO2 concentration when supplied with non-labile inorganic phosphorus. Functional Plant Biology 26:443-451.
    BassiriRad H, Griffin KL, Reynolds JF, Strain BR.1997. Changes in root NH4+ and NO3-absorption rates of loblolly and ponderosa pine in response to CO2 enrichment. Plant and Soil 190:1-9.
    Bassirirad H, Thomas RB, Reynolds JF, Strain BR. 1996. Differential responses of root uptake kinetics of NH4+ and NO3- to enriched atmospheric CO2 concentration in field-grown loblolly pine. Plant, Cell and Environment 19:367-371.
    Bassirirad H, Tissue D, Reynolds J, Chapin F.1996. Response of Eriophorum vaginatum to CO2 enrichment at different soil temperatures:effects on growth, root respiration and PO43-uptake kinetics. New Phytologist 133:423-430.
    Basu P, Pal A, Lynch JP, Brown KM.2007. A novel image-analysis technique for kinematic study of growth and curvature. Plant Physiology 145:305-316.
    Bates TR, Lynch JP.1996. Stimulation of root hair elongation in Arabidopsis thaliana by low phosphorus availability. Plant, Cell and Environment 19:529-538.
    Bates TR, Lynch JP.2000. Plant growth and phosphorus accumulation of wild type and two root hair mutants of Arabidopsis thaliana (Brassicaceae). American Journal of Botany 87: 958-963.
    Baumberger N, Ringli C, Keller B.2001. The chimeric leucine-rich repeat/extensin cell wall protein LRX1 is required for root hair morphogenesis in Arabidopsis thaliana. Genes& development 15:1128-1139.
    Baxter R, Gantley M, Ashenden TW, Farrar JF.1994. Effects of elevated carbon dioxide on three grass species from montane pasture, Ⅱ. Nutrient uptake, allocation and efficiency of use. Journal of Experimental Botany 45:1267-1278.
    Bayuelo-Jimenez JS, Gallardo-Valdez M, Perez-Decelis VA, Magdaleno-Armas L, Ochoa I, Lynch JP.2011. Genotypic variation for root traits of maize(Zea mays L.) from the Purhepecha Plateau under contrasting phosphorus availability. Field Crops Research 121: 350-362.
    Bazzaz F.1990. The response of natural ecosystems to the rising global CO2 levels. Annual Review of Ecology and Systematics 21:167-196.
    Beebe SE, Rao IM, Cajiao C, Grajales M.2008. Selection for drought resistance in common bean also improves yield in phosphorus limited and favorable environments. Crop Science 48: 582-592.
    Berger F, Haseloff J, Schiefelbein J, Dolan L.1998a. Positional information in root epidermis is defined during embryogenesis and acts in domains with strict boundaries. Current Biology 8: 421-430.
    Berger F, Hung CY, Dolan L, Schiefelbein J.1998b. Control of cell division in the root epidermis of Arabidopsis thaliana. Developmental Biology 194:235-245.
    Bernhardt C, Tierney ML.2000. Expression of AtPRP3, a proline-rich structural cell wall protein from Arabidopsis, is regulated by cell-type-specific developmental pathways involved in root hair formation. Plant Physiology 122:705-714.
    Bernhardt C, Zhao M, Gonzalez A, Lloyd A, Schiefelbein J.2005. The bHLH genes GL3 and EGL3 participate in an intracellular regulatory circuit that controls cell patterning in the Arabidopsis root epidermis. Development 132:291-298.
    Berntson GM, Bazzaz FA.1996. The allometry of root production and loss in seedlings of Acer rubrum (Aceraceae) and Betula papyrifera (Betulaceae):implications for root dynamics in elevated CO2. American Journal of Botany 83:608-616.
    Berntson GM, Woodward F.1992. The root system architecture and development of Senecio vulgaris in elevated CO2 and drought. Functional Ecology 6:324-333.
    Bibikova T, Gilroy S.2003. Root hair development. Journal of Plant Growth Regulation 21: 383-415.
    Bibikova TN, Blancaflor EB, Gilroy S.1999. Microtubules regulate tip growth and orientation in root hairs of Arabidopsis thaliana. The Plant Journal 17:657-665.
    Bibikova TN, Zhigilei A, Gilroy S.1997. Root hair growth in Arabidopsis thaliana is directed by calcium and an endogenous polarity. Planta 203:495-505.
    Bibikova TN, Jacob T, Dahse I, Gilroy S.1998. Localized changes in apoplastic and cytoplasmic pH are associated with root hair development in Arabidopsis thaliana. Development 125:2925-2934.
    Bibikova TN, Zhigilei A, Gilroy S.1997. Root hair growth in Arabidopsis thaliana is directed by calcium and an endogenous polarity. Planta 203:495-505.
    Birnbaum K, Shasha DE, Wang JY, Jung JW, Lambert GM, Galbraith DW, Benfey PN. 2003. A gene expression map of the Arabidopsis root. Science Signalling 302:1956.
    Bloom AJ, Burger M, Asensio JSR, Cousins AB.2010. Carbon dioxide enrichment inhibits nitrate assimilation in wheat and Arabidopsis. Science 328:899-903.
    Bloom AJ, Smart DR, Nguyen DT, Searles PS.2002. Nitrogen assimilation and growth of wheat under elevated carbon dioxide. Proceedings of the National Academy of Sciences of the United States of America 99:1730-1735.
    Blume B, Nurnberger T, Nass N, Scheel D.2000. Receptor-mediated increase in cytoplasmic free calcium required for activation of pathogen defense in parsley. Plant Cell 12: 1425-1440.
    Bonser AM, Lynch J, Snapp S.1996. Effect of phosphorus deficiency on growth angle of basal roots in Phaseolus vulgaris. New Phytologist 132:281-288.
    Borch K, Bouma TJ, Lynch JP, Brown KM.1999. Ethylene:a regulator of root architectural responses to soil phosphorus availability. Plant, Cell and Environment 22:425-431.
    Borel C, Audran C, Frey A, Marion-Poll A, Tardieu F, Simonneau T.2001. N. plumbaginifolia zeaxanthin epoxidase transgenic lines have unaltered baseline ABA accumulations in roots and xylem sap, but contrasting sensitivities of ABA accumulation to water deficit. Journal of Experimental Botany 52:427-434.
    Bose J, Babourina O, Rengel Z.2011. Role of magnesium in alleviation of aluminium toxicity in plants. Journal of Experimental Botany 62:2251-2264.
    Bowes G.1993. Facing the inevitable:plants and increasing atmospheric CO2. Annual Review of Plant Biology 44:309-332.
    Broadley MR, Hammond JP, King GJ, Astley D, Bowen HC, Meacham MC, Mead A, Pink DAC, Teakle GR, Hayden RM, Spracklen WP, White PJ.2008. Shoot calcium and magnesium concentrations differ between subtaxa, are highly heritable, and associate with potentially pleiotropic loci in Brassica oleracea. Plant Physiology 146:1707-1720.
    Bruex A, Kainkaryam RM, Wieckowski Y, Kang YH, Bernhardt C, Xia Y, Zheng XH, Wang JY, Lee MM, Benfey P.2012. A gene regulatory network for root epidermis cell differentiation in Arabidopsis. PLoS Genetics 8:e1002446.
    Buchanan BB, Gruissem W, Jones RL.2000. Biochemistry and Molecular Biology of Plants. American Society of Plant Physiologists Rockville.
    Burk DH, Liu B, Zhong R, Morrison WH, Ye ZH.2001. A katanin-like protein regulates normal cell wall biosynthesis and cell elongation. The Plant Cell 13:807-827.
    Bustos R, Castrillo G, Linhares F, Puga MI, Rubio V, Perez-Perez J, Paz-Ares J 2010. A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis. PLoS Genetics 6:e1001102.
    Caba JM, Centeno ML, Fernandez B, Gresshoff PM, Ligero F.2000. Inoculation and nitrate alter phytohormone levels in soybean roots:differences between a supernodulating mutant and the wild type. Planta 211:98-104.
    Cakmak I, Hengeler C, Marschner H.1994. Changes in phloem export of sucrose in leaves in response to phosphorus, potassium and magnesium deficiency in bean plants. Journal of Experimental Botany 45:1251-1257.
    Cakmak I, Kirkby EA.2008. Role of magnesium in carbon partitioning and alleviating photooxidative damage. Physiologia Plantarum 133:692-704.
    Cakmak I, Marschner H.1992. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiology 98:1222-1227.
    Carlisle E, Myers S, Raboy V, Bloom A.2012. The effects of inorganic nitrogen form and CO2 concentration on wheat yield and nutrient accumulation and distribution. Frontiers in Plant Science 3:1-13.
    Carol RJ, Takeda S, Linstead P, Durrant MC, Kakesova H, Derbyshire P, Drea S, Zarsky V, Dolan L.2005. A RhoGDP dissociation inhibitor spatially regulates growth in root hair cells. Nature 438:1013-1016.
    Carol RJ, Dolan L.2002. Building a hair:tip growth in Arabidopsis thaliana root hairs. Philosophical Transactions of the Royal Society of London. Series B:Biological Sciences 357:815-821.
    Carswell C, Grant BR, Theodorou ME, Harris L, Niere JO, Plaxton WC.1996. The fungicide phosphonate disrupts the phosphate-starvation response in Brassica nigra seedlings. Plant Physiology 110:105-110.
    Casamitjana-Martinez E, Hofhuis HF, Xu J, Liu CM, Heidstra R, Sheres B.2003. Root-specific CLE19 overexpression and the soll/2 suppressors implicate a CLV-like pathway in the control of Arabidopsis root meristem maintenance. Current Biology 13: 1435-1441.
    Cave G, Tolley LC, Strain B.1981. Effect of carbon dioxide enrichment on chlorophyll content, starch content and starch grain structure in Trifolium subterraneum leaves. Physiologia Plantarum 51:171-174.
    Carol RJ, Dolan L.2006. The role of reactive oxygen species in cell growth:lessons from root hairs. Journal of Expermental Botany 57:1829-1834.
    Celenza JL, Grisafi PL, Fink GR.1995. A pathway for lateral root formation in Arabidopsis thaliana. Genes & Development 9:2131-2142.
    Chacon-Lopez A, Ibarra-Laclette E, Sanchez-Calderon L, Gutierrez-Alanis D, Herrera-Estrella L.2011. Global expression pattern comparison between low phosphorus insensitive 4 and WT Arabidopsis reveals an important role of reactive oxygen species and jasmonic acid in the root tip response to phosphate starvation. Plant Signaling & Behavior 6: 382-392.
    Cheng WH, Endo A, Zhou L, Penney J, Chen HC, Arroyo A, Leon P, Nambara E, Asami T, Seo M, Koshiba T, Sheen J.2002. A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. The Plant Cell 14: 2723-2743.
    Cheng L, Bucciarelli B, Liu J, Zinn K, Miller S, Patton-Vogt J, Vance CP.2011. White lupin cluster root acclimation to psphorus deficiency and root hair development involve unique glycerophosphodiester phosphodiesterases. Plant Physiology 156:1131-1148.
    Cheng W, Johnson DW.1998. Elevated CO2, rhizosphere processes, and soil organic matter decomposition. Plant and Soil 202:167-174.
    Chevalier F, Pata M, Nacry P, Doumas P, Rossignol M.2003. Effects of phosphate availability on the root system architecture:large-scale analysis of the natural variation between Arabidopsis accessions. Plant, Cell and Environment 26:1839-1850.
    Chiou TJ, Lin SI.2011. Signaling network in sensing phosphate availability in plants. Annual Review of Plant Biology 62:185-206.
    Cho HT, Cosgrove DJ.2002. Regulation of root hair initiation and expansin gene expression in Arabidopsis. The Plant Cell 14:3237-3253.
    Chrispeels MJ, Crawford NM, Schroeder JI. 1999. Proteins for transport of water and mineral nutrients across the membranes of plant cells. The Plant Cell 11:661-675.
    Cleland R, Fujiwara T, Lucas W.1994. Plasmodesmal-mediated cell-to-cell transport in wheat roots is modulated by anaerobic stress. Protoplasma 178:81-85.
    Cline MG.1994. The role of hormones in apical dominance. New approaches to an old problem in
    plant development. Physiologia Plantarum 90:230-237.
    Cline MG.2006. The role of hormones in apical dominance. New approaches to an old problem in plant development. Physiologia Plantarum 90:230-237.
    Conroy JP, Milham PJ, Barlow EWR.1992. Effect of nitrogen and phosphorus availability on the growth response of Eucalyptus grandisto high CO2. Plant, Cell and Environment 15: 843-847.
    Conroy JP, Milham PJ, Reed ML, Barlow EWR.1990. Increases in phosphorus requirements for CO2-enriched Pine species. Plant Physiology 92:977-982.
    Corpas FJ, Barroso JB, Carreras A, Valderrama R, Palma JM, Leon AM, Sandalio LM, del Rio LA.2006. Constitutive arginine-dependent nitric oxide synthase activity in different organs of pea seedlings during plant development. Planta 224:246-254.
    Costa S, Shaw P.2006. Chromatin organization and cell fate switch respond to positional information in Arabidopsis. Nature 439:493-496.
    Cotrufo MF, Ineson P, Scott A.1998. Elevated CO2 reduces the nitrogen concentration of plant tissues. Global Change Biology 4:43-54.
    Cowan JA.2002. Structural and catalytic chemistry of magnesium-dependent enzymes. Biometals 15:225-235.
    Crawford NM.2004. Genomic analysis of the nitrate response using a nitrate reductase-null mutant of Arabidopsis. Plant Physiology 136:2512-2522.
    Crookshanks M, Taylor G.1996. Arabidopsis thaliana:a model system to study the effects of elevated CO2 on tree root growth. Journal of Experimental Botany 47:39.
    Curtis PS, Balduman LM, Drake BG, Whigham DF.1990. Elevated atmospheric CO2 effects on belowground processes in C3 and C4 estuarine marsh communities. Ecology 2001-2006.
    Curtis PS, Wang X.1998. A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology. Oecologia 113:299-313.
    Dai XY, Wang YY, Yang A, Zhang WH.2012. OsMYB2P-1, an R2R3 MYB transcription factor, is involved in the regulation of phosphate-starvation responses and root architecture in rice. Plant Physiology 159:169-183.
    Datta S, Kim CM, Pernas M, Pires ND, Proust H, Tam T, Dolan L.2011. Root hairs: development, growth and evolution at the plant-soil interface. Plant and Soil 346:1-14.
    Day FP, Weber EP, Hinkle C, Drake BG.1996. Effects of elevated atmospheric CO2 on fine root length and distribution in an oak-palmetto scrub ecosystem in central Florida. Global Change Biology 2:143-148.
    Del Castillo D, Acock B, Reddy V, Acock M.1989. Elongation and branching of roots on soybean plants in a carbon dioxide-enriched aerial environment. Agronomy Journal 81: 692-695.
    DeLucia E, Callaway R, Thomas E, Schlesinger W.1997. Mechanisms of phosphorus acquisition for ponderosa pine seedlings under high CO2 and temperature. Annals of Botany 79:111-120.
    Desbrosses G, Josefsson C, Rigas S, Hatzopoulos P, Dolan L.2003. AKT1 and TRH1 are required during root hair elongation in Arabidopsis. Journal of Experimental Botany 54: 781-788.
    Desnos T.2008. Root branching responses to phosphate and nitrate. Current Opinion in Plant Biology 11:82-87.
    Devaiah BN, Karthikeyan AS, Raghothama KG.2007a. WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis. Plant Physiology 143:1789-1801.
    Devaiah BN, Nagarajan VK, Raghothama KG.2007b. Phosphate homeostasis and root development in Arabidopsis are synchronized by the zinc finger transcription factor ZAT6. Plant Physiology 145:147-159.
    Diaz S, Grime J, Harris J, McPherson E.1993. Evidence of a feedback mechanism limiting plant response to elevated carbon dioxide. Nature 364:616-617.
    Diet A, Brunner S, Ringli C.2004. The ew/mutants enhance the lrx root hair mutant phenotype of Arabidopsis thaliana. Plant and Cell Physiology 45:734-741.
    Dilustro JJ, Day FP, Drake BG, Hinkle CR.2002. Abundance, production and mortality of fine roots under elevated atmospheric CO2 in an oak-scrub ecosystem. Environmental and Experimental Botany 48:149-159.
    Dinkelaker B, Hengeler C, Marschner H.1995. Distribution and function of proteoid roots and other root clusters. BotanicaActa 108:183-200.
    Dobbelaere S, Vanderleyden J, Okon Y.2003. Plant growth-promoting effects of diazotrophs in the rhizosphere. Critical Reviews in Plant Sciences 22:107-149.
    Dolan L, Duckett MD, Grierson C, Linstead P, Schneider K, Lawson E, Dean C, Poethig S, Roberts K.1994. Clonal relationships and cell patterning in the root epidermis of Arabidopsis. Development 120:2465-2474.
    Dolan L, Janmaat K, Willemsen V, Linstead P, Poethig S, Roberts K, Scheres B.1993. Cellular organisation of the Arabidopsis thaliana root. Development 119:71-84.
    Dolan L.2001. The role of ethylene in root hair growth in Arabidopsis. Journal of Plant Nutrition and Soil Science 164:141-145.
    DolanL.2006. Positional information and mobile transcriptional regulators determine cell pattern in the Arabidopsis root epidermis. Journal of Experimental Botany 57:51-54.
    Dong B, Rengel Z, Delhaize E.1998. Uptake and translocation of phosphate by pho2 mutant and wild-type seedlings of Arabidopsis thaliana. Planta 205:251-256.
    Drake BG, Gonzalez-Meler MA, Long SP.1997. More efficient plants:a consequence of rising atmospheric CO2? Annual Review of Plant Physiology and Plant Molecular Biology 48: 609-639.
    Du Z, Zhou X, Ling Y, Zhang ZH, Su Z.2010. agriGO:a GO analysis toolkit for the agricultural community. Nucleic Acids Research 38:W64-W70.
    Duckett CM, Oparka KJ, Prior DAM, Dolan L, Roberts K.1994. Dye-coupling in the root epidermis of Arabidopsis is progressively reduced during development. Development 120: 3247-3255.
    Eissenstat D, Wells C, Yanai R, Whitbeck J.2000. Building roots in a changing environment: implications for root longevity. New Phytologist 147:33-42.
    Fan JL, Wei XZ, Wan LC, Zhang LY, Zhao XQ, Liu WZ, Hao HQ, Zhang HY.2011. Disarrangement of actin filaments and Ca2+ gradient by CdCl2 alters cell wall construction in Arabidopsis thaliana root hairs by inhibiting vesicular trafficking. Journal of Plant Physiology 168:1157-1167.
    Fajer ED, Bowers MD, Bazzaz FA.1991. The effect of nutrients and enriched CO2 environment on production of carbon-based allelochemicals in plantago:A test of the carbon/nutrient balance hypothesis. The American Naturalist 140:707-723.
    Farrar JF, Williams ML.1991. The effects of increased atmospheric carbon dioxide and temperature on carbon partitioning, source-sink relations and respiration. Plant, Cell and Environment 14:819-830.
    Favery B, Ryan E, Foreman J, Linstead P, Boudonck K, Steer M, Shaw P, Dolan L.2001. KOJAK encodes a cellulose synthase-like protein required for root hair cell morphogenesis in Arabidopsis. Genes and Development 15:79-89.
    Felle HH, Hepler PK.1997. The cytosolic Ca2+ concentration gradient of Sinapis alba root hairs as revealed by Ca2+-selective microelectrode tests and fura-dextran ratio imaging. Plant Physiology 114:39-45.
    Ferris R, Sabatti M, Miglietta F, Mills R, Taylor G.2001. Leaf area is stimulated in Populus by free air CO2 enrichment (POPFACE), through increased cell expansion and production. Plant, Cell and Environment 24:305-315.
    Ferris R, Taylor G.1994. Increased root growth in elevated CO2:a biophysical analysis of root cell elongation. Journal of Experimental Botany 45:1603-1612.
    Fiorani F, Umbach AL, Siedow JN.2005. The alternative oxidase of plant mitochondria is involved in the acclimation of shoot growth at low temperature. A study of Arabidopsis AOX1 a transgenic plants. Plant Physiology 139:1795-1805.
    Fischer U, Ikeda Y, Ljung K, Serralbo O, Singh M, Heidstra R, Palme K, Scheres B, Grebe M.2006. Vectorial information for Arabidopsis planar polarity is mediated by combined AUX1, EIN2, and GNOM activity. Current Biology 16:2143-2149.
    Fitter AH.1996. Characteristics and functions of root systems. In:Waisel Y, Eshel A, Kafkafi U (eds). Plant roots:the hidden half. New York, USA:Marcel Dekker.1-20.
    Foehse D, Jungk A.1983. Influence of phosphate and nitrate supply on root hair formation of rape, spinach and tomato plants. Plant and Soil 74:359-368.
    Fohse D, Claassen N, Jungk A.1991. Phosphorus efficiency of plants. Plant and Soil 132: 261-272.
    Foreman J, Demidchik V, Bothwell JHF, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JDG, Davies JM, Dolan L.2003. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature A22:442-446.
    Foreman J, Demidchik V, Bothwell JH, Mylona P, Miedema H, Torres MA, Dolan L.2003. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442-446.
    Foreman J, Dolan L.2001. Root hairs as a model system for studying plant cell growth. Annals of Botany 88:1-7.
    Frahry G, Schopfer P.1998. Inhibition of O2-reducing activity of horseradish peroxidase by diphenyleneiodonium. Phytochemistry 48:223-227.
    Francis D.1992. The cell cycle in plant development. New Phytologist 122:1-22.
    Franco-Zorrilla JM, Martin AC, Leyva A, Paz-Ares JP.2005. Interaction between phosphate-starvation, sugar, and cytokinin signaling in Arabidopsis and the roles of cytokinin receptors CRE1/AHK4 and AHK3. Plant Physiology 138:847-857.
    Franco-Zorrilla JM, Martin AC, Solano R, Rubio V, Leyva A, Paz-Ares J.2002. Mutations at CRE1 impair cytokinin-induced repression of phosphate starvation responses in Arabidopsis. The Plant Journal 32:353-360.
    Friedlingstein P, Solomon S.2005. Contributions of past and present human generations to committed warming caused by carbon dioxide. Proceedings of the National Academy of Sciences of the United States of America 102:10832-10836.
    Gahoonia TS, Nielsen NE, Joshi PA, Jahoor A.2001. A root hairless barley mutant for elucidating genetic of root hairs and phosphorus uptake. Plant and Soil 235:211-219.
    Gahoonia TS, Nielsen NE, Lyshede OB.1999. Phosphorus (P) acquisition of cereal cultivars in the field at three levels of P fertilization. Plant and Soil 211:269-281.
    Gahoonia TS, Nielsen NE.2004. Barley genotypes with long root hairs sustain high grain yields in low-P field. Plant and Soil 262:55-62.
    Galway ME, Lane DC, Schiefelbein JW.1999. Defective control of growth rate and cell diameter in tip growing root hairs of the rhd4 mutant of Arabidopsis thaliana. Canadian Journal of Botany 77:494-507.
    Galway ME, Masucci JD, Lloyd AM, Walbot V, Davis RW, Schiefelbein JW.1994. The TTG gene is required to specify epidermal cell fate and cell patterning in the Arabidopsis root. Developmental Biology 166:740-754.
    Gan YB, Kumimoto R, Liu C, Ratcliffe O, Yu H, Broun P.2006. GLABROUS INFLORESCENCE STEMS modulates the regulation by gibberellins of epidermal differentiation and shoot maturation in Arabidopsis. The Plant Cell 18:1383-1395.
    Gibeaut DM, Cramer GR, Seemann JR.2001. Growth, cell walls, and UDP-Glc dehydrogenase activity of Arabidopsis thaliana grown in elevated carbon dioxide. Journal of Plant Physiology 158:569-576.
    Gilbert GA, Knight JD, Vance CP, Allan DL.2000. Proteoid root development of phosphorus deficient lupin is mimicked by auxin and phosphonate. Annals of Botany 85:921-928.
    Gilroy S, Jones DL.2000. Through form to function:root hair development and nutrient uptake. Trends in Plant Science 5:56-60.
    Gapper C, Dolan L.2006. Control of plant development by reactive oxygen species. Plant Physiology 141:341-345.
    Gojon A, Dapoigny L, Lejay L, Tillard P, Rufty TW.1998. Effects of genetic modification of nitrate reductase expression on 15NO3- uptake and reduction in Nicotiana plants. Plant, Cell and Environment 21:43-53.
    Gonzalez E, Solano R, Rubio V, Leyva A, Paz-Ares J.2005. PHOSPHATE TRANSPORTER TRAFFIC FACILITATOR1 is a plant-specific SEC 12-related protein that enables the endoplasmic reticulum exit of a high-affinity phosphate transporter in Arabidopsis. The Plant Cell 17:3500-3511.
    Gorissen A, Cotrufo M.2000. Decomposition of leaf and root tissue of three perennial grass species grown at two levels of atmospheric CO2 and N supply. Plant and Soil 224:75-84.
    Grebe M, Friml J, Swarup R, Ljung K, Sandberg G, Terlou M, Palme K, Bennett MJ, Scheres B.2002. Cell polarity signaling in Arabidopsis involves a BFA-sensitive auxin influx pathway. Current Biology 12:329-334.
    Grierson C, Schiefelbein J.2002. Root hairs. The Arabidopsis Book, doi:10.1199/tab.0060.
    Grierson CS, Schiefelbein JW.2009. Genetics of root hair formation. Plant Cell Monographs 12: 1-25.
    Grierson C, Schiefelbein J.2002. Root hairs. The Arabidopsis Book/American Society of Plant Biologists 1.
    Gunderson C, Norby R, Wullschleger S.2006. Foliar gas exchange responses of two deciduous hardwoods during 3 years of growth in elevated CO2:no loss of photosynthetic enhancement. Plant, Cell and Environment 16:797-807.
    Gunes A, Inal A, Aktas M.1996. Reducing nitrate content of NFT grown winter onion plants(Allium cepa L.) by partial replacement of NO3- with amino acid in nutrient solution. Scientia Horticulturae 65:203-208.
    Guo FQ, Okamoto M, Crawford NM.2003. Identification of a plant nitric oxide synthase gene involved in hormonal signaling. Science 302:100-103.
    Hattenschwiler ST, Korner C.2000. Tree seedling responses to in situ CO2-enrichment differ among species and depend on understorey light availability. Global Change Biology 6: 213-226.
    Hamburger D, Rezzonico E, Petetot JMC, Somerville C, Poirier Y.2002. Identification and characterization of the Arabidopsis PHO1 gene involved in phosphate loading to the xylem. The Plant Cell 14:889-902.
    Hammond JP, White PJ.2011. Sugar signaling in root responses to low phosphorus availability. Plant Physiology 156:1033-1040.
    Hansen J, Sato M.2004. Greenhouse gas growth rates. Proceedings of the National Academy of Sciences of the United States of America 101:16109-16114.
    Hanson P, Edwards N, Garten C, Andrews J.2000. Separating root and soil microbial contributions to soil respiration:a review of methods and observations. Biogeochemistry 48: 115-146.
    Havir EA, McHale NA.1989. Regulation of catalase activity in leaves of Nicotiana sylvestris by high CO2. Plant Physiology 89:952-957.
    Hemsley PA, Kemp AC, Grierson CS.2005. The TIP GROWTH DEFECTIVE1 S-acyl transferase regulates plant cell growth in Arabidopsis. The Plant Cell 17:2554-2563.
    Hermans C, Hammond JP, White PJ, Verbruggen N.2006. How do plants respond to nutrient shortage by biomass allocation? Trend in Plant Science 11:610-615.
    Hermans C, Vuylsteke M, Coppens F, Craciun A, Inze D, Verbruggen N.2010a. Early transcriptomic changes induced by magnesium deficiency in Arabidopsis thaliana reveal the alteration of circadian clock gene expression in roots and the triggering of abscisic acid-responsive genes. New Phytologist 187:119-131.
    Hermans C, Vuylsteke M, Coppens F, Cristescu SM, Harren FJM, Inze D, Verbruggen N. 2010b. Systems analysis of the responses to long-term magnesium deficiency and restoration in Arabidopsis thaliana. New Phytologist 187:132-144.
    Herrmann A, Felle HH.1995. Tip growth in root hair cells of Sinapis alba L.:significance of internal and external Ca2+ and pH. New Phytologist 129:523-533.
    Hinsinger P, Plassard C, Tang CX, Jaillard B.2003. Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints:a review. Plant and Soil 248:43-59.
    Hirschi KD.2004. The calcium conundrum. Both versatile nutrient and specific signal. Plant Physiology 136:2438-2442.
    Ho MD, McCannon BC, Lynch JP.2004. Optimization modeling of plant root architecture for water and phosphorus acquisition. Journal of Theoretical Biology 226:331-340.
    Hoagland D, Arnon D.1938. Nutrient solutions for hydroponic culture. University of California Agricultural Experiment Station Circular No.347.
    Hoagland DR, Arnon DI.1938. The water-culture method for growing plants without soil. Circ. 347 (University of California, College of Agriculture:Berkeley, CA.)
    Hobbie L, Estelle M.1995. The axr4 auxin-resistant mutants of Arabidopsis thaliana define a gene important for root gravitropism and lateral root initiation. The Plant Journal 7:211-220.
    Hochholdinger F, Woll K, Sauer M, Dembinsky D.2004. Genetic dissection of root formation in maize(Zea mays) reveals root-type specific developmental programmes. Annals of Botany 93:359-368.
    Hocking P, Meyer C.1991. Effects of CO2 enrichment and nitrogen stress on growth, and partitioning of dry matter and nitrogen in wheat and maize. Functional Plant Biology 18: 339-356.
    Hodge A, Berta G, Doussan C, Merchan F, Crespi M.2009. Plant root growth, architecture and function. Plant and Soil 321:153-187.
    Hodge A, Paterson E, Grayston SJ, Campbell CD, Ord BG, Killham K.1998. Characterisation and microbial utilisation of exudate material from the rhizosphere of Lolium perenne grown under CO2 enrichment. Soil Biology and Biochemistry 30:1033-1043.
    Hodges DM, DeLong JM, Forney CF, Prange RK.1999. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604-611.
    Hegh-Jensen H, Pedersen MB.2003. Morphological plasticity by crop plants and their potassium use efficiency. Journal of Plant Nutrition 26:969-984.
    Holdaway-Clarke TL, Walker NA, Hepler PK, Overall RL.2000. Physiological elevations in cytoplasmic free calcium by cold or ion injection result in transient closure of higher plant plasmodesmata. Planta 210:329-335.
    Horgan JM, Wareing PF.1980. Cytokinins and the growth responses of seedlings of Betula pendula Roth, and Acer pseudoplatanus L. to nitrogen and phosphorus deficiency. Journal of Experimental Botany 31:525-532.
    Hortensteiner S.2009. Stay-green regulates chlorophyll and chlorophyll-binding protein degradation during senescence. Trends in Plant Science 14:155-162.
    Houghton JT, Meira-Filho LG, Callander BA, Harris N, Kattenberg A, Maskell K.1997. Climate Change 1995, The Science of Climate Change. Journal of Atmospheric Chemistry 27:105-106.
    Hu B, Zhu C, Li F, Tang J, Wang Y, Lin A, Chu C.2011. LEAF TIP NECROSIS] plays a pivotal role in the regulation of multiple phosphate starvation responses in rice. Plant Physiology 156:1101-1115.
    Hu Y, Zhong R, Morrison H, Ye ZH.2003. The ArabidopsisRHD3 gene is required for cell wall biosynthesis and actin organization. Planta 217:912-921.
    Huber SC, Huber JL.1992. Role of sucrose-phosphate synthase in sucrose metabolism in leaves. Plant Physiology 99:1275-1278.
    Huber SC.1983. Relation between photosynthetic starch formation and dry-weight partitioning between the shoot and root. Canadian Journal of Botany 61:2709-2716.
    Hung CY, Lin Y, Zhang M, Pollock S, Marks MD, Schiefelbein J.1998. A common position-dependent mechanism controls cell-type patterning and GLABRA2 regulation in the root and hypocotyl epidermis of Arabidopsis. Plant Physiology 117:73-84.
    Hungate.BA, Holland EA, Jackson RB, Chapin FS, Mooney HA, Field CB.1997. The fate of carbon in grasslands under carbon dioxide enrichment. Nature 388:576-579.
    Igamberdiev..AU,. Kleczkowski LA.2001. Implications of adenylate kinase-governed equilibrium of adenylates on contents of free magnesium in plant cells and compartments. Biochemical Journal 360:225-231.
    IPCC.2001. Climate Change. Cambridge University Press, UK.752pp.
    IPCC.2007. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Climate Change The Physical Science Basis Summary for Policymakers.21pp. (http://www.ipcc.ch).
    Ishida T, Kurata T, Okada K, Wada T.2008. A genetic regulatory network in the development of trichomes and root hairs. Annual Review of Plant Biology 59:365-386.
    Israel DW, Rufty Jr TW, Cure JD.1990. Nitrogen and phosphorus nutritional interactions in a CO2 enriched environment. Journal of Plant Nutrition 13:1419-1433.
    Itoh S, Barber S.1983. Phosphorus uptake by six plant species as related to root hairs. Agronomy Journal 75:457-461.
    Igamberdiev AU, Kleczkowski LA.2001. Implications of adenylate kinase-governed equilibrium of adenylates on contents of free magnesium in plant cells and compartments. Biochemical Journal 360:225-231.
    Jackson R, Sala O, Field C, Mooney H.1994. CO2 alters water use, carbon gain, and yield for the dominant species in a natural grassland. Oecologia 98:257-262.
    Jain A, Poling MD, Karthikeyan AS, Blakeslee JJ, Peer WA, Titapiwatanakun B, Murphy AS, Raghothama KG.2007. Differential effects of sucrose and auxin on localized phosphate deficiency-induced modulation of different traits of root system architecture in Arabidopsis. Plant Physiology 144:232-247.
    Janssens IA, Crookshanks M, Taylor G, Ceulemans R.1998. Elevated atmospheric CO2 increases fine root production, respiration, rhizosphere respiration and soil CO2 efflux in Scots pine seedlings. Global Change Biology 4:871-878.
    Jiang CF, Gao X, Liao L, Harberd NP, Fu XD.2007. Phosphate starvation root architecture and anthocyanin accumulation responses are modulated by the gibberellin-DELLA signaling pathway in Arabidopsis. Plant Physiology 145:1460-1470.
    Jiang K, Feldman LJ.2003. Root meristem establishment and maintenance:the role of auxin. Journal of Plant Growth Regulation 21:432-440.
    Jin CW, Du ST, Chen WW, Li GX, Zhang YS, Zheng SJ.2009. Elevated carbon dioxide improves plant iron nutrition through enhancing the iron-deficiency-induced responses under iron-limited conditions in tomato. Plant Physiology 150:272-280.
    Jin CW, Du ST, Shamsi IR, Luo BF, Lin XY.2011. NO synthase-generated NO acts downstream of auxin in regulating Fe-deficiency induced root branching that enhances Fe-deficiency tolerance in tomato plants. Journal of Experimental Botany 62:3875-3884.
    Jin CW, You GY, He YF, Tang C, Wu P, Zheng SJ.2007. Iron deficiency-induced secretion of phenolics facilitates the reutilization of root apoplastic iron in red clover. Plant Physiology 144:278-285.
    Jin J, Tang CX, Armstrong R, Sale P.2012. Phosphorus supply enhances the response of legumes to elevated CO2 (FACE) in a phosphorus-deficient Vertisol. Plant and Soil 358: 86-99.
    Jing J, Rui Y, Zhang F, Rengel Z, Shen J.2010. Localized application of phosphorus and ammonium improves growth of maize seedlings by stimulating root proliferation and rhizosphere acidification. Field Crops Research 119:355-364.
    Johnson JF, Vance CP, Allan DL.1996. Phosphorus deficiency in Lupinus albus (altered lateral root development and enhanced expression of phosphoenolpyruvate carboxylase). Plant Physiology 112:31-41.
    Johnson RH, Lincoln DE.1990. Sagebrush and grasshopper responses to atmospheric carbon dioxide concentration. Oecologla 84:103-110.
    Johnson RH, Lincoln DE.1991. Sagebrush carbon allocation patterns and grasshopper nutrition: the influence of CO2 enrichment and soil mineral limitation. Oecologla 87:127-134
    Jones M, Raymond MJ, Smirnoff N.2006. Analysis of the root hair morphogenesis transcriptome reveals the molecular identity of six genes with roles in root hair development in Arabidopsis. The Plant Journal 45:83-100.
    Jones MA, Raymond MJ, Yang ZB, Smirnoff N.2007. NADPH oxidase-dependent reactive oxygen species formation required for root hair growth depends on ROP GTPase. Journal of Experimental Botany 58:1261-1270.
    Jones MA, Shen JJ, Fu Y, Li H, Yang ZB, Grierson CS.2002. The ArabidopsisRop2 GTPase is a positive regulator of both root hair initiation and tip growth. Plant Cell 14:763-776.
    Jones DL, Nguyen C, Finlay RD.2009. Carbon flow in the rhizosphere:carbon trading at the soil-root interface. Plant and Soil 321:5-33.
    Jongen M, Fay P, Jones MB.2006. Effects of elevated carbon dioxide and arbuscular mycorrhizal infection on Trifolium repens. New Phytologist 132:413-423.
    Jongen M, Jones MB, Hebeisen T, Blum H, Hendrey G.1995. The effects of elevated CO2 concentrations on the root growth of Lolium perenne and Trifolium repens grown in a FACE system. Global Change Biology 1:361-371.
    Jungk A.2001. Root hairs and the acquisition of plant nutrients from soil. Journal of Plant Nutrition and Soil Science 164:121-129.
    Kadota Y, Goh T, Tomatsu H, Tamauchi R, Higashi K, Muto S, Kuchitsu K.2004. Cryptogein-induced initial events in tobacco BY-2 cells:pharmacological characterization of molecular relationship among cytosolic Ca2+ transients, anion efflux and production of reactive oxygen species. Plant and Cell Physiology 45:160-170.
    Kwak J M, Mori I C, Pei Z M, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JDG, Schroeder JI.2003. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. The EMBO Journal 22:2623-2633.
    Kal AJ, van Zonneveld AJ, Benes V, van den Berg M, Koerkamp MG, Albermann K, Strack N, Ruijter JM, Richter A, Dujon B.1999. Dynamics of gene expression revealed by comparison of serial analysis of gene expression transcript profiles from yeast grown on two different carbon sources. Molecular Biology of the Cell 10:1859-1872.
    Kadota Y, Goh T,Tomatsu H, Tamauchi R, Higashi K, Muto S, Kuchitsu K.2004. Cryptogein-induced initial event s in tobacco BY-2 cells:pharmacological characterization of molecular relationship among cytosolic Ca2+ transients, anion efflux and production of reactive oxygen species. Plant and Cell Physiology 45:160-170.
    Karthikeyan AS, Varadarajan DK, Jain A, Held MA, Carpita NC, Raghothama KG.2007. Phosphate starvation responses are mediated by sugar signaling in Arabidopsis. Planta 225: 907-918.
    Keerthisinghe G, Hocking PJ, Ryan PR, Delhaize E.1998. Effect of phosphorus supply on the formation and function of proteoid roots of white lupin(Lupinus albus L.). Plant, Cell and Environment 21:467-478.
    Ketelaar T, Faivre-Moskalenko C, Esseling JJ, de Ruijter NC, Grierson CS, Dogterom M, Emons AMC.2002. Positioning of nuclei in Arabidopsis root hairs:an actin-regulated process of tip growth. Science Signaling 14:2941.
    Keller T, Damude H G,Werner D, Werner D, Doerner P, Dixon RA, Lamb C.1998. A plant homolog of the neutrophil NADPH-oxidase gp91phox subunit gene encodes a plasma membrane protein with Ca2+ binding motifs. The Plant Cell,2:255-266.
    Kilpelainen A, Peltola H, Ryyppo A, Sauvala K, Laitinen K, Kellomaki S.2003. Wood properties of Scots pines (Pinus sylvestris) grown at elevated temperature and carbon dioxide concentration. Tree Physiology 23:889-897.
    Kim H, Lieffering M, Miura S, Kobayashi K, Okada M.2001. Growth and nitrogen uptake of CO2-enriched rice under field conditions. New Phytologist 150:223-229.
    Kim H J, Lynch JP, Brown KM.2008. Ethylene insensitivity impedes a subset of responses to phosphorus deficiency in tomato and petunia. Plant, Cell and Environment 31:1744-1755.
    Kim SA, Punshon T, Lanzirotti A, Li L, Alonso JM, Ecker JR, Kaplan J, Guerinot ML. 2006. Localization of iron in Arabidopsis seed requires the vacuolar membrane transporter VIT1.Science 314:1295-1298.
    Kimball B, Kobayashi K, Bindi M.2002. Responses of agricultural crops to free-air CO2 enrichment. Advances in Agronomy 77:293-368.
    King JS, Thomas RB, Strain BR.1996. Growth and carbon accumulation in root systems of Pinus taeda and Pinus ponderosaseedlings as affected by varying CO2, temperature and nitrogen. Tree Physiology 16:635-642.
    Knox K, Grierson CS, Leyser O.2003. AXR3 and SHY2 interact to regulate root hair development. Development 130:5769-5777.
    Knight H.2000. Calcium signaling during abiotic stress in plants. International Review of Cytology-a Survey of Cell Biology 195:269-324.
    Kogawara S, Norisada M, Tange T, Yagi H, Kojima K.2006. Elevated atmospheric CO2 concentration alters the effect of phosphate supply on growth of Japanese red pine (Pinus densiflora) seedlings. Tree Physiology 26:25-33.
    Korner C, Arnone JA.1992. Responses to elevated carbon dioxide in artificial tropical ecosystems. Science 257:1672-1675.
    Koshino-Kimura Y, Wada T, Tachibana T, Tsugeki R, Ishiguro S, Okada K.2005. Regulation of CAPRICE transcription by MYB proteins for root epidermis differentiation in Arabidopsis. Plant and Cell Physiology 46:817-826.
    Kouas S, Debez A, Slatni T, Labidi N, Drevon JJ, Abdelly C.2009. Root proliferation, proton efflux, and acid phosphatase activity in common bean (Phaseolus vulgaris) under phosphorus shortage. Journal of Plant Biology 52:395-402.
    Kramer EM, Bennett MJ.2006. Auxin transport:a field in flux. Trends in Plant Science 11: 382-386.
    Kuehny JS, Peet MM, Nelson Willits DANH.1991. Nutrient dilution by starch in CO2-enriched Chrysanthemum. Journal of Experimental Botany 42:711-716.
    Kuiper D, Schuit J, Kuiper PJC.1988. Effects of internal and external cytokinin concentrations on root growth and shoot to root ratio of Plantago major ssp Pleiosperma at different nutrient conditions. Plant and Soil 111:231-236.
    Kurata T, Ishida T, Kawabata-Awai C, Noguchi M, Hattori S, Sano R, Nagasaka R, Tominaga R, Koshino-Kimura Y, Kato T, Sato S, Tabata S, Okada K, Wada T.2005. Cell-to-cell movement of the CAPRICE protein in Arabidopsis root epidermal cell differentiation. Development 132:5387-5398.
    Kurusu T, Yagala T, Miyao A, Hirochika H, Kuchitsu K.2005. Identification of a putative voltage-gated Ca2+ channel as a key regulator oL elcitor induced hypersensitive cell death and mitogen-activated protein kinase activation in rice. The Plant Journal 42:798-809.
    Kwak SH, Shen R, Schiefelbein J.2005. Positional signaling mediated by a receptor-like kinase in Arabidopsis. Science 307:1111-1113.
    Kwasniewski M, Nowakowska U, Szumera J, Chwialkowska K, Szarejko I.2013. iRootHair: a comprehensive root hair genomics database. Plant Physiology 161:28-35.
    Lagomarsino A, Moscatelli MC, Hoosbeek MR, De Angelis P, Grego S.2008. Assessment of soil nitrogen and phosphorous availability under elevated CO2 and N-fertilization in a short rotation poplar plantation. Plant and Soil 308:131-147.
    Lai F, Thacker J, Li YY, Doerner P.2007. Cell division activity determines the magnitude of phosphate starvation responses in Arabidopsis. The Plant Journal 50:545-556.
    Laloi C, Apel K, Danon A.2004. Reactive oxygen signalling:the latest news. Current Opinion in Plant Biology 7:323-328.
    Lambers H, Finnegan PM, Laliberte E, Pearse SJ, Ryan MH, Shane MW, Veneklaas EJ. 2011. Phosphorus nutrition of proteaceae in severely phosphorus-impoverished soils:are there lessons to be learned for future crops? Plant Physiology 156:1058-1066.
    Lambers H, Shane MW, Cramer MD, Pearse SJ, Veneklaas EJ.2006. Root structure and functioning for efficient acquisition of phosphorus:matching morphological and physiological traits. Annals of Botany 98:693-713.
    Lambers H, Raven JA, Shaver G R, Smith SE.2008. Plant nutrient-acquisition strategies change with soil age. Trends in Ecology & Evolution 23:95-103.
    Laplaze L, Benkova E, Casimiro I, Maes L, Vanneste S, Swarup R, Bennett M.2007. Cytokinins act directly on lateral root founder cells to inhibit root initiation. The Plant Cell 19:3889-3900.
    Leavitt RG.1904. Trichomes of the root in vascular cryptogams and angiosperms. Proceedings of the Boston Society of Natural History 31:273-313.
    Lee MM, Schiefelbein J.1999. WEREWOLF, a MYB-related protein in Arabidopsis, is a position-dependent regulator of epidermal cell patterning. Cell 99:473-483.
    Lee MM, Schiefelbein J.2002. Cell pattern in the Arabidopsis root epidermis determined by lateral inhibition with feedback. The Plant Cell 14:611-618.
    Lei M, Liu Y, Zhang B, Zhao Y, Wang X, Zhou Y, Liu D.2011. Genetic and genomic evidence that sucrose is a global regulator of plant responses to phosphate starvation in Arabidopsis. Plant Physiology 156:1116-1130.
    Lejay L, Gansel X, Cerezo M, Tillard P, Miiller C, Krapp A, Von Wiren N, Daniel-Vedele F, Gojon A.2003. Regulation of root ion transporters by photosynthesis:functional importance and relation with hexokinase. The Plant Cell 15:2218-2232.
    Leon P, Sheen J.2003. Sugar and hormone connections. Trends in Plant Science 8:110-116.
    Lewis JD, Lucash M, Olszyk, DM, Tingey DT.2004. Relationships between needle nitrogen concentration and photosynthetic responses of Douglas-fir seedlings to elevated CO2 and temperature. New Phytologist 162:355-364.
    Li C, Gan L, Xia K, Zhou X, Hew C.2008. Responses of carboxylating enzymes, sucrose metabolizing enzymes and plant hormones in a tropical epiphytic CAM orchid to CO2 enrichment. Plant, Cell and Environment 25:369-377.
    Li F, Kang S, Zhang J, Cohen S.2003. Effects of atmospheric CO2 enrichment, water status and applied nitrogen on water-and nitrogen-use efficiencies of wheat. Plant and Soil 254: 279-289.
    Li FS, Kang SZ.2002. Effects of atmospheric CO2 enrichment, applied nitrogen and soil moisture on dry matter accumulation and nitrogen uptake in spring wheat. Pedosphere 12: 207-218.
    Li MY, Qin CB, Welti R, Wang XM.2006. Double knockouts of phospholipases Dζ1 and Dζ2 in Arabidopsis affect root elongation during phosphate-limited growth but do not affect root hair patterning. Plant Physiology 140:761-770.
    Liao Y, Tie H, Li WC.2005. Detection of allelic diversity of QTLs with closed triangle cross populations. Molecular Plant Breeding 3:269-274.
    Lilley RM, Holborow K, Walker DA.1974. Magnesium activation of photosynthetic CO2-fixation in a reconstituted chloroplast system. New Phytologist 73:657-662.
    Lin WH, Zhang FS, Bai KZ.2000. Responses of plant rhizosphere to atmospheric CO2 enrichment. Chinese Science Bulletin 45:97-101.
    Lindzen RS.1997. Can increasing carbon dioxide cause climate change? Proceedings of the National Academy of Sciences of the United States of America 94:8335-8342.
    Linkohr BI, Williamson LC, Fitter AH, Leyser HMO.2002. Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis. The Plant Journal 29:751-760.
    Liszkay A, Van Der Zalm E, Schopfer P.2004. Production of reactive oxygen intermediates (O2-, H2O2, and OH) by maize roots and their role in wall loosening and elongation growth. Plant Physiology 136:3114-3123.
    Liu JQ, Samac DA, Bucciarelli B, Allan DL, Vance CP.2005. Signaling of phosphorus deficiency-induced gene expression in white lupin requires sugar and phloem transport. The Plant Journal 41:257-268.
    Lopez-Bucio J, Hernandez-Abreu E, Sanchez-Calderon L.2005. An auxin transport independent pathway is involved in phosphate stress-induced root architectural alterations in. Arabidopsis. Identification of BIG as a mediator of auxin in pericycle cell activation. Plant Physiology 137:681-691.
    Long SP, Drake BG.1991. Effect of the long-term elevation of CO2 concentration in the field on the quantum yield of photosynthesis of the C3 sedge, Scirpus olneyi. Plant Physiology 96: 221-226.
    Long SP, Ainsworth EA. Rogers A, Ort DR.2004. Rising atmospheric carbon dioxide:Plants FACE the future. Annual Review of Plant Biology 55:591-628.
    Luo BF, Du ST, Lu KX, Liu WJ, Lin XY, Jin CW.2012. Iron uptake system mediates nitrate-facilitated cadmium accumulation in tomato (Solanumlycopersicum) plants. Journal of Experimental Botany 63:3127-3136.
    Luomal E, Laitinen K, Sutinen S, Kellomaki S, Vapaavuori E.2005. Stomatal density, anatomy and nutrient concentrations of Scots pine needles are affected by elevated CO2 and temperature. Plant, Cell and Environment 28:733-749.
    Luxmoore RJ.1981. CO2 and phytomass. Bioscience 31:1479-1484.
    Lynch JP, Brown KM.2008. Root strategies for phosphorus acquisition. Plant Ecophysiology 7: 83-116.
    Lynch JP, Brown KM.2001. Topsoil foraging-an architectural adaptation of plants to low phosphorus availability. Plant and Soil 237:225-237.
    Lynch JP, Ho MD.2005. Rhizoeconomics:carbon costs of phosphorus acquisition. Plant and Soil 269:45-56.
    Lynch JP, Ochoa IE, Blair MW.2006. QTL analysis of adventitious root formation in common bean under contrasting phosphorus availability. Crop Science 46:1609-1621.
    Lynch JP.1995. Root architecture and plant productivity. Plant Physiology 109:7-13.
    Lynch JP.2007. Roots of the second green revolution. Australian Journal of Botany 55:493-512.
    Ma Z, Baskin TI, Brown KM, Lynch JP.2003. Regulation of root elongation under phosphorus stress involves changes in ethylene responsiveness. Plant Physiology 131:1381-1390.
    Ma Z, Bielenberg D, Brown K, Lynch J.2001. Regulation of root hair density by phosphorus availability in Arabidopsis thaliana. Plant, Cell and Environment 24:459-467.
    Macpherson N, Takeda S, Shang Z, Dark A, Mortimer JC, Brownlee C, Davies J M.2008. NADPH oxidase involvement in cellular integrity. Planta 227:1415-1418.
    Makino A, Harada M, Sato T, Nakano H, Mae T.1997. Growth and N allocation in rice plants under CO2 enrichment. Plant Physiology 115:199-203.
    Malamy JE, Benfey PN.1997. Organization and cell differentiation in lateral root of Arabidopsis thaliana. Development 124:33-44.
    Marchive C, Yehudai-Resheff S, Germain A.2009. Abnormal physiological and molecular mutant phenotypes link chloroplast polynucleotide phosphorylase to the phosphorus deprivation response in Arabidopsis. Plant Physiology 151:905-924.
    Marschner H, Romheld V, Cakmak I.1987. Root induced changes of nutrient availability in the rhizosphere. Journal of Plant Nutrition 10:1175-1184.
    Marschner H.1991. Mechanisms of adaptation of plants to acid soils. Plant and Soil 134:1-20.
    Marschner H.1995. Mineral nutrition of plants. San Diego, CA (USA), Academic.2nded.
    Martin AC, Del Pozo JC, Iglesias J.2000. Influence of cytokinins on the expression of phosphate starvation responsive genes in Arabidopsis. The Plant Journal 24:559-567.
    Masucci JD, Rerie WG, Foreman DR, Zhang M, Galway ME, Marks MD, Schiefelbein JW. 1996. The homeobox gene GLABRA2 is required for position-dependent cell differentiation in the root epidermis of Arabidopsis thaliana. Development 122:1253-1260.
    Masucci JD, Schiefelbein JW.1994. The rhd6 mutation of Arabidopsis thaliana alters root-hair initiation through an auxin-and ethylene-associated process. Plant Physiology 106: 1335-1346.
    Matt P, Geiger M, Walch-Liu P, Engels C, Krapp A, Stitt M.2001. Elevated carbon dioxide increases nitrate uptake and nitrate reductase activity when tobacco is growing on nitrate, but increases ammonium uptake and inhibits nitrate reductase activity when tobacco is growing on ammonium nitrate. Plant, Cell and Environment 24:1119-1137.
    Mateos-Naranjo E, Redondo-Gomez S, Alvarez R, Cambrolle J, Gandullo J, Figueroa, ME. 2010. Synergic effect of salinity and CO2 enrichment on growth and photosynthetic responses of the invasive cordgrass Spartina densiflora. Journal of Experimental Botany 61: 1643-1654.
    Mateos-Naranjo E, Redondo-Gomez S, Alvarez R, Cambrolle J, Gandullo J, Figueroa ME. 2010. Synergic effect of salinity and CO2 enrichment on growth and photosynthetic responses of the invasive cordgrass Spartina densiflora. Journal of Experimental Botany 61:1643-1654.
    McConnaughay KDM, Berntson G, Bazzaz F.1993. Limitations to CO2-induced growth enhancement in pot studies. Oecologia 94:550-557.
    McLachlan KD, Elliott DE, De Marco DG, Garran JH.1987. Leaf acid-phosphatase isozymes in the diagnosis of phosphorus status in field-grown wheat. Australian Journal of Agricultural Research 38:1-13.
    Michael G.2001. The control of root hair formation:suggested mechanisms. Journal of Plant Nutrition and Soil Science 164:111-119.
    Miller A, Tsai CH, Hemphill D, Endres M, Rodermel S, Spalding M.1997. Elevated CO2 effects during leaf ontogeny (a new perspective on acclimation). Plant Physiology 115: 1195-1200.
    Miller CR, Ochoa I, Nielsen KL, Beck D, Lynch JP.2003. Genetic variation for adventitious rooting in response to low phosphorus availability:potential utility for phosphorus acquisition from stratified soils. Functional Plant Biology 30:973-985.
    Miller SS, Liu JQ, Allan DL, Menzhuber CJ, Fedorova M, Vance CP.2001. Molecular control of acid phosphatase secretion into the rhizosphere of proteoid roots from phosphorus-stressed white lupin. Plant Physiology 127:594-606.
    Michie K, Ikuko O, Kazuhito K, Yokata N, Fujiwara M, Shimamoto K, Doke N, Yoshioka H. 2007. Calcium-dependent protein kinases regulate the product ion of reactive oxygen species by potato NADPH oxidase. The Plant Cell 19:1065-1080.
    Miura K, Lee J, Gong Q, Ma S, Jin JB, Yoo CY, Hasegawa PM.2011. SIZ1 regulation of phosphate starvation-induced root architecture remodeling involves the control of auxin accumulation. Plant Physiology 155:1000-1012.
    Miura K, Rus A, Sharkhuu A, Yokoi S, Karthikeyan AS, Raghothama KG, Hasegawa PM. 2005. The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses. Proceedings of the National Academy of Sciences of the United States of America 102: 7760-7765.
    Molendijk AJ, Bischoff F, Rajendrakumar CSV, Friml J, Braun M, Gilroy S, Palme K.2001. Arabidopsis thaliana Rop GTPases are localized to tips of root hairs and control polar growth. The EMBO Journal 20:2779-2788.
    Mollier A, Pellerin S.1999. Maize root system growth and development as influenced by phosphorus deficiency. Journal of Experimental Botany 50:487-497.
    Monshausen GB, Bibikova TN, Messerli MA, Shi C, Gilroy S.2007. Oscillations in extracellular pH and reactive oxygen species modulate tip growth of Arabidopsis root hairs. Proceedings of the National Academy of Sciences of the United States of America 104: 20996-21001.
    Monshausen GB, Bibikova TN, Weisenseel MH, Gilroy S.2009. Ca2+ regulates reactive oxygen species production and pH during mechanosensing in Arabidopsis roots. Plant Cell 21:2341-2356.
    Monshausen GB, Messerli MA, Gilroy S.2008. Imaging of the Yellow Cameleon 3.6 indicator reveals that elevations in cytosolic Ca2+ follow oscillating increases in growth in root hairs of Arabidopsis. Plant Physiology 147:1690-1698.
    Moore B, Zhou L, Rolland F, Hall Q, Cheng WH, Liu YX, Hwang I, Jones T, Sheen J.2003. Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science 300:332-336.
    Mori IC, Schroeder JI.2004. Reactive oxygen species activation of plant Ca2+ channels. A signaling mechanism in polar growth, hormone transduction, stress signaling, and hypothetically mechanotransduction. Plant Physiology 135:702-708.
    Mou Z, Fan WH, Dong XN.2003. Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113:935-944.
    Mudge SR, Rae AL, Diatloff E, Smith FW.2002. Expression analysis suggests novel roles for members of the Phtl family of phosphate transporters in Arabidopsis. The Plant Journal 31: 341-353.
    Mukatira UT, Liu CM, Varadarajan DK, Raghothama KG.2001. Negative regulation of phosphate starvation-induced genes. Plant Physiology 127:1854-1862.
    Miiller A, Guan C, Galweiler L, Tanzler P, Huijser P, Marchant A, Parry G, Bennett M, Wisman E, Palme K.1998. AtPIN2 defines a locus of Arabidopsis for root gravitropism control. The EMBO Journal 17:6903-6911.
    Muller R, Morant M, Jarmer H, Nilsson L, Nielsen TH.2007. Genome-wide analysis of the Arabidopsis leaf transcriptome reveals interaction of phosphate and sugar metabolism. Plant Physiology 143:156-171.
    Nacry P, Canivenc G, Muller B, Azmi A, Van Onckelen H, Rossignol M, Doumas P.2005. A role for auxin redistribution in the responses of the root system architecture to phosphate starvation in Arabidopsis. Plant Physiology 138:2061-2074.
    Nagarajan VK, Jain A, Poling MD, Lewis AJ, Raghothama KG, Smith AP.2011. Arabidopsis Phtl;5 mobilizes phosphate between source and sink organs and influences the interaction between phosphate homeostasis and ethylene signaling. Plant Physiology 156:1149-1163.
    Nasholm T, Ekblad A, Nordin A.1998. Boreal forest plants take up organic nitrogen. Nature 392:914-916.
    Naholm T, Huss-Danell K, Hogberg P.2000. Uptake of organic nitrogen in the field by four agriculturally important plant species. Ecology 81:1155-1161.
    Narayanan A, Reddy BK.1982. Effect of phosphorus deficiency on the form of plant root system. In A Scaife, ed, Plant Nutrition, Vol 2. Commonwealth Agricultural Bureau, Slough. UK, pp 412-417.
    Neill S, Bright J, Desikan R, Hancock J, Harrison J, Wilson I.2008. Nitric oxide evolution and perception. Journal of Experimental Botany 59:25-35.
    Neill SJ, Desikan R, Hancock JT.2003. Nitric oxide signalling in plants. New Phytologist 159:11-35.
    Neumann G, Massonneau A, Langlade N, Dinkelaker B, Hengeler C, Rom held V, Martinoia E.2000. Physiological aspects of cluster root function and development in phosphorus-deficient white lupin (Lupinus albus L.). Annals of Botany 85:909-919.
    Newbery R, Wolfenden J, Mansfield T, Harrison A.1995. Nitrogen, phosphorus and potassium uptake and demand in Agrostis capillaris:the influence of elevated CO2 and nutrient supply. New Phytologist 130:565-574.
    Nie G, Hendrix DL, Webber AN, Kimball BA, Long SP.1995. Increased accumulation of carbohydrates and decreased photosynthetic gene transcript levels in wheat grown at an elevated CO2 concentration in the field. Plant Physiology 108:975-983.
    Nilsson L, Muller R, Nielsen TH.2007. Increased expression of the MYB-related transcription factor, PHR1, leads to enhanced phosphate uptake in Arabidopsis thaliana. Plant, Cell and Environment 30:1499-1512.
    Niu YF, Jin CW, Jin GL, Zhou QY, Lin XY, Tang CX, Zhang YS.2011a. Auxin modulates the enhanced development of root hairs in Arabidopsis thaliana (L.) Heynh. under elevated CO2. Plant, Cell and Environment 34:1304-1317.
    Niu YF, Jin GL, Chai RS, Wang H, Zhang YS.2011b. Responses of root hair development to elevated CO2. Plant Signaling and Behavior 6:1414-1417.
    Noordwijk MV, Hairiab K, Syekhfani MS.1991. Pehophorumpterocarpt a tree with a root distribution suitable for alley cropping. In:Plant Roots and Their Environment [M]. Persson H, McMichael B L (eds),526-532.
    Norby RJ, Guderson CA, Wullschleger SD.1992. Productivity and compensatory responses of yellow-poplar trees in elevated CO2. Nature 357:322-324.
    Norby RJ, O'Neill EG, Wullschleger SD.1993. Growth enhancement of Quercus alba saplings by CO2 enrichment under field conditions. Bulletin of the Ecological Society of America 74: 375.
    Norby RJ, O'neill E, Hood WG, Luxmoore R.1987. Carbon allocation, root exudation and mycorrhizal colonization of Pinus echinata seedlings grown under CO2 enrichment. Tree Physiology 3:203-210.
    Nordstrom A, Tarkowski P, Tarkowska D, Norbaek R, Astot C, Dolezal K, Sandberg G. 2004. Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana:A factor of potential importance for auxin-cytokinin-regulated development. Proceedings of the National Academy of Sciences of the United States of America 101:8039-8044.
    Norisada M, Motoshige T, Kojima K, Tange T.2006. Effects of phosphate supply and elevated CO2 on root acid phosphatase activity in Pinus densiflora seedlings. Journal of Plant Nutrition and Soil Science 169:274-279.
    Obrist D, Arnone J, Korner C.2001. In situ effects of elevated atmospheric CO2 on leaf freezing resistance and carbohydrates in a native temperate grassland. Annals of Botany 87:839-844.
    Ogasawara A, Kume T, Kazama E.2007. Effect of oral ketoconazole on intestinal first-pass effect of midazolam and fexofenadine in cynomolgus monkeys. Drug Metabolism and Disposition 35:410-418.
    Ohashi Y, Oka A, Rodrigues-Pousada R, Possenti M, Ruberti I, Morelli G, Aoyama T.2003. Modulation of phospholipid signaling by GLABRA2 in root-hair pattern formation. Science 300:1427-1430.
    Okada K, Shimura Y. Modulation of root growth by physical stimuli. In Arabidopsis, E.M. Meyerowitz and C.R. Somerville, eds (Cold Spring Harbor, NY:Cold Spring Harbor Laboratory Press., pp.1994:665-684.
    Oosten JJ, Besford RT.1996. Acclimation of photosynthesis to elevated CO2 through feedback regulation of gene expression:Climate of opinion. Photosynthesis Research 48:353-365.
    Orozco-Cardenas ML, Narvaez-Vasquez J, Ryan CA.2001. Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. Plant Cell 13:179-191.
    Osmont KS, Sibout R, Hardtke CS.2007. Hidden branches:developments in root system architecture. Annual Review of Plant Biology 58:93-113.
    Owensby CE, Coyne PI, Ham JM.1993. Biomass production in a tallgrass prairie ecosystem exposed to ambient and elevated CO2. Ecology Applications 3:644-653.
    Pagnussat GC, Lanteri ML, Lombardo MC, Lamattina L.2004. Nitric oxide mediates the indole acetic acid induction activation of a mitogen-activated protein kinase cascade involved in adventitious root development. Plant Physiology 135:279-286.
    Pakrasi H, Ogawa T, Bhattacharrya-Pakrasi M.2001. Transport of metals:a key process in oxygenic photosynthesis. In:Aro EM, Anderson B, eds. Regulation of photosynthesis. Regulation of Photosynthesis:253-264.
    Parker JS, Cavell AC, Dolan L, Roberts K, Grierson CS.2000. Genetic interactions during root hair morphogenesis in Arabidopsis. Plant Cell 12:1961-1974.
    Paungfoo-Lonhienne C, Schenk PM, Lonhienne TG, Brackin R, Meier S, Rentsch D, Schmidt S.2009. Nitrogen affects cluster root formation and expression of putative peptide transporters. Journal of Experimental Botany 60:2665-2676.
    Pearse SJ, Veneklaas EJ, Cawthray GR, Bolland MDA, Lambers H.2006. Carboxylate release of wheat, canola and 11 grain legume species as affected by phosphorus status. Plant and Soil 288:127-139.
    Pemberton LMS, Tsai SL, Lovell PH, Harris PJ.2001. Epidermal patterning in seedlings roots of eudicotyledons. Annals of Botany 87:649-654.
    Peret B, Clement M, Nussaume L, Desnos T.2011. Root developmental adaptation to phosphate starvation:better safe than sorry. Trends in Plant Science 16:442-450.
    Perez-Torres CA, Lopez-Bucio J, Cruz-Ramirez A, Ibarra-Laclette E, Dharmasiri S, Estelle M, Herrera-Estrella L.2008. Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor. The Plant Cell 20:3258-3272.
    Peterson RL, Farquhar ML.1996. Root hairs:specialized tubular cells extending root surfaces. The Botanical Review 62:1-40.
    Pei ZM, Murata Y, Benning G, Thomine S, Klusener B, Allen GJ, Grill E, Julian I. Schroeder JI.2000. Calcium channels activated by hydrogen peroxide mediate abscisic acid signaling in guard cells. Nature 2000 406:731-734.
    Pierson ES, Miller DD, Callaham DA, vanAken J, Hackett G, Hepler PK.1996. Tip-localized calcium entry fluctuates during pollen tube growth. Developmental Biology 174:160-173.
    Pilumwong J, Senthong C, Srichuwong S Srichuwong S, Keith T, Ingram KT.2007. Effects of temperature and elevated CO2 on shoot and root growth of peanut (Arachis hypogaea L.) grown in controlled environment chambers. Science Asia Journal 33:79-87.
    Pitts RJ, Cernac A, Estelle M.1998. Auxin and ethylene promote root hair elongation in Arabidopsis. The Plant Journal 16:553-560.
    Poirier Y, Thoma S, Somerville C, Schiefelbein J.1991. A mutant of Arabidopsis deficient in xylem loading of phosphate. Plant Physiology 97:1087-1093.
    Poonnachit U, Darnell R.2004. Effect of ammonium and nitrate on ferric chelate reductase and nitrate reductase in Vacciniumspecies. Annals of Botany 93:399-405.
    Poorter H, Berkel Y, Baxter R, Hertog J, Dijkstra P, Gifford R, Griffin K, Roumet C, Roy J, Wong S.1997. The effect of elevated CO2 on the chemical composition and construction costs of leaves of 27 C3 species. Plant, Cell and Environment 20:472-482.
    Potters G, De Gara L, Asard H, Horemans N.2002. Ascorbate and glutathione:guardians of the cell cycle, partners in crime? Plant Physiology and Biochemistry 40:537-548.
    Pregitzer KS, Burton AJ, King JS, Zak DR.2008. Soil respiration, root biomass, and root turnover following long-term exposure of northern forests to elevated atmospheric CO2 and tropospheric O3. New Phytologist 180:153-161.
    Prior S, Rogers H, Runion G, Kimball B, Mauney J, Lewin K, Nagy J, Hendrey G.1995. Free-air carbon dioxide enrichment of cotton:Root morphological characteristics. Journal of Environmental Quality 24:678-683.
    Pritchard SG, Ju Z, van Santen E, Qiu J, Weaver DB, Prior SA, Rogers HH.2000. The influence of elevated CO2 on the activities of antioxidative enzymes in two soybean genotypes. Functional Plant Biology 27:1061-1068.
    Pritchard SG, Mosjidis C, Peterson CM, Runion GB, Rogers HH.1998. Anatomical and morphological alterations in longleaf pine needles resulting from growth in elevated CO2: interactions with soil resource availability. International Journal of Plant Sciences 159: 1002-1009.
    Pritchard SG, Rogers HH.2000. Spatial and temporal deployment of crop roots in CO2-enriched environments. New Phytologist 147:55-71.
    Pyle AM.2002. Metal ions in the structure and function of RNA. Journal of Biological Inorganic Chemistry 7:679-690.
    Raghothama KG.1999. Phosphate acquisition. Annual Review of Plant Physiology and Plant Molecular Biology 50:665-693.
    Rahman A, Hosokawa S, Oono Y, Amakawa T, Goto N, Tsurumi S.2002. Auxin and ethylene response interactions during Arabidopsis root hair development dissected by auxin influx modulators. Plant Physiology 130:1908-1917.
    Ramaekers L, Remans R, Rao IM, Blair MW, Vanderleyden J.2010. Strategies for improving phosphorus acquisition efficiency of crop plants. Field Crops Research 117:169-176.
    Rath M, Salas J, Parhy B, Norton R, Menakuru H, Sommerhalter M, Uhde-Stone C.2010. Identification of genes induced in proteoid roots of white lupin under nitrogen and phosphorus deprivation, with functional characterization of a formamidase. Plant and Soil 334:137-150.
    Rattray EAS, Paterson E, Killham K.1995. Characterisation of the dynamics of C-partitioning within Lolium perenne and to the rhizosphere microbial biomass using I4C pulse chase. Biology and Fertility of Soils 19:280-286.
    Reddy ASN.2001. Calsium:silver bullet in signaling. Plant Science 160:381-404.
    Renew S, Heyno E, Schopfer P, Liszkay A.2005. Sensitive detection and localization of hydroxyl radical production in cucumber roots and Arabidopsis seedlings by spin trapping electron paramagnetic resonance spectroscopy. The Plant Journal 44:342-347.
    Reymond M, Svistoonoff S, Loudet O, Nussaume L, Desnos T.2006. Identification of QTL controlling root growth response to phosphate starvation in Arabidopsis thaliana. Plant, Cell and Environment 29:115-125.
    Richardson AE, Hocking PJ, Simpson RJ, George TS.2009. Plant mechanisms to optimise access to soil phosphorus. Crop Pasture Science 60:124-143.
    Rigas S, Debrosses G, Haralampidis K, Vincente-Agullo F, Feldmann KA, Grabov A, Dolan L, Hatzopoulos P.2001. TRH1 encodes a potassium transporter required for tip growth in Arabidopsis root hairs. The Plant Cell 13:139-151.
    Ringli C, Baumberger N, Diet A, Frey B, Keller B.2002. ACTIN2 is essential for bulge site selection and tip growth during root hair development of Arabidopsis. Plant Physiology 129: 1464-1472.
    Rogers G, Milham P, Thibaud M, Conroy J.1996. Interactions between rising CO2 concentration and nitrogen supply in cotton. I. Growth and leaf nitrogen concentration. Functional Plant Biology 23:119-125.
    Rogers HH, Peterson C, McCrimmon J, Cure J.1992. Response of plant roots to elevated atmospheric carbon dioxide. Plant, Cell and Environment 15:749-752.
    Rogers HH, Runion GB, Krupa SV, Prior SA.1997. Plants responses to atmospheric Carbon dioxide enrichment:implications in root-soil-microbe interactions. In:Allen LH, Kirkman MB, Olyszyk DM (eds). Aduances in carbon dioxide effects research. Madison, WI, USA: American Society of Agronomy,1-34.
    Rogers HH, Runion GB, Krupa SV.1994. Plant responses to atmospheric CO2 enrichment with emphasis on roots and the rhizosphere. Environmental Pollution 83:155-189.
    Rogers HH, Runion GB, Prior SA, Torbert HA.1996. Response of plants to elevated atmospheric CO2:Root growth, mineral nutrition, and soil carbon. In Carbon Dioxide and Environmental Stress [M]. Seemann JR, Luo Y, Mooney HA (eds). Academic Press, San Diego, CA, USA.
    Rubio V, Bustos R, Irigoyen ML, Cardona-Lopez X, Rojas-Triana M, Paz-Ares J.2009. Plant hormones and nutrient signaling. Plant Molecular Biology 69:361-373.
    Rubio V, Linhares F, Solano R, Martin AC, Iglesias J, Leyva A, Paz-Ares J.2001. A conserved MYB transcription factor involved in phosphate starvation signalling both in vascular plants and in unicellular algae. Genes & Development 15:2122-2133.
    Ruegger M, Dewey E, Hobbie L, Brown D, Bernasconi P, Turner J, Muday G, Estelle M. 1997. Reduced naphthylphthalamic acid binding in the tir3 mutant of Arabidopsis is associated with a reduction in polar auxin transport and diverse morphological defects. The Plant Cell 9:745-757.
    Ruyter-Spira C, Kohlen W, Charnikhova T, van Zeijl A, van Bezouwen L, de Ruijter N, Bouwmeester H.2011. Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in Arabidopsis:another belowground role for strigolactones? Plant Physiology 155:721-734.
    Ryan E, Grierson CS, Cavell A, Steer M, Dolan L.1998. TIP1 is required for both tip growth and non-tip growth in Arabidopsis. New Phytologist 138:49-58.
    Sagi M, Fluhr R,2001. Superoxide production by plant homologues of the gp91phox NADPH oxidase. Modulation of activity by calcium and by tobacco mosaic virus infection. Plant Physiology 126:1281-1290.
    Samaj J, Baluska F, Menzel D.2004. New signalling molecules regulating root hair tip growth. Trends in Plant Science 9:217-220.
    Samaj J, Ovecka M, Hlavacka A, Lecourieuw F, Meskiene I, Lichtscheidl 1, Lenart P, Salaj J, Volkmann D, Bogre L, Baluska F, Hirt H.2002. Involvement of the mitogen-activated protein kinase SIMK in regulation of root hair tip growth. The EMBO Journal 21: 3296-3306.
    Sanchez-Calderon L, Lopez-Bucio J, Chacon-Lopez A, Cruz-Ramirez A, Nieto-Jacobo F, Dubrovsky JG, Herrera-Estrella L.2005. Phosphate starvation induces a determinate developmental program in the roots of Arabidopsis thaliana. Plant and Cell Physiology 46: 174-184.
    Sanchez-Calderon L, Lopez-Bucio J, Chacon-Lopez A, Gutierrez-Ortega A, Hernandez-Abreu E, Herrera-Estrella L.2006. Characterization of low phosphorus insensitive mutants reveals a crosstalk between low phosphorus-induced determinate root development and the activation of genes involved in the adaptation of Arabidopsis to phosphorus deficiency. Plant Physiology 140:879-889.
    Sanders PL, Markhart AH.1992. Interspecific grafts demonstrate root system control of leaf water status in water-stressed Phaseolus. Journal of Experimental Botany 43:1563-1567.
    Santos-Beneit F, Rodriguez-Garcia A, Apel AK, Martin JF.2009. Phosphate and carbon source regulation of two PhoP-dependent glycerophosphodiester phosphodiesterase genes of Streptomyces coelicolor. Microbiology 155:1800-1811.
    Sas L, Rengel Z, Tang CX.2002. The effect of nitrogen nutrition on cluster root formation and proton extrusion by Lupinus albus. Annals of Botany 89:435-442.
    Schachtman DP, Reid RJ, Ayling SM.1998. Phosphorus uptake by plants:from soil to cell. Plant Physiology 116:447-453.
    Schappi B, Korner C.1996. Growth responses of an alpine grassland to elevated CO2. Oecologia 105:43-52.
    Schiefelbein J, Galway M, Masucci J, Ford S.1993. Pollen tube and root hair tip growth is disrupted in a mutant of Arabidopsis thaliana. Plant Physiology 103:979-985.
    Schiefelbein J, Lee MM.2006. A novel regulatory circuit specifies cell fate in the Arabidopsis root epidermis. Physiologia Plantarum 126:503-510.
    Schiefelbein JW, Shipley A, Rowse P.1992. Calcium influx at the tip of growing root-hair cells of Arabidopsis thaliana. Planta 187:455-459.
    Schiefelbein JW, Somerville C.1990. Genetic control of root hair development in Arabidopsis thaliana. The Plant Cell 2:235-243.
    Schiefelbein JW.2000. Constructing a plant cell. The genetic control of root hair development. Plant Physiology 124:1525-1531.
    Schjorring JK.1986. Nitrate and ammonium absorption by plants growing at a sufficient or insufficient level of phosphorus in nutrient solutions. Plant and Soil 91:313-318.
    Schmidt W, Schikora A.2001. Different pathways are involved in phosphate and iron stress-induced alterations of root epidermal cell development. Plant Physiology 125: 2078-2084.
    Schmidt W, Tittel J, Schikora A.2000. Role of hormones in the induction of iron deficiency responses in Arabidopsis roots. Plant Physiology 122:1109-1118.
    Schneider K, Mathur J, Boudonck K, Wells B, Dolan L, Roberts K.1998. The ROOT HAIRLESS1 gene encodes a nuclear protein required for root hair initiation in Arabidopsis. Genes and Development 12:2013-2021.
    Schneider K, Wells B, Dolan L, Roberts K.1997. Structural and genetic analysis of epidermal cell differentiation in Arabidopsis primary roots. Development 124:1789-1798.
    Schortemeyer M, Atkin O, McFarlane N, Evans J.2002. N2 fixation by Acacia species increases under elevated atmospheric CO2. Plant, Cell and Environment 25:567-579.
    Shane M, Lambers H.2005. Cluster roots:a curiosity in context. Root Physiology:from Gene to Function 4:101-125.
    Shane MW, De Vos M, De Roock S, Lambers H.2003. Shoot P status regulates cluster-root growth and citrate exudation in Lupinus albus grown with a divided root system. Plant, Cell and Environment 26:265-273.
    Shaner DL, Boyer JS.1976. Nitrate reductase activity in maize (Zea mays L.) leaves. I. Regulation by nitrate flux. Plant Physiology 58:499-504.
    Shen J, Rengel Z, Tang C, Zhang F.2003. Role of phosphorus nutrition in development of cluster roots and release of carboxylates in soil-grown Lupinus albus. Plant and Soil 248: 199-206.
    Shenoy W, Kalagudi GM.2005. Enhancing plant phosphorus use efficiency for sustainable cropping. Biotechnology Advances 23:501-513.
    Shimono H, Bunce JA.2009. Acclimation of nitrogen uptake capacity of rice to elevated atmospheric CO2 concentration. Annals of Botany 103:87-94.
    Shin H, Shin HS, Dewbre GR, Harrison MJ.2004. Phosphate transport in Arabidopsis:Phtl;1 and Phtl;4 play a major role in phosphate acquisition from both low-and high-phosphate environments. The Plant Journal 39; 629-642.
    Shin R, Berg RH, Schachtman DP.2005. Reactive oxygen species and root hairs in Arabidopsis root response to nitrogen, phosphorus and potassium deficiency. Plant and Cell Physiology 46:1350-1357.
    Shu LZ, Shen JB, Rengel Z, Tang CX, Zhang FS.2005. Growth medium and phosphorus supply affect cluster root formation and citrate exudation by Lupinus albus grown in a sand/solution split-root system. Plant and Soil 276:85-94.
    Shulaev V, Cortes D, Miller G, Mittler R.2008. Metabolomics for plant stress response. Physiologia Plantarum 132:199-208.
    Silverman FP, Assiamah AA, Bush DS.1998. Membrane transport and cytokinin action in root hairs of Medicago sativa. Planta 205:23-31.
    Sagi M, Fluhr R.2001. Superoxide production by plant homologues of the gp91phox NADPH oxidase:modulation of activity by calcium and by tobacco mosaic virus infection. Plant Physiology 126:1281-1290.
    Singh K, Bhoga SS.2006. Enhanced electrode kinetics in electrochemical CO2 and SO2 gas sensors with ferroelectric dispersed composite. Ferroelectrics 332:89-96.
    Skene K, Kierans M, Sprent J, Raven J.1996. Structural aspects of cluster root development and their possible significance for nutrient acquisition in Grevillea robusta (Proteaceae). Annals of Botany 11:443-452.
    Skene KR.2000. Pattern formation in cluster roots. Some developmental and evolutionary considerations. Annals of Botany 85:901-908.
    Song XF, Yang CY, Liu J, Yang WC.2006. RPA. a class H ARFGAP protein, activates ARF1 and U5 and plays a role in root hair development in Arabidopsis. Plant Physiology 414: 966-976.
    Sponchiado BN, White JW, Castillo JA, Jones PG.1989. Root growth of four common bean cultivars in relation to drought tolerance in environments with contrasting soil types. Experimental Agriculture 25:249-257.
    Stefanovic A, Ribot C, Rouached H, Wang Y, Chong J, Belbahri L, Delessert S, Poirier Y. 2007. Members of the PH01 gene family show limited functional redundancy in phosphate transfer to the shoot, and are regulated by phosphate deficiency via distinct pathways. Plant Journal 50:982-994.
    Stepanova AN, Alonso JM.2009. Ethylene signaling and response:where different regulatory modules meet. Current Opinion in Plant Biology 12:548-555.
    Stepanova AN, Yun J, Likhacheva AV, Alonso JM.2007. Multilevel interactions between ethylene and auxin in Arabidopsis roots. The Plant Cell 19:2169-2185.
    Stitt M, Krapp A.1999. The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. Plant, Cell and Environment 22:583-621.
    Stitt M, QuickWP, Schurr U, Scheibe R, Schulze ED, Rodermel SR, Bogorad L.1991. Decreased ribulose-1,5-bisphosphate carboxylase-oxygenase in transgenic tobacco transformed with 'antisense' rbcS. Planta 183:542-554.
    Stitt M.1991. Rising CO2 levels and their potential significance for carbon flow in photosynthetic cells. Plant, Cell, and Environment 14:741-762.
    Skinner PW, Matthews MA.1990. A novel interaction of magnesium translocation with the supply of phosphorus to roots of grapevine (Vitis vinifera L.). Plant, Cell and Environment 13:821-826.
    Stulen I, Hertog J.1993. Root growth and functioning under atmospheric CO2 enrichment. Plant Ecology 104:99-115.
    Sugimoto-Shirasu K, Roberts GR, Stacey NJ, McCann MC, Maxwell A, Roberts K.2005. RHL1 is an essential component of the plant DNA topoisomerase VI complex and is required for ploidy-dependent cell growth. Proceedings of the National Academy of Sciences of the United States of America 102:18736-18741.
    Svistoonoff S, Creff A, Reymond M, Sigoillot-Claude C, Ricaud L, Blanchet A, Desnos T. 2007. Root tip contact with low-phosphate media reprograms plant root architecture. Nature Genetics 39:792-796.
    Swarup R, Perry P, Hagenbeek D, Van Der Straeten D, Beemster GT, Sandberg G, Bennett MJ.2007. Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation. The Plant Cell 19:2186-2196.
    Synek L, Schlager N, Elias M, Quentin M, Hauser MT, Zarsky V.2006. AtEXO70Al, a member of a family of putative exocyst subunits specifically expanded in land plants, is important for polar growth and plant development. The Plant Journal 48:54-72.
    Taiz L, Zeiger E.2001. Plant Physiology [M].2nd Ed Sinauer Associates Inc., Publishers, Sunderland, Massachusetts, USA.
    Takeda S, Gapper C, Kaya H, Bell E, Kuchitsu K, Dolan L.2008. Local positive feedback regulation determines cell shape in root hair cells. Science 319:1241-1244.
    Takeda S, Gapper C, Kaya H, Bell E, Kuchitsu K, Dolan L.2008. Local positive feedback regulation determines cell shape in root hair cells. Science Signaling 319:1241.
    Taub DR, Miller B, Allen H.2008. Effects of elevated CO2 on the protein concentration of food crops:a meta-analysis. Global Change Biology 14:565-575.
    Tavernier E, Wendehenne D, Blein JP, Pugin A.1995. Involvement of free calcium in action of cryptogein, a proteinaceous elicitor of hypersensitive reaction in tobacco cells. Plant Physiology 109:1025-1031.
    Taylor G, Tricker PJ, Zhang FZ, Alston VJ, Miglietta F, Kuzminsky E.2003. Spatial and temporal effects of free-air CO2 enrichment (POPFACE) on leaf growth, cell expansion, and cell production in a closed canopy of Poplar. Plant Physiology 131:177-185.
    Teng NJ, Wang J, Chen T, Wu XQ, Wang YH, Lin JX.2006. Elevated CO2 induces physiological, biochemical and structural changes in leaves of Arabidopsis thaliana. New Phytologist 172:92-103.
    Tesfaye M, Liu JQ, Allan DL, Vance CP.2007. Genomic and genetic control of phosphate stress in legumes. Plant Physiology 144:594-603.
    Teugels H, Nijs I, Van Heehe P.1995. Competition in n global change environment:the importance of different plant traits for competitive success. Journal of Biogeography 22: 297-305.
    Tewari RK, Kumar P, Sharma PN.2006. Antioxidant responses to enhanced generation of superoxide anion radical and hydrogen peroxide in the copper-stressed mulberry plants. Planta 223:1145-1153.
    Thibaud MC, Arrighi JF, Bayle V, Chiarenza S, Creff A, Bustos R, Nussaume L.2010. Dissection of local and systemic transcriptional responses to phosphate starvation in Arabidopsis. The Plant Journal 64:775-789.
    Thomas SM, Whitehead D, Adams JA, Reid JB, Sherlock RR, Leckie AC.1996. Seasonal root distribution and soil surface carbon fluxes for one-year-old Pinus radiata trees growing at ambient and elevated carbon dioxide concentration. Tree Physiology 16:1015-1021.
    Thomas SM, Whitehead D, Reid JF, Cook FJ, Adams JN, Leckie AN.2008. Growth, loss, and vertical distribution of Pinus radiata fine roots growing at ambient and elevated CO2 concentration. Global Change Biology 5:107-121.
    Tian QY, Sun DH, Zhao MG, Zhang WH.2007. Inhibition of nitric oxide synthase (NOS) underlies aluminum-induced inhibition of root elongation in Hibiscus moscheutos. New Phytologist 174:322-331.
    Ticconi CA, Delatorre CA, Lahner B, Salt DE, Abel S.2004. Arabidopsis pdr2 reveals a phosphate-sensitive checkpoint in root development. The Plant Journal 37:801-814.
    Ticconi CA, Lucero RD, Sakhonwasee S, Adamson AW, Creff A, Nussaume L, Abel S.2009. ER-resident proteins PDR2 and LPR1 mediate the developmental response of root meristems to phosphate availability. Proceedings of the National Academy of Sciences of the United States of America 106:14174-14179.
    Tingey DT, Mckane RB, Olszyk DM, Johnson MG, Rygiewicz PT, Henry Lee E.2003. Elevated CO2 and temperature alter nitrogen allocation in Douglas-fir. Global Change Biology 9:1038-1050.
    Torrey JG.1950. The induction of lateral roots by indoleacetic acid and root decapitation. American Journal of Botany 37:257-264.
    Tran HT, Hurley BA, Plaxton WC.2010. Feeding hungry plants:the role of purple acid phosphatases in phosphate nutrition. Plant Science 179:14-27.
    Tsai SL, Harris PJ. Lovell PH.2004. Bands of root hairs are produced in tomato (Lycopersicon esculentum) in response to specific combinations of thermoperiods and photoperiods. New Zealand Journal of Crop and Horticultural Science 32:121-129.
    Tucker EB, Boss WF.1996. Mastoparan-induced intracellular Ca2+ fluxes may regulate cell-to-cell communication in plants. Plant Physiology 111:459-467.
    Tyburski J, Dunajska K, Tretyn A.2009. Reactive oxygen species localization in roots of Arabidopsis thaliana seedlings grown under phosphate deficiency. Plant Growth Regulation 59:27-36.
    Tyburski J, Dunajska K, Tretyn A.2010. A role for redox factors in shaping root architecture under phosphorus deficiency. Plant Signaling & Behavior 5:64-66.
    Tyburski J, Dunajska-Ordak K, Skorupa M, Tretyn A.2012. Role of ascorbate in the regulation of the Arabidopsis thaliana root growth by phosphate availability. Journal of Botany (in press, doi:10.1155/2012/580342).
    Uhde-Stone C, Gilbert G, Johnson JM, Litjens R, Zinn KE, Temple SJ, Allan DL.2003. Acclimation of white lupin to phosphorus deficiency involves enhanced expression of genes related to organic acid metabolism. Plant and Soil 248:99-116.
    Uhde-Stone C, Liu JQ, Zinn KE, Allan DL, Vance CP.2005. Transgenic proteoid roots of white lupin:a vehicle for characterizing and silencing root genes involved in adaptation to P stress. The Plant Journal 44:840-853.
    Uhde-Stone C, Zinn KE, Yanez-Ramirez M, Li AG, Vance CP, Allan DL.2003b. Nylon filter arrays reveal differential gene expression in proteoid roots of white lupin in response to phosphorus deficiency. Plant Physiology 131:1064-1079.
    Valderrama R, Corpas FJ, Carreras A, Fernandez-Ocana A, Chaki M, Luque F, Gomez-Rodriguez MV, Colmenero-Varea P, del Rio LA, Barroso JB.2007. Nitrosative stress in plants. FEBS Letters 581:453-461.
    Vance CP, Uhde-Stone C, Allan DL.2003. Phosphorus acquisition and use:critical adaptations by plants for securing a nonrenewable resource. New Phytologist 157:423-447.
    Vance CP.2008. Plants without arbuscular mycorrhizae. Plant Ecophysiology 7:117-142.
    Vandermeer J, van Noordwijk M, Anderson J, Ong C, Perfecto I.1998. Global change and multi-species agroecosystems:cpncepts and issues. Agriculture, Ecosystems and Environment 67:1-22.
    vanHengel AJ, Barber C, Roberts K.2004. The expression patterns of arabinogalactan-protein AtAGP30 and GLABRA2 reveals a role for abscisic acid in the early stages of root epidermal patterning. The Plant Journal 39:70-83.
    Van Oosten JJ, Dizengremel P, Laitat E, Impens R.1993. Too much of a good thing? Long term exposure to elevated CO2 decreases carboxylating and photorespiratory enzymes and increases respiratory enzyme activity in spruce. Interacting stresses on plants in a changing climate. Springer, Berlin Heidelberg New York,185-194.
    Van Oosten JJ, Besford RT.1996. Acclimation of photosynthesis to elevated CO2 through feedback regulation of gene expression:climate of opinion. Photosynthesis Research 48: 353-365.
    Veneklaas EJ, Lambers H, Bragg J, Finnegan PM, Lovelock CE, Plaxton WC, Price CA, Scheible WR, Shane MW, White PJ, Raven JA.2012. Opportunities for improving phosphorus-use efficiency in crop plants. New Phytologist 195:306-320.
    Vernoud V, Horton AC, Yang Z, Nielsen E.2003. Analysis of the small GTPase gene superfamily of Arabidopsis. Plant Physiology 131:1191-1205.
    Very A-A, Davies JM.2000. Hyperpolarization-activated calcium channels at the tip of Arabidopsis root hairs. Proceedings of the National Academy of Sciences of the United States of America 97:9801-9806.
    Vincent P, Chua M, Nogue F, Fairbrother A, Mekeel H, Xu Y, Allen N, Bibikova TN, Gilroy S, Bankaitis VA.2005. A Secl4p-nodulin domain phosphatidylinositol transfer protein polarizes membrane growth of Arabidopsis thaliana root hairs. The Journal of Cell Biology 168:801-812.
    Vu JCV, Newman YC, Allen Jr LH, Gallo-Meagher M, Zhang MQ.2002. Photo synthetic acclimation of young sweet orange trees to elevated growth CO2 and temperature. Journal of Plant Physiology 159:147-157.
    Vuuren MMI, Robinson D, Fitter AH, Chasalow SD, Williamson L, Raven JA.1997. Effects of elevated atmospheric CO2 and soil water availability on root biomass, root length, and N, P and K uptake by wheat. New Phytologist 135:455-465.
    Wada T, Kurata T, Tominaga R, Koshino-Kimura Y, Tachibana T, Goto K, Marks D, Shimura Y, Okada K.2002. Role of a positive regulator of root hair development, CAPRICE, in Arabidopsis root epidermal cell differentiation. Development 129:5409-5419.
    Wada T, Tachibana T, Shimura Y, Okada K.1997. Epidermal cell differentiation in Arabidopsis determined by a MYB homolog CPC. Science 277:1113-1116.
    Walker AR, Davison PA, Bolognesi-Winfield AC, James CM, Srinivasan N, Blundell TL, Esch JJ, Marks MD, Gray JC.1999. The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein. The Plant Cell 11:1337-1349.
    Wang BL, Tang XY, Cheng LY, Zhang AZ, Zhang WH, Zhang FS, Liu JQ, Cao Y.2010b. Nitric oxide is involved in phosphorus deficiency-induced cluster-root development and citrate exudation in white lupin. New Phytologist 187:1112-1123.
    Wang H, Lockwood SK, Hoeltzel MF, Schiefelbein JW.1997. The ROOT HAIR DEFECTIVES gene encodes an evolutionarily conserved protein with GTP-binding motifs and is required for regulated cell enlargement in Arabidopsis. Genes and Development 11:799-811.
    Wang H, Xiao WD, Niu YF, Jin CW, Chai RS, Tang CX, Zhang YS.2013. Nitric oxide enhances development of lateral roots in tomato(Solanum lycopersicum L.) under elevated carbon dioxide. Planta 237:137-144.
    Wang RC, Tischner R, Gutierrez RA, Hoffman M, Xing XJ, Chen MS, Coruzzi G, Wang X, Cnops G, Vanderhaeghen R, De Block S, Van Montagu M, Van Lijsebettens M.2001. AtCSLD3, a cellulose synthase-like gene important for root hair growth in Arabidopsis. Plant Physiology 126:575-586.
    Wang X, Tang C, Guppy CN, Sale PWG.2009.The role of hydraulic lift and subsoil P placement in P uptake of cotton (Gossypium hirsutum L.). Plant and Soil 325:263-275.
    Wang X, Wang Y, Tian J, Lim BL, Yan X, Liao H.2009. Overexpressing AtPAP15 enhances phosphorus efficiency in soybean. Plant Physiology 151:233-240.
    Wang XF, Li SY, Bai KZ.1999. Influences of double CO2 aerial concentration on plant root surface area and viability and infection intensity of vesicular-arbuscular mycorrhizal fungi. Chinese Science Bulletin 44:63-64.
    Wang Y, Du ST, Li LL, Huang LD, Fang P, Lin XY, Zhang YS, Wang HL.2009. Effect of CO2 elevation on root growth and its relationship with indole acetic acid and ethylene in tomato seedlings. Pedosphere 19:570-576.
    Wang YN, Zhang WS, Li KX, Sun FF, Han CY, Wang YK, Li X.2008. Salt-induced plasticity of root hair development is caused by ion disequilibrium in Arabidopsis thaliana. Journal of Plant Research 121:87-96.
    Wasaki J, Omura M, Osaki M, Ito H, Matsui H, Shinano T, Tadano T.1999. Structure of a cDNA for an acid phosphatase from phosphate-deficient lupin (Lupinus albus L.) roots. Soil Science and Plant Nutrition 45:439-449.
    Watt M, Evans JR.1999. Proteoid roots. Physiology and development. Plant Physiology 121: 317-323.
    Webb M, Jouannic S, Foreman J, Linstead P, Dolan L.2002. Cell specification in the Arabidopsis root epidermis requires the activity of ECTOPIC ROOT HAIR3-a katanin-p60 protein. Development 129:123-131.
    Webb AA, McAinsh MR, Mansfield TA, Hetherington AM.1996. Carbon dioxide induces increases in guard cell cytosolic free calcium. The Plant Journal 9:297-304.
    Wechsung G, Wechsung F, Wall G, Adamsen F, Kim ball B, Garcia R, Pinter Jr P, Kartschall T.1995. Biomass and growth rate of a spring wheat root system grown in free-air CO2 enrichment (FACE) and ample soil moisture. Journal of Biogeography 22:623-634.
    Wechsung G, Wechsung F, Wall G, Adamsen F, Kimball B, Pinter J, LaMorte R, Garcia R, Kartschall T.2001. The effects of free-air CO2 enrichment and soil water availability on spatial and seasonal patterns of wheat root growth. Global Change Biology 5:519-529.
    Weligama C, Tang C, Sale PWG, Conyers MK, Liu DL.2008. Localised nitrate application together with phosphorus enhances root proliferation of wheat and maximises rhizosphere alkalization in acid subsoil. Plant and Soil 312:101-115.
    Wen TJ, Schnable PS.1994. Analyses of mutants of three genes that influence root hair development in Zea mays (Gramineae) suggest that root hairs are dispensable. American Journal of Botany 81:833-842.
    White PJ.1997. Cation channels in the plasma membrane of rye roots. Journal of Experimental Botany Special Issue 48:499-514.
    White PJ, Broadley MR.2009. Biofortification of crops with seven mineral elements often lacking in human diets-iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytologist 182:49-84.
    White PJ.2000. Calcium channels in higher plants. Biochimicu et Biophysics Acta 1465: 171-189.
    Wilkinson SR, Welch RM, Mayland HF, Grunes DL.1990. Magnesium in plants:uptake, distribution, function, and utilization by man and animals. Metal Ions in Biological Systems 26:33-56.
    Wilkinson SR, Welch RM, Mayland HF, Grunes DL.1990. Magnesium in plants:uptake, distribution, function, and utilization by man and animals. Metal Ions in Biological Systems 26:33-56.
    Williamson LC, Ribrioux SPCP, Fitter AH, Leyser HMO.2001. Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiology 126:875-882.
    Williams JHH, Winters AL, Farrar JF. Sucrose:a novel plant growth regulator. In The Molecular, Biochemical and Physiological Aspects of Plant Respiration [M]. Lambers H, van der Plas LHW (eds). The Hague:Academic,1992, pp.463-469.
    Williams L, Salt DE.2009. The plant ionome coming into focus. Current Opinion in Plant Biology 12:247-249.
    Williamson LC, Ribrioux SPCP, Fitter AH, Leyser HMO.2001. Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiology 126:875-882.
    Wissuwa M.2003.How do plants achieve.tolerance to phosphorus deficiency? Small causes with big effects. Plant Physiology 133:1947-1958.
    Won SK, Lee YJ, Lee HY, Heo YK, Cho M, Cho HT.2009. Cis-element-and transcriptome-based screening of root hair-specific genes and their functional characterization in Arabidopsis. Plant Physiology 150:1459-1473.
    Wong SC.1990. Elevated atmospheric partial pressure of CO2 and plant growth. Ⅱ. Non-structural carbohydrate content in cotton plants and its effect on growth parameters. Photosynthesis Research 23:171-180.
    Wu DX, Wang GX, Bai YF, Liao JX.2004. Effects of elevated CO2 concentration on growth, water use, yield and grain quality of wheat under two soil water levels. Agriculture, Ecosystems and Environment 104:493-507.
    Wu H, Tang S, Zhang X, Guo J, Song Z, Tian S, Smith DL.2009. Using elevated CO2 to increase the biomass of a Sorghum vulgare x Sorghum vulgare var. sudanense hybrid and Trifolium pratense L. and to trigger hyperaccumulation of cesium. Journal of Hazardous Materials 170:861-870.
    Wullschleger SD, Norby RJ.1992. Respiratory cost of leaf growth and maintenance in white oak saplings exposed to atmospheric CO2 enrichment. Canadian Journal of Forest Research 22: 1717-1721.
    Wullschleger SD, Post WM, King AW. On the potential for a CO2 fertilization effect in forests-Estimates of the biotic growth factor based on 58 controlled-exposure studies. In Biospheric Feedbacks in the Global Climate System:Will Warming Speed the Warming? [M]. Ed. G M Woodwell.1994, Oxford University Press, Oxford, UK.
    Wymer CL, Bibikova TN, Gilroy S.1997. Cytoplasmic free calcium distributions during the development of root hairs of Arabidopsis thaliana. The Plant Journal 12:427-439.
    Xiao K, Zhang JH, Harrison MJ, Wang ZY.2006. Ectopic expression of a phytase gene from Medicago truncatula barrel medic enhances phosphorus absorption in plants. Journal of Integrative Biology 48:35-43.
    Xu CR, Liu C, Wang YL, Li LC, Chen WQ, Xu ZH, Bai SN.2005. Histone acetylation affects expression of cellular patterning genes in the Arabidopsis root epidermis. Proceedings of the National Academy of Sciences of the United States of America 102:14469-14474.
    Xu J, Scheres B.2005. Dissection of Arabidopsis ADP-RIBOSYLATION FACTOR1 function in epidermal cell polarity. The Plant Cell 17:525-536.
    Yamagishi M, Zhou K, Osaki M, Miller SS, Vance CP.2011. Real-time RT-PCR profiling of transcription factors including 34 MYBs and signaling components in white lupin reveals their P status dependent and organ-specific expression. Plant and Soil 342:481-493.
    Yamanaka T, Nakagawa Y, Mori K, Nakano M, Imamura T, Kataoka H, Terashima A, Iida K, Kojima I, Katagiri T.2010. MCA1 and MCA2 that mediate Ca+ uptake have distinct and overlapping roles in Arabidopsis. Plant Physiology 152:1284-1296.
    Yan X, Liao H, Beebe SE, Blair MW, Lynch JP.2004. QTL mapping of root hair and acid exudation traits and their relationship to phosphorus uptake in common bean. Plant and Soil 265:17-29.
    Yan XL, Lynch JP.1999. Genetic variation for root hair density and length in the common bean in response to low phosphorus availability. In:Lynch JP, Deikman J (eds). Phosphorus in Plant Biology:regulatory Roles in Molecular, Cellular, Organismic and Ecosystem Processes. Maryland:American Society of Plant Physiologists:332-334.
    Yang LX, Huang HY, Yang HJ.2007. Seasonal changes in the effects of free-air CO2 enrichment (FACE) ion nitrogen (N) uptake and utilization of rice at three levels of N fertilization. Field Crops Research 100:189-199.
    Yelle S, Beeson RC, Trudel MJ, Gosselin A.1989. Acclimation of two tomato species to high atmospheric CO2 Ⅱ. Ribulose-1,5-bisphosphate carboxylase/oxygenase and phosphoenolpyruvate carboxylase. Plant Physiology 90:1473-1477.
    Yermiyahu U, Nir S, Ben-Hayyim G, Kafkafi U.1994. Quantitative competition of calcium with sodium or magnesium for sorption sites on plasma membrane vesicles of melon (Cucumis melo L.) root cells. The Journal of Membrane Biology 138:55-63.
    Yi KK, Wu ZC, Zhou J, Du L, Guo L, Wu Y, Wu P.2005. OsPTF1, a novel transcription factor involved in tolerance to phosphate starvation in rice. Plant Physiology 138: 2087-2096.
    Yi K, Menand B, Bell E, Dolan L.2010. A basic helix-loop-helix transcription factor controls cell growth and size in root hairs. Nature genetics 42:264-267.
    Yoder C, Vivin P, Defalco L, Seemann J, Nowak R.2000. Root growth and function of three Mojave Desert grasses in response to elevated atmospheric CO2 concentration. New Phytologist 145:245-256.
    Yong JWH, Wong SC, Letham DS, Hocart CH, Farquhar GD.2000. Effects of elevated CO2 and nitrogen nutrition on cytokinins in the xylem sap and leaves of cotton. Plant Physiology 124:767-780.
    Yoshioka H, Sugie K, Park HJ, Maeda H, Tsuda N, Kawakita K, Doke N.2001. Induction of plant gp91 phox homolog by fungal cell wall, arachidonic acid, and salicylic acid in potato. Molecular Plant-Microbe Interactions 14:725-736.
    Zak DR, Pregitzer KS, Curtis PS, Teeri JA, Fogel R, Randlett DL.1993. Elevated atmospheric CO2 and feedback between carbon and nitrogen cycles. Plant and Soil 151: 105-117.
    Zhang YJ, Lynch JP, Brown KM.2003. Ethylene and phosphorus availability have interacting yet distinct effects on root hair development. Journal of Experimental Botany 54:2351-2361.
    Zhang YY, Zhu HY, Zhang Q, Li MY, Yan M, Wang R, Wang LL, Welti R, Zhang WH, Wang XM.2009. Phospholipase Dal and phosphatidic acid regulate NADPH oxidase activity and production of reactive oxygen species in ABA-mediated stomatal closure in Arabidopsis. The Plant Cell 21:2357-2377.
    Zheng J, Wang H, Li Z, Tang S, Chen Z.2008. Using elevated carbon dioxide to enhance copper accumulation in Pteridium Revolutum, a copper-tolerant plant, under experimental conditions. International Journal of Phytoremediation 10:161-172.
    Zhou KQ, Yamagishi M, Osaki M, Masuda K.2008a. Sugar signalling mediates cluster root formation and phosphorus starvation-induced gene expression in white lupin. Journal of Experimental Botany 59:2749-2756.
    Zhu JM, Kaeppler SM, Lynch JP.2005a. Mapping of QTL controlling root hair length in maize (Zea mays L.) under phosphorus deficiency. Plant and Soil 270:299-310.
    Ziska L, Weerakoon W, Namuco O, Pamplona R.1996. The influence of nitrogen on the elevated CO2 response in field-grown rice. Functional Plant Biology 23:45-52.
    陈改苹,朱建国,程磊.2005.高CO2浓度下根系分泌物的研究进展.土壤37:602-606.
    陈利军,武志杰,贵国宏,周礼恺.2002.大气CO2年浓度增加对土壤脲酶、磷酸酶活性的影响.应用生态学按13:1356-1357.
    陈贵林,高秀瑞.2002.氨基酸和尿素替代硝态氮对水培不结球白菜和生菜硝酸盐含量的影响.中国农业科学35:187-191.
    郭嘉,张卫建,卢其亮,朱建国.2008.大气CO2浓度倍增对稻田生态系统钙、Mg、硅离子流失的潜在影响.中国科学学38:558-564.
    侯颖,王开运,张远彬,邹春静.2008.CO2浓度和温度升高对川西亚高山红桦幼苗根系结构的影响.北京林业大学学报30:29-33.
    黄建晔,杨洪建,杨连新,王余龙,朱建国,刘红江,董桂春,单玉华.2004.水稻不同生育时期N素营养对FACE响应的研究.作物学报30:1237-1243.
    鲁如坤,时正元,顾益初.1995.土壤积累态磷研究Ⅱ.磷肥的表观积累利用率.土壤6:286-289.
    鲁如坤.1990.土壤磷素化学研究进展.土壤学进展6:1-5,19.
    蒋高明,林光辉,Marino BDV.1997.美国生物圈二号内生长在高CO2浓度下的10种植物气孔导度、蒸腾速率及水分利用效率的变化.植物学报39:546-553.
    李伏生,康绍忠.2002.CO2浓度升高、氮和水分对春小麦养分吸收和土壤养分的效应.植物 营养与肥料学报8:303-309,
    马红亮,朱建国,谢祖彬,曾青,刘钢.2005.CO2浓度升高对水稻生物量及C、N吸收分配的影响.中国生态农业学按13:38-41.
    马永亮,王开运,孙卿,张超,邹春静,孔正红.2007.大气CO2浓度升高对植物根系的影响.生态学杂志26:1640-1645.
    马红亮,朱建国,谢祖彬,张雅丽,刘刚,曾青.2004.开放式CO2空气浓度升高对水稻土壤可溶性C、N和P的影响.土壤36:392-397.
    武雪萍,刘国顺,朱凯.2004.外源氨基酸对烟叶氨基酸含量的影响.中国农业科学37:357-361
    庞静,朱建国,谢祖彬,刘刚,陈改苹.2006.CO2浓度升高条件下水稻蒸腾与N吸收的关系.中国水稻科学20:205-209.
    史建伟,王孟本,张育平,李俊英.2007.大气CO2浓度升高对植物细根影响的研究进展.农业环境科学学报26:334-339.
    史奕,李杨,周全来,朱建国.2004.空气CO2体积分数升高对稻麦根系活力及其VA菌根侵染率的影响.生态环境13:480-482,492.
    王大力,林伟宏.1999.CO2浓度升高对水稻根系分泌物的影响-总有机碳、甲酸和乙酸含量变化.兰态学报19:570-572.
    王立德,廖红,王秀荣,严小龙.2004.植物根毛的发生、发育及养分吸收.植物学通报21:649-659.
    王维,杨建昌,朱庆森.2001.控水条件下水稻旱育秧苗的形态生理特征.江苏农业研究22:16-20,52.
    王义琴,张慧娟,杨奠安,白克智, 匡廷云.1998.大气CO2浓度倍增对植物幼苗根系生长影响的分形分析.科学通报43:1736-1738.
    王月,章永松,方萍,林咸永,都韶婷.2007.不同供磷状况下CO2浓度升高对番茄根系生长及养分吸收的影响.植物营养与肥料学报13:871-876.
    吴良欢, 陶勤南.1999.植物有机营养无菌培养试验方法的研究和应用.土壤学报36:5:5-558.
    吴良欢,陶勤南.2000.水稻氨基酸态营养效应及其机理研究.土壤学报37:464-472。
    谢祖彬,朱建国,张雅丽,马红亮,刘钢,韩勇,曾青,蔡祖聪.2002.水稻生长及其体内C、N、P组成对开放式空气CO2浓度增高和N、P施肥的响应.应用生态学报13:1223-1230.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700