用户名: 密码: 验证码:
基于ICP-MS的联用技术及其在生命体系中元素与形态分析的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生命体中的微量元素对于正常生物功能的维持起着重要作用。元素的生物活性、可利用性以及毒性不仅受体内元素总量的影响,更与其所存在的化学形态密切相关,因此,生物样品中痕量元素及其形态分析具有十分重要的意义。然而,生物样品往往存在样品量有限、基质复杂、元素及其各形态的含量低、元素形态在分析过程中可能发生转变等问题。正因如此,生命体系中痕量元素及其形态分析成为分析化学中亟待解决的一个富有挑战性的课题,也是目前分析科学研究的热点之一
     电感耦合等离子体质谱(ICP-MS)具有灵敏度高、线性范围宽、分析速度快、多元素同时测定及同位素分析等优点,已成为痕量元素分析中一种主要的检测手段。将高选择性色谱分离技术与ICP-MS1关用是目前元素形态分析中最有效也是应用最广泛的分析方法。但生物样品中某些痕量元素及其形态含量非常低,接近或低于ICP-MS或色谱-ICP-MS的检出限水平;复杂的生物基体往往也会影响ICP-MS或色谱-ICP-MS测定结果的准确性。因此,研究/探索/发展合适的样品前处理技术对目标分析物进行富集,同时与基体分离,进一步改善方法的分析性能,是目前分析化学中的一个重要研究方向。另外,基于元素与生物分子间的相互作用,发展元素标记ICP-MS及其联用技术新方法用于生物分析不仅会拓宽ICP-MS技术的应用领域,对于进一步研究元素在生命体内的代谢、毒性及生物活性也具有重要价值。
     本论文的研究目的是:发展高效液相色谱(HPLC)-ICP-MS联用技术用于生物样品中元素形态分析的新方法;探讨新型样品前处理技术,并与HPLC-ICP-MS联用在生物样品中元素形态分析中的应用;建立芯片微型化样品前处理技术,拓展ICP-MS技术在细胞分析及蛋白质定量中的新应用。本论文的主要研究内容包括:
     (1)将两性离子胆汁酸衍生物3-[3-(胆酰胺基丙基)二甲氨基]丙磺酸盐(CHAPS)作为C18柱动态改性试剂,建立了HPLC-UV/ICP-MS在线联用直接分析人血清中Al形态的新方法。以Al-Cit和Al-Tf分别作为小分子络合铝和大分子蛋白铝的代表分析物,详细考察了CHAPS改性C18柱分离不同Al形态的色谱条件。在最优条件下,大分子蛋白铝和小分子络合铝在4 min内即可实现分离,方法测定Al-Cit和Al-Tf的检出限分别为0.83和0.74μg L-1。将所建立的方法用于健康人和慢性渗析病人血清中Al-Tf和Al-Cit的分析,结果显示Al-Tf约占人血清中总Al的87.4-91.1%,Al-Cit仅占总Al的7.1-15.2%。本方法简便、快速、无需复杂样品前处理,有效地提高了分析效率且避免了A1形态在分析过程中的转变。
     (2)以烷基咪唑类离子液体作为HPLC流动相的添加剂,建立了离子液体改性反相(RP)-HPLC-ICP-MS联用技术用于生物样品中硒形态分析的新方法。以亚硒酸盐(Se(Ⅳ))、硒酸盐(Se(Ⅵ))、硒胱氨酸(SeCys2)、硒蛋氨酸(SeMet)、甲基硒代半胱氨酸(MeSeCys)和硒代乙硫氨酸(SeEt)为目标分析物,采用C18柱作为固定相,详细考察了烷基咪唑类离子液体作为流动相添加剂,其种类、浓度和比例等因素对六种目标硒形态分离的影响。在优化的流动相组成为0.4%(v/v)[BMMIM]BF4和0.4%(v/v) [BMIM]Cl的水溶液时,六种目标硒形态在8 min内实现分离。采用标准样品SELM-1验证本方法的准确性,测定值与参考值吻合良好。最后,将所建立的方法应用于富硒酵母和富硒苜蓿草中硒的形态分析。结果表明,富硒酵母和富硒苜蓿草中存在的主要水溶态硒是SeMet和SeCys2,并通过SeCys2加标实验发现在活的酵母细胞中,添加的SeCys2在多步酶的作用下会转变成SeMet。本方法通过选择合适的离子液体作为HPLC流动相添加剂以调整目标分析物的保留行为,具有操作简便和进样量少的优点,在生命体系的元素形态分析中有很大的应用潜力。
     (3)通过乳液聚合一步合成法制备了新型聚苯乙烯磺酸钠包裹的Fe3O4磁性纳米粒子(Fe3O4@PSS)。通过改变样品溶液的pH值调节硒氨基酸的存在状态,使之与Fe3O4@PSS磁性纳米粒子上的磺酸基发生阳离子交换吸附,建立了磁固相萃取(MSPE)-HPLC-ICP-MS用于富硒酵母中硒氨基酸形态分析的新方法。实验中以SeCys2、SeMet、MeSeCys、γ-谷酰基-甲基硒代半胱氨酸(GluMeSeCys)和SeEt为目标分析物,对MSPE萃取硒氨基酸的影响因素进行了详细考察。在优化的条件下,方法对五种硒氨基酸的检出限(LODs,3σ)为21.5-89.9 ng L-1,相对标准偏差(RSDs, n=7)为6.7-12%,富集倍数在10-92倍之间,线性范围达3个数量级(R2>0.99)。采用标准样品SELM-1验证本方法的准确性,测定值与参考值吻合良好。最后,将所建立的方法成功用于富硒酵母细胞中硒氨基酸的形态分析,加标回收率在78.8-106%之间。与其他方法相比,本方法具有吸附/解吸动力学快、富集倍数高、检出限低、可进行批操作、廉价等优点。
     (4)建立了新型混合涂层改性的中空纤维膜管内固相微萃取(in-tube HF-SPME)与HPLC-ICP-MS在线联用用于生物样品中砷形态分析的新方法。实验中将自制的γ-巯丙基三甲氧基硅烷(γMPTS)/N-(p-氨乙基)-γ-氨丙基三甲氧基硅烷(AAPTS)混合溶胶以及部分磺化聚苯乙烯(PSP)先后涂覆于中空纤维膜内表面,并对所得改性材料进行了红外和扫描电镜表征。以亚砷酸钠(As(Ⅲ))、砷酸钠(As(V))、单甲基砷酸(MMA)、二甲基砷酸(DMA)、砷胆碱(AsB)和砷甜菜碱(AsC)为目标分析物,详细考察了影响in-tubeHF-SPME的一系列因素。在最优条件下,该方法的样品通量为6.5 h-1,检出限在0.017-0.053μgL-1范围内,富集倍数为4-19倍。为了验证方法的准确性,将本方法用于标准样品狗鱼(DORM-2)和人尿(CRM No.18)中砷的形态分析,测定值与标准值吻合良好。将本方法用于健康人尿液中砷形态的直接分析,加标回收率在92.2-107%之间。本方法具有较好的富集能力和优良的样品基质净化功能,可直接用于生命流体(如尿液)中砷的形态分析,避免了生命流体直接引入RP-HPLC引起的蛋白质在反相柱上的不可逆吸附等问题。
     (5)以磁性纳米粒子自组装堆积方式制备了芯片磁固相填充柱,实现了磁固相萃取技术和细胞样品引入技术在芯片上的整合,首次建立了芯片磁固相萃取-电热蒸发(ETV)-ICP-MS新方法,并将其应用于细胞中痕量重金属元素镉(Cd)、汞(Hg)和铅(Pb)的分析。在外加磁场作用下将自制的yMPTS改性纳米磁硅球填充于芯片主通道,对芯片磁固相填充柱的形成机理、影响因素以及影响芯片磁固相萃取的一系列因素进行了详细考察。在优化的实验条件下,方法对Cd、Hg和Pb的检出限达到0.72、0.82和1.16 ngL-1,富集倍数分别为45.0、41.6和48.7倍。将该方法用于HepG2肝癌细胞中痕量Cd、Hg和Pb的测定时,细胞经计数后直接引入微流控芯片进行在线破壁、混合、萃取和洗脱,将洗脱液引入ETV-ICP-MS进行测定。在仅消耗约5000个细胞的情况下,得出了单个HepG2肝癌细胞中Cd、Hg和Pb的含量在fg/亚fg级。本方法为金属组学的研究提供了新的思路。
     (6)基于PbS纳米粒子标记,提出了芯片磁固相免疫与ETV-ICP-MS联用高灵敏检测人血清中癌胚抗原(CEA)的新方法。设计并制备了用于免疫分析的微流控芯片装置,将亚氨基二乙酸(IDA)修饰的磁性纳米粒子填充于芯片主通道作为载体固定一抗,在芯片上完成一抗-抗原-PbS纳米粒子标记的二抗之间的夹心免疫反应。用甲酸洗脱标记在夹心免疫复合物上的PbS,通过ETV-ICP-MS定量测定Pb的浓度从而实现对CEA的定量分析。实验对一系列影响免疫反应的参数进行了考察,确定了最优分析条件。在此条件下,方法测定CEA的检出限为0.058μg L-1,相对标准偏差(RSDs,n=7)为6.7%,线性范围为0.2-50μg L-1,适用于正常人体内的CEA含量的分析。最后,将本方法应用于人血清中CEA的测定,结果与临床化学发光免疫法所得的测定值吻合良好,说明本方法在临床诊断和治疗癌症过程中具有一定的应用前景。
     (7)将吡咯烷二硫代氨基甲酸盐(APDC)作为浊点萃取(CPE)中的化学螯合剂以及ETV-ICP-MS测定中的化学改性剂,建立了基于非离子表面活性剂Triton X-114的CPE与低温ETV-ICP-MS联用用于环境水体中无机硒形态分析的新方法。当温度高于TritonX-114的浊点温度时,在pH值2.5-3.5的范围内,Se(Ⅳ)能与APDC生成疏水性螯合物被萃取到富胶束相中,与水相中的Se(VI)实现分离;待测物以Se(IV)-APDC螯合物的形式在ETV中蒸发有效地降低了Se的蒸发温度,延长了石墨管的使用寿命。将Se(VI)还原为Se(IV),测定样品溶液中总Se的含量,通过总硒与Se(Ⅳ)的含量差减得到Se(VI)的含量。本文对影响CPE分离富集和ETV-ICP-MS检测的诸因素进行了考察。在最优的条件下,本法测定Se(Ⅳ)的检出限为8.0 ng L-1,富集倍数为39倍,相对标准偏差(RSDs, n=7)为3.93%。为了验证方法的准确性,将本方法用于环境标准水样GSB07-1253-2000中Se的分析,测定值与参考值吻合良好。最后,将建立的方法用于环境水样中痕量无机硒的价态分析,加标回收率在82-102%之间。
Trace elements play important roles in the organisms. The bioactivity, bioavailability and toxicity of the elements are not only dependent on their total amount, but also highly dependent on their existing species. Therefore, trace/ultra-trace elements and their speciation analysis in biological systems are of great significance. In bioanalysis, the sample volume is always very limited, the sample matrices is always complex, and elements or their species always occur in extremely low concentration. For these reasons, trace/ultra-trace elements and their speciation analysis in biological system have become a hot and challenging topic in analytical chemistry.
     Inductivity coupled plasma mass spectrometry (ICP-MS) is one of the most powerful methods for trace/ultra-trace elements analysis due to its outstanding advantages including high sensitivity, high sample throughput, wide linear dynamic range, multi-element detection and isotope analysis ability. Hyphenated techniques by combining high efficient separation techniques with ICP-MS is one of the most effective and widely-used methods for elemental speciation. Sample pretreatment techniques aiming to preconcentrate the analytes and separate them from matrix can effectively improve the analytical performance. Therefore, exploring novel miniaturized, high sensitive and effective ICP-MS based hyphenated techniques is highly demanded for trace/ultra-trace elements and their speciation analysis in biological systems. Biomarcromolecules analysis by elemental labeling ICP-MS is one of the newest advances of ICP-MS, developing elemental labelling ICP-MS methods based on the interaction between the elements and the bio-molecules is extremely significance for proteomics and metallomics.
     The aim of this dissertation is to develop high performance liquid chromatography (HPLC)-ICP-MS hyphenated new methods for elemental speciation in biological samples; to investigate novel sample pretreatment techniques for elemental speciation in biological samples; and to develop chip-based sample pretreatment techniques for electrothermal vaporization (ETV)-ICP-MS determination of ultra-trace elements in cells and quantification of protein in biological samples. The major contents of this dissertation are described as follows:
     (1) A C18 column dynamically coated with zwitterionic bile acid derivative, 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate (CHAPS), was used for direct injection HPLC-UV/ICP-MS speciation of aluminum (Al) in non-spiking human serum. Small molecule Al-complex compounds of Al-citrate (Al-Cit) and large molecule Al-protein compounds of Al-transferrin (Al-Tf) were chosen as the model species and their retention behaviors on CHAPS modified C18 column were studied with UV and on-line ICP-MS detection in details. Under the optimal conditions, large-molecule Al-protein compounds and small molecule Al-complex compounds could be separated within 4 min. The detection limits of the method (LODs,3σ) were 0.74 and 0.83 ng mL-1 with the relative standard deviations (RSDs, n=7) of 2.8% and 3.0% for Al-Tf and Al-Cit, respectively. The developed method was applied to the speciation of Al in real healthy human serum and chronic hemodialysis patient serum, the experimental results show that the most of Al exists as Al-protein, and the small amount of Al exists as small molecule Al-complex compounds in human serum. Compared with the reported methods in the literature, this method has several attractive features such as simplicity, rapidness, no sample preparation required, and it provides a new strategy for studying trace amount elemental speciation in human body liquids.
     (2) A new method based on room-temperature ionic liquids (RTILs) improved reversed-phase (RP)-HPLC-ICP-MS for selenium speciation has been developed. The different parameters affecting the retention behaviors of six target selenium species especially the effect of RTILs as mobile phase additives have been studied, it was found that the mobile phase consisting of 0.4%(v/v) 1-Butyl-3-methylimidazolium chloride ([BMIM]Cl),0.4% (v/v) 1-Butyl-2,3-dimethylimidazolium tetrafluroborate ([BMMIM]BF4) and 99.2%(v/v) water has effectively improved the peak profile and six target selenium species including Na2Se03 (Se(IV)), Na2Se04 (Se(VI)), L-Selenocystine (SeCys2), DL-Selenomethionine (SeMet), Se-methylseleno-L-Cysteine (MeSeCys), Seleno-D, L-Ethionine (SeEt) were separated within 8 min. The developed method was validated and successfully applied to the speciation of selenium in Se-enriched yeasts and clover. For fresh Se-enriched yeast cells, it was found that the spiked SeCys2 in living yeast cells could transform to SeMet. Compared with other RP- ion-pair (IP)-HPLC-ICP-MS approaches for selenium speciation, the proposed method possessed the advantages including ability to regulate the retention time of the target selenium species by selecting the suitable RTILs and adjusting their concentration, simplicity, rapidness and low injection volume, thus providing wide potential applications for elemental speciation in biological systems.
     (3) A new sorbent of poly[styrene-co-(sodium styrene sulfonate)-co-divinylbenzene] coated Fe3O4 magnetic nanoparticles (Fe3O4@PSS MNPs) has been synthesized by one step emulsion polymerization. Based on the cation exchange interaction between the sulfonate group on the Fe3O4@PSS MNPs and the target seleno-amino acids, a new method of magnetic solid phase extraction (MSPE)-HPLC-ICP-MS for seleno-amino acids speciation in Se-enriched yeast cells has been developed. Taking SeCys2, MeSeCys, L-y-glutamyl-Se-methyl-L-selenocysteine (GluMeSeCys), SeMet and SeEt as target selenium species, a series of factors that influence the MSPE were investigated in details. The conditions for subsequent HPLC-ICP-MS determination were optimized as well. Under the optimal conditions, the LODs (3σ) for target seleno-amino acids were in the range of 21.5-89.9 ng L-1 with the RSDs (n=7) ranging in 6.7-12%, the enrichment factors were varied from 10 to 92-fold, and the linear ranges were over three orders of magnitudes (R2>0.99). To validate the accuracy of this method, certified reference materials SELM-1 was analyzed, and the determined values were in good agreement with the certified values. The proposed method was also successfully applied for the target seleno-amino acids speciation in Se-enriched yeast cells, and the recoveries for the spiked samples were in the range of 78.8-106%. The proposed MSPE-HPLC-ICP-MS method is characterized with low cost, fast separation, high enrichment factor and low LODs.
     (4) A novel method based on in-tube hollow fiber-solid phase microextraction (in-tube HF-SPME) on-line coupled with RP-IP-HPLC-ICP-MS was developed for arsenic speciation in biological samples. Partial sulfonated poly(styrene) (PSP) and mixed-sol of 3- mercapto propyltrimethoxysilane (yMPTS) and N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (AAPTS) were prepared and coated on the inner surface of polypropylene HF. The prepared yMPTS-AAPTS/PSP coated HF was characterized by FT-IR spectroscopy and scanning electron microscope (SEM). With arsenite (As(III)), arsenate (As(V)), monomethylarsonic acid (MMA), dimethylarsenic acid (DMA), arsenobetaine (AsB) and arsenocholine (AsC) as target arsenic species, a series of factors that influence the in-tube HF-SPME were investigated in details, such as pH value, sample volume and flow rate, elution conditions and interference of co-existing ions. Under the optimal conditions, the sample frequency was 6.5 h-1, the LODs (3σ) for target arsenic species were in the range of 0.017-0.053μg L-1 with RSDs (n=7) ranging in 1.5-5.2%, and the enrichment factors were varied from 4 to 19-fold. To validate the accuracy of this method, certified reference materials DORM-2 (dogfish) and CRM No.18 (human urine) were analyzed, and the determined values were in good agreement with the certified values. The proposed method was also successfully applied for arsenic speciation in healthy human urine samples, and the recoveries for the spiked samples were in the range of 92.6-107%. The proposed in-tube HF-SPME-HPLC-ICP-MS method is low cost, time- and labor-saving, and suitable for simultaneously organic and inorganic arsenic speciation in biological samples.
     (5) Quantitative analysis of trace levels of heavy metals in human cells is critical to environmental and toxicological research. A new strategy for determining ultratrace levels of cadmium (Cd), mercury (Hg), and lead (Pb) in cultured cells was described. It involves the integration of cell sample introduction and magnetic solid phase microextraction (MSPME) on a microfluidic chip, combined with ETV-ICP-MS detection.γ-mercaptopropyl-trimethoxysilane (yMPTS) modified silica-coated magnetic nanoparticles were synthesized and employed as the extraction material for microextraction of Cd, Pb, and Hg. Under an external magnetic field, these magnetic nanoparticles were self-assembled in microchannels to form a solid phase packed column. The formation mechanism of the on-chip magnetic solid phase packed column and the main factors influencing the packing and analytical performance were investigated. Under the optimized conditions, MSPME enabled enrichment of Cd, Hg, and Pb by a factor of>40, and resulted in improved LODs (3σ) for Cd (0.72 ng L-1), Hg (0.86 ng L-1), and Pb (1.12 ng L-1) using ETV-ICP-MS. Quantitative analysis of trace Cd, Hg and Pb in HepG2 cells were achieved by applying the microfluidic system that integrated cell rupture, mixing, magnetic extraction and elution into one device, followed by ultrasensitive detection of ETV-ICP-MS, which required only microliter of samples. Analysis of approximately 5000 cells revealed that the average amounts of Cd, Hg and Pb in a single HepG2 cell were on the order of a few femtograms, and that the cellular levels increased with increasing concentrations of these metals in cell cultures. The concentrations of Cd, Hg, and Pb detectable in HepG2 cells were several orders of magnitude lower than their IC50 values, suggesting that the technique is potentially useful for measuring these heavy metals in studies of chronic metal toxicity.
     (6) A sensitive and selective method of magnetic immunoassay on microfluidic chip based on a sandwich-type immunoreaction with PbS nanoparticle (NPs) labels combined with ETV-ICP-MS was proposed for the determination of carcinoembryonic antigen (CEA). For this purpose, a microfluidic chip for magnetic immunoassay was designed and fabricated, the prepared iminodiacetic acid (IDA) modified silica coated magnetic nanoparticles (MNPs) was packed in its central microchannel to form a solid phase column by self-assembly under the magnetic field. After a complete immunoreaction among primary antibody, CEA and secondary antibody labeled with PbS NPs on magnetic solid phase packed-column, the concentration of CEA was quantified by ETV-ICP-MS determination of Pb released from captured PbS NPs with an acid-dissolution step. By optimizing a series conditions for immunoassay including blocking, incubation and elution, the established method presented a LOD (3σ) of 0.058μg L-1 for CEA based on the Pb signal, with the RSD (n=7) of 6.7%. The response of the method for CEA was linear over a dynamic range from 0.2 to 50μg L-1, and the enrichment factor of 2-folds (from 60μL sample to 30μL elution) was obtained. The proposed method was successfully applied for CEA determination in real human serum, and the analytical results are in good agreement with that obtained by the currently used clinical analytical method of chemiluminescent immunoassay. The developed method represents various advantages such as fast speed, sensitivity, selectivity, low sample/reagents consumption, versatility, and can be easily extended to other biological and medical assays.
     (7) A new method based on cloud point extraction (CPE)-ETV-ICP-MS has been proposed for the speciation of inorganic selenium in environmental waters. When the temperature of the system is higher than the cloud point temperature (CPT) of the selected surfactant Triton X-114, the complex of Se(IV) with ammonium pyrrolidine dithiocarbamate (APDC) can be extracted into the surfactant-rich phase, whereas the Se(VI) remains in aqueous solutions. Thus, an in situ separation of Se(IV) and Se(VI) and the preconcentration of Se(IV) could be realized. The surfactant-rich phase was diluted to 200μL with methanol and 10μL of them was introduced into the ETV-ICP-MS for subsequently determination. For Se(VI) determination, Se(VI) was reduced to Se(IV) prior to CPE, and its assay was based on subtracting Se(IV) from total selenium. The main factors affecting the CPE and the vaporization behavior of the analyte were investigated in details. Under the optimized experimental conditions, the LOD for Se(IV) was 8.0 ng L-1 with an enhancement factor of 39 when 10 mL of sample solution was preconcentrated to 0.2 mL. The RSD (n=7) was found to be 3.9%. The proposed method was validated and applied to the speciation of inorganic selenium in different environmental water samples with the recoveries for the spiked samples in the range of 82-102%.
引文
1. D.M. Templeton, F. Ariese, R. Cornelis, L.G. Danielsson, H. Muntau, H.P. Van Leeuwen, R. Lobinski, Guidelines for terms related to chemical speciation and fractionation of elements. Definitions, structural aspects, and methodological approaches (IUPAC Recommendations 2000). Pure Appl. Chem.,2000,72:1453-1470.
    2. H. Haraguchi, Metallomics as integrated biometal science. J. Anal. At. Spectrom.,2004,19:5-14.
    3. C.F. Harrington, R. Clough, H.R. Hansen, S.J. Hill, J.F. Tyson, Atomic spectrometry update. Elemental speciation. J. Anal. At. Spectrom.,2010,25:1185-1216.
    4. W. Shi, M.R. Chance, Metallomics and metalloproteomics. Cell. Mol. Life ScL,2008,65:3040-3048.
    5. R. Lobinski, C. Moulin, R. Ortega, Imaging and speciation of trace elements in biological environment. Biochimie,2006,88:1591-1604.
    6. J. Szpunar, Advances in analytical methodology for bioinorganic speciation analysis:metallomics, metalloproteomics and heteroatom-tagged proteomics and metabolomics. Analyst,2005,130: 442-465.
    7. S.J. Ray, F. Andrade, G. Gamez, D. McClenathan, D. Rogers, G. Schilling, W. Wetzel, G.M. Hieftje, Plasma-source mass spectrometry for speciation analysis:state-of-the-art. J. Chromatogr. A,2004, 1050:3-34.
    8. N. Jakubowski, R. Lobinski, L. Moens, Metallobiomolecules. The basis of life, the challenge of atomic spectroscopy. J. Anal. At. Spectrom.,2004,19:1-4.
    9. M. Montes-Bayon, K. DeNicola, J.A. Caruso, Liquid chromatography-inductively coupled plasma mass spectrometry. J. Chromatogr. A,2003,1000:457-476.
    10. B. Michalke, The coupling of LC to ICP-MS in element speciation:Ⅰ. General aspects. Trac-Trends Anal. Chem.,2002,21:142-153.
    11. B. Michalke, The coupling of LC to ICP-MS in element speciation-Part Ⅱ:Recent trends in application. Trac-Trends Anal. Chem.,2002,21:154-165.
    12. C.N. Ferrarello, M.R.F. de la Campa, A. Sanz-Medel, Multielement trace-element speciation in metal-biomolecules by chromatography coupled with ICP-MS. Anal. Bioanal. Chem.,2002,373:412-421.
    13. J. A. Caruso, K. L. Sutton, K.L. Ackley, Elemental speciation:new approaches for trace element analysis.2000, Elsevier.
    14. J. Szpunar, R. Lobinski, Hyphenated techniques in speciation analysis.2003, Royal Society of Chemistry.
    15. R. Cornelis, J. Caruso, H. Crews, K. Heumann, Handbook of elemental speciation Ⅱ:species in the environment, food, medicine & occupational health.2005, John Wiley and Sons.
    16. R. Cornelis, J. Caruso, K.G. Heumann, Handbook of elemental speciation:techniques and methodology.2003, John Wiley and Sons.
    17.胡斌,江组成,色谱-原子光谱/质谱联用技术及形态分析.2005,北京:科学出版社.
    18. R. S. Houk, V. A. Fassel, G. D. Flesch, H. J. Svec, A. L. Gray, C.E. Taylor, Inductively coupled argon plasma as an ion source for mass spectrometric determination of trace elements. Anal. Chem.,1980, 52:2283-2289.
    19. K. Cottingham, ICPMS:It's elemental. Anal. Chem.,2004,76:35A-38A.
    20. J.S. Becher, Inorganic mass spectrometry:principles and applications.2007, Wiley-Interscience.
    21. G Holland, S.D. Tanner, Plasma source mass spectrometry:the new millennium.2001, Royal Society of Chemistry.
    22. S.J. Hill, Inductively coupled plasma spectrometry and its application.2006, Wiley-Blckwell.
    23. J.R.d. Laster, Application of inorganic mass spectrometry.2001, Wiley-IEEE.
    24. H.E. Taylor, Inductively coupled plasma-mass spectrometry.2001, Academic Press.
    25. A. R. Date, A.L. Gray, Application of Inductively Coupled Plasma Mass Spectrometry.1989, Wiley.
    26. K. E. Jarvis, A. L. Gray, R.S. Houk, Handbook of Inductively Coupled Plasma Mass Spectrometry. 1992, Blackie.
    27.李金英,姚继军译,电感耦合等离子体质谱分析的应用.1998,北京:原子能出版社.
    28.尹明,李冰译,电感耦合等离子体质谱手册.1997,北京:原子能出版社.
    29. D. Beauchemin, Inductively coupled plasma mass spectrometry. Anal. Chem.,2002,74:2873-2893.
    30. D. Beauchemin, Inductively coupled plasma mass spectrometry. Anal. Chem.,2008,80:4455-4486.
    31. D. Beauchemin, Inductively coupled plasma mass spectrometry. Anal. Chem.,2010,82:4786-4810.
    32. D. Beauchemin, Inductively coupled plasma mass spectrometry. Anal. Chem.,2006,78:4111-4135.
    33. D. Beauchemin, Inductively coupled plasma mass spectrometry. Anal. Chem.,2004,76:3395-3415.
    34.刘虎生,邵宏翔,电感耦合等离子体质谱技术与应用.2005,北京:化学工业出版社.
    35.李冰,杨红霞,电感耦合等离子体质谱原理与应用.2005,北京:地质出版社.
    36.王小如,电感耦合等离子体质谱应用实例.2005,北京:化学工业出版社.
    37. D. Potter, A commercial perspective on the growth and development of the quadrupole ICP-MS market. J. Anal. At. Spectrom.,2008,23:690-693.
    38. R. H. Scott, V. A. Fassel, R. N. Kniseley, D.E. Nixon, Inductively coupled plasma-optical emission analytical spectrometry. Anal. Chem.,1974,46:75-80.
    39. M.A. Tarr, G. Zhu, R.F. Browner, Fundamental aerosol studies with an ultrasonic nebulizer. Appl. Spectrosc,1991,45:1424-1432.
    40. N. Jakubowski, I. Feldmann, D. Stuewer, H. Berndt, Hydraulic high pressure nebulization-application of a new nebulization system for inductively coupled plasma mass spectrometry. Spectrochim. Acta, Part B,1992,47B:119-129.
    41. H. Vanhoe, L. Moens, R. Dams, Thermospray nebulization as sample introduction for inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom.,1994,9:815-821.
    42. I.I. Stewart, G. Horlick, Investigations into chromium speciation by electrospray mass spectrometry. J. Anal. At. Spectrom.,1996,11:1203-1214.
    43. S. Augagneur, B. Medina, J. Szpunar, R. Lobinski, Determination of rare earth elements in wine by inductively coupled plasma mass spectrometry using a microconcentric nebulizer. J. Anal. At. Spectrom.,1996,11:713-721.
    44. S.H. Nam, J.S. Lim, A. Montaser, High-efficiency nebulizer for argon inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom.,1994,9:1357-1362.
    45. T.T. Hoang, S.W. May, R.F. Browner, Developments with the oscillating capillary nebulizer-effects of spray chamber design, droplet size and turbulence on analytical signals and analyte transport efficiency of selected biochemically important organoselenium compounds. J. Anal. At. Spectrom., 2002,17:1575-1581.
    46. R. Garcia-Sanchez, R. Feldhaus, J. Bettmer, L. Ebdon, Lead speciation in rainwater samples by modified fused silica capillaries coupled to a direct injection nebulizer (DIN) for sample introduction in ICP-MS. J. Anal. At. Spectrom.,2001,16:1028-1034.
    47. J.A. McLean, H. Zhang, A. Montaser, A direct injection high-efficiency nebulizer for inductively coupled plasma mass spectrometry. Anal. Chem.,1998,70:1012-1020.
    48. B.W. Acon, J.A. McLean, A. Montaser, A large bore-direct injection high efficiency nebulizer for inductively coupled plasma spectrometry. Anal. Chem.,2000,72:1885-1893.
    49. G. Pearson, G. Greenway, A highly efficient sample introduction system for interfacing microfiuidic chips with ICP-MS. J. Anal. At. Spectrom.,2007,22:657-662.
    50. http://www.cetac.com.
    51. http://www.geicp.com.
    52. http://www.meinhard.com.
    53. M. Aramendia, M. Resano, F. Vanhaecke, Electrothermal vaporization-inductively coupled plasma-mass spectrometry:A versatile tool for tackling challenging samples A critical review. Anal. Chim. Acta,2009,648:23-44.
    54. C.M. Xiong, B. Hu, Headspace trapping of the hydrides on a Pd(II)-coated graphite adsorptive bar as a microextraction method for ETV-ICP-MS determination of Se, Te and Bi in seawater and human hair samples. Talanta,2010,81:578-585.
    55. L.F. Dias, T.D. Saint'Pierre, S.M. Maia, M.A.M. da Silva, V.L.A. Frescura, B. Welz, A.J. Curtius, Determination of arsenic, lead, selenium and tin in sediments by slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry using Ru as permanent modifier and NaCl as a carrier. Spectroc. Acta Pt. B-Atom. Spectr.,2002,57:2003-2015.
    56. M.E. Ben Younes, D.C. Gregoire, C.L. Chakrabarti, Vaporization and removal of silica for the direct analysis of geological materials by slurry sampling electrothermal vaporization-inductively coupled plasma-mass spectrometry. J. Anal. At. Spectrom.,1999,14:1703-1708.
    57. G.Q. Xiang, Z.C. Jiang, M. He, B. Hu, Simultaneously direct determination trace elements and its distribution in ancient tooth samples by slurry sampling-electrothermal vaporization inductively coupled plasma mass spectrometry. Microchim. Acta,2006,154:247-252.
    58. M. He, B. Hu, Z.C. Jiang, Electrothermal vaporization inductively coupled plasma mass spectrometry for the determination of trace amount of lanthanides and yttrium in soil with polytetrafluroethylene emulsion as a chemical modifier. Anal. Chim.Acta,2005,530:105-112.
    59. S.Q. Li, B. Hu, Z.C. Jiang, R. Chen, Direct determination of trace refractory elements in human serum by ETV-ICP-MS with in-situ matrix removal. Anal. Bioanal. Chem.,2004,379:1076-1082.
    60. J. Chen, J. Yin, J.K. Duan, B. Hu, Z.C. Jiang, Study of speciation of aluminum in human serum using capillary electrophoresis separation with on-line UV and off-line fluorination-assisted electrothermal vaporization (FETV)-ICP-MS detection.,At. Spectrosc.,2007,28:51-57.
    61. L.B. Xia, B. Hu, Z.C. Jiang, Y.L. Wu, Y. Liang, Single-drop microextraction combined with low-temperature electrothermal vaporization ICP-MS for the determination of trace Be, Co, Pd, and Cd in biological samples. Anal. Chem.,2004,76:2910-2915.
    62. J. Yin, B. Hu, M. He, Z.C. Jiang, Determination of trace rare earth elements in environmental samples by low temperature electrothermal vaporization inductively coupled plasma mass spectrometry after synergistic extraction with dimethylheptyl methyl phosphate and 1-phenyl-3-methyl-4-benzoyI-pyrazalone-5. Anal. Chim. Acta,2007,594:61-68.
    63. L. Xia, Y. Wu, B. Hu, Hollow-fiber liquid-phase microextraction prior to low-temperature electrothermal vaporization ICP-MS for trace element analysis in environmental and biological samples. J. Mass Spectrom.,2007,42:803-810.
    64. J. Yin, B. Hu, Z.C. Jiang, Chelation-assisted electrothermal vaporization for the ICP-MS determination of trace rare earth impurities in high purity Pr6O11 and Er2O3. At. Spectrosc.,2006,27:207-213.
    65. L. Li, B. Hu, L.B. Xia, Z.C. Jiang, Determination of trace Cd and Pb in environmental and biological samples by ETV-ICP-MS after single-drop microextraction. Talanta,2006,70:468-473.
    66. J.H. Wang, E.H. Hansen, On-line sample-pre-treatment schemes for trace-level determinations of metals by coupling flow injection or sequential injection with ICP-MS. Trac-Trends Anal. Chem., 2003,22:836-846.
    67. X.P. Yan, R. Kerrich, MJ. Hendry, Flow injection on-line group preconcentration and separation of (ultra)trace rare earth elements in environmental and geological samples by precipitation using a knotted reactor as a filterless collector for inductively coupled plasma mass spectrometric determination. J. Anal. At. Spectrom.,1999,14:215-221.
    68. J.H. Wang, E.H. Hansen, Sequential injection lab-on-valve:the third generation of flow injection analysis. Trac-Trends Anal. Chem.,2003,22:225-231.
    69. J.H. Wang, E.H. Hansen, Interfacing sequential injection on-line preconcentration using a renewable micro-column incorporated in a'lab-on-valve'system with direct injection nebulization inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom.,2001,16:1349-1355.
    70. C.B. Zheng, L. Yang, R.E. Sturgeon, X.D. Hou, UV photochemical vapor generation sample introduction for determination of ni, fe, and se in biological tissue by isotope dilution icpms. Anal. Chem.,2010,82:3899-3904.
    71. R.M. Xie, W. Johnson, S. Spayd, G.S. Hall, B. Buckley, Determination of total toxic arsenic species in human urine using hydride generation inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom.,2007,22:553-560.
    72. R.A. Diaz-Bone, M. Hitzke, Multi-element organometal(loid) speciation by hydride generation-GC-ICP-MS:overcoming the problem of species-specific optima by using a pH-gradient during derivatisation. J. Anal. At. Spectrom.,2008,23:861-870.
    73. J. Darrouzes, M. Bueno, S. Simon, F. Pannier, M. Potin-Gautier, Advantages of hydride generation interface for selenium speciation in waters by high performance liquid chromatography-inductively coupled plasma mass spectrometry coupling. Talanta,2008,75:362-368.
    74. T. Nakazato, H. Tao, A high-efficiency photooxidation reactor for speciation of organic arsenicals by liquid chromatography-Hydride generation-ICP-MS. Anal. Chem.,2006,78:1665-1672.
    75. D.D. Richardson, S.S. Kannamkumarath, R.G. Wuilloud, J.A. Caruso, Hydride generation interface for speciation analysis coupling capillary electrophoresis to inductively coupled plasma mass spectrometry. Anal. Chem.,2004,76:7137-7142.
    76. A.L. Gray, Solid sample introduction by laser ablation for inductively coupled plasma source mass spectrometry. Analyst (London),1985,110:551-556.
    77. S.F. Durrant, N.I. Ward, Recent biological and environmental applications of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). J. Anal. At. Spectrom.,2005,20:821-829.
    78. R.E. Russo, X. Mao, H. Liu, J. Gonzalez, S.S. Mao, Laser ablation in analytical chemistry-a review. Talanta,2002,57:425-451.
    79. D. Pozebon, V.L. Dressler, M.F. Mesko, A. Matusch, J.S. Becker, Bioimaging of metals in thin mouse brain section by laser ablation inductively coupled plasma mass spectrometry:novel online quantification strategy using aqueous standards. J. Anal. At. Spectrom.,2010,25:1739-1744.
    80. R. Kovacs, K. Nishiguchi, K. Utani, D. Guenther, Development of direct atmospheric sampling for laser ablation-inductively coupled plasma-mass spectrometry. J. Anal. At. Spectrom.,2010,25: 142-147.
    81. J.S. Becker, A. Matusch, C. Palm, D. Salber, K.A. Morton, J.S. Becker, Bioimaging of metals in brain tissue by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and metallomics. Metallomics,2010,2:104-111.
    82. J.S. Becker, R. Lobinski, J.S. Becker, Metal imaging in non-denaturating 2D electrophoresis gels by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for the detection of metalloproteins. Metallomics,2009,1:312-316.
    83. J.S. Becker, J.S. Becker, Imaging of metals, metalloids, and non-metals by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) in biological tissues. Methods Mol. Biol. (N. Y, NY, U.S.),2010,656:51-82.
    84. B. Bouyssiere, J. Szpunar, R. Lobinski, Gas chromatography with inductively coupled plasma mass spectrometric detection in speciation analysis. Spectroc. Acta Pt. B-Atom. Spectr.,2002,57:805-828.
    85. J.C.A. Wuilloud, R.G. Wuilloud, A.P. Vonderheide, J.A. Caruso, Gas chromatography/plasma spectrometry-an important analytical tool for elemental speciation studies. Spectroc. Acta Pt. B-Atom. Spectr.,2004,59:755-792.
    86. R.N. Easter, J.A. Caruso, A.P. Vonderheide, Recent developments and novel applications in GC-ICP-MS. J. Anal. At. Spectrom.,2010,25:493-502.
    87. I. Rodriguez, S. Mounicou, R. Lobinski, V. Sidelnikov, Y. Patrushev, M. Yamanaka, Species selective analysis by microcolumn multicapillary gas chromatography with inductively coupled plasma mass spectrometric detection. Anal. Chem.,1999,71:4534-4543.
    88. M.J. Watts, A.W. Kim, D.S. Vidler, R.O. Jenkins, J.F. Hall, C.F. Harrington, Construction and evaluation of a low cost interface for the determination of elemental speciation by gas chromatography coupled to inductively coupled plasma mass spectrometry (GC-ICP-MS). Instrum. Sci. Technol,2007,35:15-31.
    89. D. Yan, L.M. Yang, Q.Q. Wang, Alternative thermodiffusion interface for simultaneous speciation of m organic and inorganic lead and mercury species by capillary GC-ICP-MS using tri-n-propyl-lead chloride as an internal standard. Anal. Chem.,2008,80:6104-6109.
    90. B. Bouyssiere, F. Baco, L. Savary, R. Lobinski, Speciation analysis for mercury in gas condensates by capillary gas chromatography with inductively coupled plasma mass spectrometric detection. J. Chromatogr. A,2002,976:431-439.
    91. J.L. Gomez-Ariza, T. Garcia-Barrera, F. Lorenzo, Optimisation of a two-dimensional on-line coupling for the determination of anisoles in wine using ECD and ICP-MS after SPME-GC separation. J. Anal. At. Spectrom.,2005,20:883-888.
    92. J. Kosters, J. Hippler, R.A. Diaz-Bone, A.V. Hirner, Parallel ICP-MS and EI-MS detection after GC separation as a unique tool for simultaneous identification and quantification of volatile heteroatomic organic compounds.J. Anal. At. Spectrom.,2005,20:996-999.
    93. J.K. Duan, X. Li, C.H. Yu, B. Hu, Headspace stir bar sorptive extraction combined with GC-ICP-MS for the speciation of dimethylselenide and dimethyldiselenide in biological samples. J. Anal. At. Spectrom.,2009,24:297-303.
    94. J. Duan, B. Hu, Separation and determination of seleno amino acids using gas chromatography hyphenated with inductively coupled plasma mass spectrometry after hollow fiber liquid phase microextractiion. J. Mass Spectrom.,2009,44:605-612.
    95. M. Bueno, F. Pannier, Quantitative analysis of volatile selenium metabolites in normal urine by headspace solid phase microextraction gas chromatography-inductively coupled plasma mass spectrometry. Talanta,2009,78:759-763.
    96. H.G. Infante, S.P. Joel, E. Warburton, C. Hopley, R. Hearn, S. Juliger, Investigation of the selenium species distribution in a human B-cell lymphoma line by HPLC-and GC-ICP-MS in combination with HPLC-ESI-MS/MS and GC-TOFMS after incubation with methylseleninic acid. J. Anal. At. Spectrom.,2007,22:888-896.
    97. Q. Xiao, B. Hu, M. He, Speciation of butyltin compounds in environmental and biological samples using headspace single drop microextraction coupled with gas chromatography-inductively coupled plasma mass spectrometry. J. Chromatogr. A,2008,1211:135-141.
    98. D.N. Van, T.T.X. Bui, S. Tesfalidet, The transformation of phenyltin species during sample preparation of biological tissues using multi-isotope spike SSID-GC-ICP-MS. Anal. Bioanal. Chem.,2008,392: 737-747.
    99. R.F. Swarthout, J.R. Kucklick, W.C. Davis, The determination of polybrominated diphenyl ether congeners by gas chromatography inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom.,2008,23:1575-1580.
    100. Y. Li, S.J. Liu, D.Q. Jiang, Y. Jiang, X.P. Yan, Gas chromatography-inductively coupled plasma-mass spectrometry for mercury speciation in seafoods. Chin. J. Anal. Chem.,2008,36:793-798.
    101. L. Perna, A. LaCroix-Fralish, S. Sturup, Determination of inorganic mercury and methylmercury in zooplankton and fish samples by speciated isotopic dilution GC-ICP-MS after alkaline digestion. J. Anal. At. Spectrom.,2005,20:236-238.
    102. J. Qvarnstrom, L. Lambertsson, S. Havarinasab, P. Hultman, W. Frech, Determination of methylmercury, ethylmercury, and inorganic mercury in mouse tissues, following administration of thimerosal, by species-specific isotope dilution GC-inductively coupled plasma-MS. Anal. Chem., 2003,75:4120-4124.
    103. N. Fidalgo-Used, M. Montes-Bayon, E. Blanco-Gonzalez, A. Sanz-Medel, Enantio selective determination of the organochlorine pesticide bromocyclen in spiked fish tissue using solid-phase microextraction coupled to gas chromatography with ECD and ICP-MS detection. Talanta,2008,75: 710-716.
    104. M. Shah, J. Meija, B. Cabovska, J.A. Caruso, Determination of phosphoric acid triesters in human plasma using solid-phase microextraction and gas chromatography coupled to inductively coupled plasma mass spectrometry. J. Chromatogr. A,2006,1103:329-336.
    105. P. Jitaru, H.G. Infante, F.C. Adams, Simultaneous multi-elemental speciation analysis of organometallic compounds by solid-phase microextraction and multicapillary gas chromatography hyphenated to inductively coupled plasma-time-of-flight-mass spectrometry. J. Anal. At. Spectrom., 2004,19:867-875.
    106. S. Wehmeier, A. Raab, J. Feldmann, Investigations into the role of methylcobalamin and glutathione for the methylation of antimony using isotopically enriched antimony(Ⅴ). Appl. Organomet. Chem., 2004,18:631-639.
    107. J.W. Olesik, J.A. Kinzer, S.V. Olesik, Capillary electrophoresis inductively coupled plasma spectrometry for rapid elemental speciation. Anal. Chem.,1995,67:1-12.
    108. A.R. Timerbaev, Capillary electrophoresis coupled to mass spectrometry for biospeciation analysis: critical evaluation. Trac-Trends Anal. Chem.,2009,28:416-425.
    109. G. Alvarez-Llamas, M.D. de laCampa, A. Sanz-Medel, ICP-MS for specific detection in capillary electrophoresis. Trac-Trends Anal. Chem.,2005,24:28-36.
    110. X.B. Tin, Y. Li, X.P. Yan, CE-ICP-MS for studying interactions between metals and biomolecules. Trac-Trends Anal. Chem.,2008,27:554-565.
    111.S.S. Kannamkumarath, K. Wrobel, C. B'Hymer, J.A. Caruso, Capillary electrophoresis-inductively coupled plasma-mass spectrometry:an attractive complementary technique for elemental speciation analysis. J. Chromatogr. A,2002,975:245-266.
    112. J.E. Sonke, V.J.M. Salters, Capillary electrophoresis-high resolution sector field inductively coupled plasma mass spectrometry. J. Chromatogr. A,2007,1159:63-74.
    113. A. Prange, D. Profrock, Application of CE-ICP-MS and CE-ESI-MS in metalloproteomics:challenges, developments, and limitations. Anal. Bioanal. Chem.,2005,383:372-389.
    114. A.R. Timerbaev, Recent trends in CE of inorganic cons:From individual to multiple elemental species analysis. Electrophoresis,2007,28:3420-3435.
    115. B. Michalke, Capillary electrophoresis-inductively coupled plasma-mass spectrometry:A report on technical principles and problem solutions, potential, and limitations of this technology as well as on examples of application. Electrophoresis,2005,26:1584-1597.
    116. Stewart, Ⅱ, J.W. Olesik, Investigation of Cr(Ⅲ) hydrolytic polymerisation products by capillary electrophoresis-inductively coupled plasma-mass spectrometry. J. Chromatogr. A,2000,872: 227-246.
    117. G.D. Yang, J.H. Xu, J.P. Zheng, X.Q. Xu, W. Wang, L.J. Xu, G.N. Chen, F.F. Fu, Speciation analysis of arsenic in Mya arenaria Linnaeus and Shrimp with capillary electrophoresis-inductively coupled plasma mass spectrometry. Talanta,2009,78:471-476.
    118. B. Michalke, A. Berthele, P. Mistriotis, M. Ochsenkuhn-Petropoulou, S. Halbach, Manganese speciation in human cerebrospinal fluid using CZE coupled to inductively coupled plasma MS. Electrophoresis,2007,28:1380-1386.
    119. A. Standler, G. Koellensperger, W. Buchberger, G. Stingeder, S. Hann, Determination of chloroplatinates by CE coupled to inductively coupled plasma sector field MS. Electrophoresis,2007, 28:3492-3499.
    120. L. Bendahl, B. Gammelgaard, O. Jons, O. Farver, S.H. Hansen, Interfacing capillary electrophoresis with inductively coupled plasma mass spectrometry by direct injection nebulization for selenium speciation. J. Anal. At. Spectrom.,2001,16:38-42.
    121. D. Schaumloffel, A. Prange, A new interface for combining capillary electrophoresis with inductively coupled plasma-mass spectrometry. Fresenins J. Anal. Chem.,1999,364:452-456.
    122. M.S. da Rocha, A.B. Soldado, E. Blanco, A. Sanz-Medel, Speciation of mercury using capillary electrophoresis coupled to volatile species generation-inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom.,2001,16:951-956.
    123. B. Michalke, Capillary electrophoresis-a useful tool in speciation investigations. Fresenius'J. Anal. Chem.,1996,354:557-565.
    124. M.W. Hsieh, C.L. Liu, J.H. Chen, S.J. Jiang, Speciation analysis of arsenic and selenium compounds by CE-dynamic reaction cell-ICP-MS. Electrophoresis,2010,31:2272-2278.
    125.G.D. Yang, X.Q. Xu, M.C. Shen, W. Wang, L.J. Xu, G.N. Chen, F.F. Fu, Determination of organophosphorus pesticides by capillary electrophoresis-inductively coupled plasma mass spectrometry with collective sample-introduction technique. Electrophoresis,2009,30:1718-1723.
    126. K. Polec-Pawlak, J.K. Abramski, J. Ferenc, L.S. Foteeva, A.R. Timerbaev, B.K. Keppler, M. Jarosz, Application of capillary electrophoresis-inductively coupled plasma mass spectrometry to comparative studying of the reactivity of antitumor ruthenium(Ⅲ) complexes differing in the nature of counter-ion toward human serum proteins. J. Chromatogr. A,2008,1192:323-326.
    127. K. Polec-Pawlak, J.K. Abramski, O. Semenova, C.G. Hartinger, A.R. Timerbaev, B.K. Keppler, M. Jarosz, Platinum group metallodrug-protein binding studies by capillary electrophoresis-inductively coupled plasma-mass spectrometry:A further insight into the reactivity of a novel antitumor ruthenium(Ⅲ) complex toward human serum proteins. Electrophoresis,2006,27:1128-1135.
    128. J.H. Chen, S.J. Jiang, Determination of cobalamin in nutritive supplements and chlorella foods by capillary electrophoresis-inductively coupled plasma mass spectrometry. J. Agric. Food Chem.,2008, 56:1210-1215.
    129. V. Van Lierde, C.C. Chery, N. Roche, S. Monstrey, L. Moens, F. Vanhaecke, In vitro permeation of chromium species through porcine and human skin as determined by capillary electrophoresis-inductively coupled plasma-sector field mass spectrometry. Anal. Bioanal. Chem., 2006,384:378-384.
    130. M. Montes-Bayon, D. Profrock, A. Sanz-Medel, A. Prange, Direct comparison of capillary electrophoresis and capillary liquid chromatography hyphenated to collision-cell inductively coupled plasma mass spectrometry for the investigation of Cd-, Cu-and Zn-containing metalloproteins.J. Chromatogr. A,2006,1114:138-144.
    131. C. Wolf, D. Schaumloffel, A.N. Richarz, A. Prange, P. Bratter, CZE-ICP-MS separation of metallothioneins in human brain cytosols:comparability of electropherograms obtained from different sample matrices. Analyst,2003,128:576-580.
    132. D. Profrock, A. Prange, D. Schaumloffel, W. Ruck, Optimization of capillary electrophoresis-inductively coupled plasma mass spectrometry for species analysis of metallothionein-like proteins extracted from liver tissues of Elbe-bream and Roe deer. Spectroc. Acta Pt. B-Atom. Spectr.,2003,58:1403-1415.
    133. T.H. Lee, S.J. Jiang, Speciation of lead compounds in fish by capillary electrophoresis-inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom.,2005,20:1270-1274.
    134. C.F. Yeh, S.J. Jiang, T.S. Hsi, Determination of sulfur-containing amino acids by capillary electrophoresis dynamic reaction cell inductively coupled plasma mass spectrometry. Anal. Chim. Acta,2004,502:57-63.
    135. V. Van Lierde, C.C. Chery, K. Strijckmans, M. Galleni, B. Devreese, J. Van Beeumen, L. Moens, F. Vanhaecke, Capillary electrophoresis hyphenated to inductively coupled plasma-sector field-mass spectrometry for the stoichiometric determination of Zn bound to Aeromonas hydrophila Zn beta-lactamase. J. Anal. At. Spectrom.,2004,19:888-893.
    136. D. Profrock, P. Leonhard, A. Prange, Determination of phosphorus in phosphorylated deoxyribonucleotides using capillary electrophoresis and high performance liquid chromatography hyphenated to inductively coupled plasma mass spectrometry with an octopole reaction cell. J. Anal. At. Spectrom.,2003,18:708-713.
    137. T.B. Wang, Liquid chromatography-Inductively coupled plasma mass spectrometry (LC-ICP-MS). J. Liq. Chromatogr. Relat. Technol.,2007,30:807-831.
    138. W.R. LaCourse, Column liquid chromatography:Equipment and instrumentation. Anal. Chem.,2002, 74:2813-2831.
    139. S.A. Pergantis, E.M. Heithmar, T.A. Hinners, Microscale Flow Injection and microbore high-performance liquid chromatography coupled with inductively coupled plasma mass spectrometry via a high-efficiency nebulizer. Anal. Chem.,1995,67:4530-4535.
    140. A. Woller, H. Garraud, J. Boisson, A.M. Dorthe, P. Fodor, O.F.X. Donard, Simultaneous speciation of redox species of arsenic and selenium using an anion-exchange microbore column coupled with a micro-concentric nebulizer and an inductively coupled plasma mass spectrometer as detector. J. Anal. At. Spectrom.,1998,13:141-149.
    141. B.P. Jensen, B. Gammelgaard, S.H. Hansen, J.V. Andersen, Comparison of direct injection nebulizer and desolvating microconcentric nebulizer for analysis of chlorine-, bromine-and iodine-containing compounds by reversed phase HPLC with ICP-MS detection. J. Anal. At. Spectrom.,2003,18: 891-896.
    142. M. Wind, A. Eisenmenger, W.D. Lehmann, Modified direct injection high efficiency nebulizer with minimized dead volume for the analysis of biological samples by micro-and nano-LC-ICP-MS. J. Anal. At. Spectrom.,2002,17:21-26.
    143. L. Wang, S.W. May, R.F. Browner, Low-flow interface for liquid chromatography-inductively coupled plasma mass spectrometry speciation using an oscillating capillary nebulizer. J. Anal. At. Spectrom., 1996,11:1137-1146.
    144. J. Manuel Marchante-Gayon, C. Thomas, I. Feldmann, N. Jakubowski, Comparison of different nebulizers and chromatographic techniques for the speciation of selenium in nutritional commercial supplements by hexapole collision and reaction cell ICP-MS.J. Anal. At. Spectrom.,2000,15: 1093-1102.
    145. K.L. Ackley, K.L. Sutton, J.A. Caruso, A comparison of nebulizers for microbore LC-ICP-MS with mobile phases containing methanol. J. Anal. At. Spectrom.,2000,15:1069-1073.
    146. C. B'Hymer, K.L. Sutton, J.A. Caruso, Comparison of four nebulizer-spray chamber interfaces for the high-performance liquid chromatographic separation of arsenic compounds using inductively coupled plasma mass spectrometric detection. J. Anal. At. Spectrom.,1998,13:855-858.
    147. K.E. Lokits, P.A. Limbach, J.A. Caruso, Interfaces for capillary LC with ICP-MS detection:A comparison of nebulizers/spray chamber configurations. J. Anal. At. Spectrom.,2009,24:528-534.
    148. Z. Stefanka, G. Koellensperger, G. Stingeder, S. Hann, Down-scaling narrowbore LC-ICP-MS to capillary LC-ICP-MS:a comparative study of different introduction systems. J. Anal. At. Spectrom., 2006,21:86-89.
    149. D. Proefrock, P. Leonhard, W. Ruck, A. Prange, Development and characterisation of a new interface for coupling capillary LC with collision-cell ICP-MS and its application for phosphorylation profiling of tryptic protein digests. Anal. Bioanal. Chem.,2005,381:194-204.
    150. D. Schaumloeffel, J. Ruiz-Encinar, R. Lobinski, Development of a sheathless interface between reversed-phase capillary HPLC and ICP-MS via a microflow total consumption nebulizer for selenopeptide mapping. Anal. Chem.,2003,75:6837-6842.
    151. P. Giusti, R. Lobinski, J. Szpunar, D. Schaumloeffel, Development of a Nebulizer for a Sheathless Interfacing ofNanoHPLC and ICPMS. Anal. Chem.,2006,78:965-971.
    152. J.M.G. LaFuente, J.M. Marchante-Gayon, M.L.F. Sanchez, A. Sanz-Medel, Urinary selenium speciation by high-performance liquid chromatography-inductively coupled plasma mass spectrometry:advantages of detection with a double-focusing mass analyser with a hydride generation interface. Talanta,1999,50:207-217.
    153. H.G. Infante, M.L.F. Sanchez, A. Sanz-Medel, Cadmium-bound species in human urine using high-performance liquid chromatography-vesicular hydride generation-inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom.,1999,14:1343-1348.
    154. J.J. Thompson, R.S. Houk, Inductively coupled plasma mass spectrometric detection for multielement flow injection analysis and elemental speciation by reversed-phase liquid chromatography. Anal. Chem.,1986,58:2541-2548.
    155. J. Szpunar, Bio-inorganic speciation analysis by hyphenated techniques. Analyst,2000,125:963-988.
    156. J.R. Encinar, L. Ouerdane, W. Buchmann, J. Tortajada, R. Lobinski, J. Szpunar, Identification of water-soluble selenium-containing proteins in selenized yeast by size-exclusion-reversed-phase HPLC/ICP-MS followed by MALDI-TOF and electrospray Q-TOF mass spectrometry. Anal. Chem., 2003,75:3765-3774.
    157. S. El Balkhi, J. Poupon, J.M. Trocello, F. Massicot, F. Woimant, O. Laprevote, Human plasma copper proteins speciation by size exclusion chromatography coupled to inductively coupled plasma mass spectrometry. solutions for columns calibration by sulfur detection. Anal. Chem.,2010,82: 6904-6910.
    158. V. Nischwitz, A. Berthele, B. Michalke, Speciation analysis of selected metals and determination of their total contents in paired serum and cerebrospinal fluid samples:An approach to investigate the permeability of the human blood-cerebrospinal fluid-barrier. Anal. Chim. Acta,2008,627:258-269.
    159. R.R.D. St Remy, M.L.F. Sanchez, J.B.L. Sastre, A. Sanz-Medel, Multielemental distribution patterns in premature human milk whey and pre-term formula milk whey by size exclusion chromatography coupled to inductively coupled plasma mass spectrometry with octopole reaction cell. J. Anal. At. Spectrom.,2004,19:1104-1110.
    160. M. Gonzalez-Fernandez, T. Garcia-Barrera, A. Arias-Borrego, D. Bonilla-Valverde, J. Lopez-Barea, C. Pueyo, J.L. Gomez-Ariza, Metal-binding molecules in the organs of Mus musculus by size-exclusion chromatography coupled with UV spectroscopy and ICP-MS. Anal. Bioanal. Chem.,2008,390: 17-28.
    161. J.L. Gomez-Ariza, A. Arias-Borrego, T. Garcia-Barrera, Multielemental fractionation in pine nuts (Pinus pinea) from different geographic origins by size-exclusion chromatography with UV and inductively coupled plasma mass spectrometry detection. J. Chromatogr. A,2006,1121:191-199.
    162. B. Li, J. Bergmann, S. Lassen, P. Leonhard, A. Prange, Distribution of elements binding to molecules with different molecular weights in aqueous extract of Antarctic krill by size-exclusion chromatography coupled with inductively coupled plasma mass spectrometry. J. Chromatogr. B,2005, 814:83-91.
    163. C. Wolf, R. Strenziok, A. Kyriakopoulos, Elevated metallothionein-bound cadmium concentrations in urine from bladder carcinoma patients, investigated by size exclusion chromatography-inductively coupled plasma mass spectrometry. Anal. Chim. Acta,2009,631:218-222.
    164. S. Santiago-Rivas, A. Moreda-Pineiro, A. Bermejo-Barrera, P. Bermejo-Barrera, Fractionation metallothionein-like proteins in mussels with on line metal detection by high performance liquid chromatography-inductively coupled plasma-optical emission spectrometry. Talanta,2007,71: 1580-1586.
    165. H.G. Infante, F. Cuyckens, K. Van Campenhout, R. Blust, M. Claeys, L. Van Vaeck, F.C. Adams, Characterization of metal complexes with metallothioneins in the liver of the carp Cyprinus carpio by reversed-phase, HPLC with ICP-MS and electrospray ionization (ESI)-MS. J. Anal. At. Spectrom., 2004,19:159-166.
    166. A. Prange, D. Schaumloffel, P. Bratter, A.N. Richarz, C. Wolf, Species analysis of metallothionein isoforms in human brain cytosols by use of capillary electrophoresis hyphenated to inductively coupled plasma-sector field mass spectrometry. Fresenius J. Anal. Chem.,2001,371:764-774.
    167. C.N. Ferrarello, M.D.F. de la Campa, J.F. Carrasco, A. Sanz-Medel, Speciation of metallothionein-like proteins of the mussel Mytilus edulis at basal levels by chromatographic separations coupled to quadrupole and double-focusing magnetic sector ICPMS. Anal. Chem.,2000, 72:5874-5880.
    168. P. Moreno, M.A. Quijano, A.M. Gutierrez, M.C. Perez-Conde, C. Camara, Study of selenium species distribution in biological tissues by size exclusion and ion exchange chromatagraphy inductively coupled plasma-mass spectrometry. Anal. Chim. Acta,2004,524:315-327.
    169.0. Palacios, J.R. Encinar, D. Schaumloffel, R. Lobinski, Fractionation of selenium-containing proteins in serum by multiaffinity liquid chromatography before size-exclusion chromatography-ICPMS.Anal. Bioanal. Chem.,2006,384:1276-1283.
    170. P. Jitaru, H. Goenaga-Infante, S. Vaslin-Reimann, P. Fisicaro, A systematic approach to the accurate quantification of selenium in serum selenoalbumin by HPLC-ICP-MS. Anal. Chim. Acta,2010,657: 100-107.
    171. S. McSheehy, P. Pohl, J. Szpunar, M. Potin-Gautier, R. Lobinski, Analysis for selenium speciation in selenized yeast extracts by two-dimensional liquid chromatography with ICP-MS and electrospray MS-MS detection. J. Anal. At. Spectrom.,2001,16:68-73.
    172. Q.L. Chan, S.E. Afton, J.A. Caruso, Investigation of selenium metabolites in Se-enriched kale, Brassica oleracea A, via HPLC-ICPMS and nanoESI-ITMS. J. Anal. At. Spectrom.,2010,25: 186-192.
    173. E. Lipiec, G Siara, K. Bierla, L. Ouerdane, J. Szpunar, Determination of selenomethionine, selenocysteine, and inorganic selenium in eggs by HPLC-inductively coupled plasma mass spectrometry. Anal. Bioanal. Chem.,2010,397:731-741.
    174. O. Palacios, J.R. Encinar, G. Bertin, R. Lobinski, Analysis of the selenium species distribution in cow blood by size exclusion liquid chromatography-inductively coupled plasma collision cell mass spectrometry (SEC-ICPccMS). Anal. Bioanal. Chem.,2005,383:516-522.
    175. V. Lopez-Avila, O. Sharpe, W.H. Robinson, Determination of ceruloplasmin in human serum by SEC-ICPMS.Anal. Bioanal. Chem.,2006,386:180-187.
    176. O. Mestek, J. Kominkova, R. Koplik, M. Borkova, M. Suchanek, Quantification of copper and zinc species fractions in legume seeds extracts by SEC/ICP-MS:validation and uncertainty estimation. Talanta,2002,57:1133-1142.
    177. C.F. Harrington, S. Elahi, S.A. Merson, P. Ponnampalavanar, Quantitative analysis of iron-containing protein myoglobin in different foodstuffs by liquid chromatography coupled to high-resolution inductively coupled plasma mass spectrometry. J. AOAC Int.,2004,87:253-258.
    178. C.F. Harrington, S. Elahi, S.A. Merson, P. Ponnampalavanar, A method for the quantitative analysis of iron speciation in meat by using a combination of spectrophotometric methods and high-performance liquid chromatography coupled to sector field inductively coupled plasma mass spectrometry. Anal. Chem.,2001,73:4422-4427.
    179. B. Michalke, S. Halbach, A. Berthele, P. Mistritiotis, M. Ochsenkuhn-Petropoulou, Size characterization of manganese species from human serum and cerebrospinal fluid using size exclusion chromatography coupled to inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom., 2007,22:267-272.
    180. B. Michalke, P. Schramel, Manganese speciation in human milk using size exclusion chromatography combined with strong anion exchange chromatography and inductively coupled plasma mass spectrometry detection. J. Anal. At. Spectrom.,2004,19:121-128.
    181. A. Arias-Borrego, T. Garcia-Barrera, J.L. Gomez-Ariza, Speciation of manganese binding to biomolecules in pine nuts (Pinus pines) by two-dimensional liquid chromatography coupled to ultraviolet and inductively coupled plasma mass spectrometry detectors followed by identification by electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom.,2008,22:3053-3060.
    182. N. Kaewkhomdee, S. Mounicou, J. Szpunar, R. Lobinski, J. Shiowatana, Characterization of binding and bioaccessibility of Cr in Cr-enriched yeast by sequential extraction followed by two-dimensional liquid chromatography with mass spectrometric detection. Anal. Bioanal. Chem.,2010,396: 1355-1364.
    183. S.R. Mueller-Spitz, A.P. Vonderheide, J.R. Shann, J.A. Caruso, B.K. Kinkle, Use of SEC-ICP-MS with a collision cell for determining the interaction of chromium with DNA extracted from metal-contaminated soils. Anal. Bioanal. Chem.,2006,386:142-151.
    184. H.X. Yang, W. Liu, B. Li, W. Wei, H.J. Zhang, D.Y. Chen, Speciation analysis of cadmium in indian mustard(brassica juncea) by size exclusion chromatography-high performance liquid chromatography-inductively coupled plasma mass spectrometry. Chin. J. Anal. Chem.,2009,37: 1511-1514.
    185. H. Zaier, A. Mudarra, D. Kutscher, M.R. de la Campa, C. Abdelly, A. Sanz-Medel, Induced lead binding phytochelatins in Brassica juncea and Sesuvium portulacastrum investigated by orthogonal chromatography inductively coupled plasma-mass spectrometry and matrix assisted laser desorption ionization-time of flight-mass spectrometry. Anal. Chim. Acta,2010,671:48-54.
    186.1.A. Bergdahl, A. Schutz, A. Grubb, Application of liquid chromatography inductively coupled plasma mass spectrometry to the study of protein-bound lead in human erythrocytes. J. Anal. At. Spectrom., 1996,11:735-738.
    187. V. Vacchina, S. Mari, P. Czernic, L. Marques, K. Pianelli, D. Schaumloffel, M. Lebrun, R. Lobinski, Speciation of nickel in a hyperaccumulating plant by high-performance liquid chromatography-inductively coupled plasma mass spectrometry and electrospray MS/MS assisted by cloning using yeast complementation. Anal. Chem.,2003,75:2740-2745.
    188. J.W. Shi, W.Y. Feng, M. Wang, F. Zhang, B. Li, B. Wang, M.T. Zhu, Z.F. Chai, Investigation of mercury-containing proteins by enriched stable isotopic tracer and size-exclusion chromatography hyphenated to inductively coupled plasma-isotope dilution mass spectrometry. Anal. Chim. Acta, 2007,583:84-91.
    189. T. Hasegawa, M. Asano, K. Takatani, H. Matsuura, T. Umemura, H. Haraguchi, Speciation of mercury in salmon egg cell cytoplasm in relation with metallomics research. Talanta,2005,68:465-469.
    190. M. Shah, R.G. Wuilloud, S.S. Kannamkumaratha, J.A. Caruso, Iodine speciation studies in commercially available seaweed by coupling different chromatographic techniques with UV and ICP-MS detection. J. Anal. At. Spectrom.,2005,20:176-182.
    191. K. Bluemlein, A. Raab, J. Feldmann, Stability of arsenic peptides in plant extracts:off-line versus on-line parallel elemental and molecular mass spectrometric detection for liquid chromatographic separation. Anal. Bioanal. Chem.,2009,393:357-366.
    192. Z.W. Wang, H.Q. Zhang, X.F. Li, X.C. Le, Study of interactions between arsenicals and thioredoxins (human and E. coli) using mass spectrometry. Rapid Commun. Mass Spectrom.,2007,21:3658-3666.
    193. R. Koplik, H. Pavelkova, J. Cincibuchova, O. Mestek, F. Kvasnicka, M. Suchanek, Fractionation of phosphorus and trace elements species in soybean flour and common white bean seeds by size exclusion chromatography-inductively coupled plasma mass spectrometry. J. Chromatogr. B,2002, 770:261-273.
    194. J. Carter, L. Ebdon, E.H. Evans, Speciation of silicon and phosphorous using liquid chromatography coupled with sector field high resolution ICP-MS. Microchem. J.,2004,76:35-41.
    195. M. Wang, W.Y. Feng, W.W. Lu, B. Li, B. Wang, M. Zhu, Y. Wang, H. Yuan, Y. Zhao, Z.F. Chai, Quantitative analysis of proteins via sulfur determination by HPLC coupled to isotope dilution ICPMS with a hexapole collision cell.Anal. Chem.,2007,79:9128-9134.
    196. N. Rodriguez-Farinas, M.M. Gomez-Gomez, C. Camara-Rica, Study of tungstate-protein interaction in human serum by LC-ICP-MS and MALDI-TOF. Anal. Bioanal. Chem.,2008,390:29-35.
    197. D. Klueppel, N. Jakubowski, J. Messerschmidt, D. Stuewer, D. Klockow, Speciation of platinum metabolites in plants by size-exclusion chromatography and inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom.,1998,13:255-262.
    198. B. Zhang, F.M. Li, R.S. Houk, D.W. Armstrong, Pore exclusion chromatography-inductively coupled plasma-mass spectrometry for monitoring elements in bacteria:A study on microbial removal of uranium from aqueous solution. Anal. Chem.,2003,75:6901-6905.
    199. M. Groessl, M. Terenghi, A. Casini, L. Elviri, R. Lobinski, P.J. Dyson, Reactivity of anticancer metallodrugs with serum proteins:new insights from size exclusion chromatography-ICP-MS and ESI-MS. J. Anal. At. Spectrom.,2010,25:305-313.
    200. D. Esteban-Fernandez, B. Canas, I. Pizarro, M.A. Palacios, M.M. Gomez-Gomez, SEC-ICP-MS and ESI-MS as tools to study the interaction between cisplatin and cytosolic biomolecules. J. Anal. At. Spectrom.,2007,22:1113-1121.
    201. M. Sulyok, S. Hann, C.G. Hartinger, B.K. Keppler, G. Stingeder, G. Koellensperger, Two dimensional separation schemes for investigation of the interaction of an anticancer ruthenium(Ⅲ) compound with plasma proteins.J. Anal. At. Spectrom.,2005,20:856-863.
    202. R. Mandal, C. Teixeira, X.F. Li, Studies of cisplatin and hemoglobin interactions using nanospray mass spectrometry and liquid chromatography with inductively-coupled plasma mass spectrometry. Analyst,2003,128:629-634.
    203. J. Szpunar, A. Makarov, T. Pieper, B.K. Keppler, R. Lobinski, Investigation of metallodrug-protein interactions by size-exclusion chromatography coupled with inductively coupled plasma mass spectrometry (ICP-MS). Anal. Chim.Acta,1999,387:135-144.
    204. C.A.P. de Leon, M. Montes-Bayon, J.A. Caruso, Elemental speciation by chromatographic separation with inductively coupled plasma mass spectrometry detection. J. Chromatogr. A,2002,974:1-21.
    205. R.M. Xie, W. Johnson, S. Spayd, G.S. Hall, B. Buckley, Arsenic speciation analysis of human urine using ion exchange chromatography coupled to inductively coupled plasma mass spectrometry. Anal. Chim. Acta,2006,578:186-194.
    206. C.P. Verdon, K.L. Caldwell, M.R. Fresquez, R.L. Jones, Determination of seven arsenic compounds in urine by HPLC-ICP-DRC-MS:a CDC population biomonitoring method. Anal. Bioanal. Chem.,2009, 393:939-947.
    207. S.K.V. Yathavakilla, M. Fricke, P.A. Creed, D.T. Heitkemper, N.V. Shockey, C. Schwegel, J.A. Caruso, J.T. Creed, Arsenic speciation and identification of monomethylarsonous acid and monomethylthioarsonic acid in a complex matrix. Anal. Chem.,2008,80:775-782.
    208. A. Polatajko, J. Szpunar, Speciation of arsenic in chicken meat by anion-exchange liquid chromatography with inductively coupled plasma-mass spectrometry. J. AOAC Int.,2004,87: 233-237.
    209. R.E. Paproski, X.C. Le, Boric acid-assisted anion-exchange chromatography for separating arsenic species. Anal. Chim. Acta,2004,526:69-76.
    210. S. McSheehy, Z. Mester, Arsenic speciation in marine certified reference materials-Part 1. Identification of water-soluble arsenic species using multidimensional liquid chromatography combined with inductively coupled plasma, electrospray and electrospray high-field asymmetric waveform ion mobility spectrometry with mass spectrometric detection. J. Anal. At. Spectrom.,2004, 19:373-380.
    211.R. Wahlen, S. McSheehy, C. Scriver, Z. Mester, Arsenic speciation in marine certified reference materials-Part 2. The quantification of water-soluble arsenic species by high-performance liquid chromatography-inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom.,2004,19: 876-882.
    212. E. Peachey, K. Cook, A. Castles, C. Hopley, H. Goenaga-Infante, Capabilities of mixed-mode liquid chromatography coupled to inductively coupled plasma mass spectrometry for the simultaneous speciation analysis of inorganic and organically-bound selenium. J. Chromatogr. A,2009,1216: 7001-7006.
    213. Y. Fang, Y.F. Zhang, B. Catron, Q.L. Chan, Q.H. Hu, J.A. Caruso, Identification of selenium compounds using HPLC-ICPMS and nano-ESI-MS in selenium-enriched rice via foliar application. J. Anal. At. Spectrom.,2009,24:1657-1664.
    214. M. Xu, L.M. Yang, Q.Q. Wang, Quantification of selenium-tagged proteins in human plasma using species-unspecific isotope dilution ICP-DRC-qMS coupled on-line with anion exchange chromatography. J. Anal. At. Spectrom.,2008,23:1545-1549.
    215. S.V.K. Yathavakilla, M. Shah, S. Mounicou, J.A. Caruso, Speciation of cationic selenium compounds in Brassica juncea leaves by strong cation-exchange chromatography with inductively coupled plasma mass spectrometry. J. Chromatogr. A,2005,1100:153-159.
    216. L.H. Reyes, F.M. Sanz, P.H. Espilez, J.M. Marchante-Gayon, J.I.G. Alonso, A. Sanz-Medel, Biosynthesis of isotopically enriched selenomethionine:application to its accurate determination in selenium-enriched yeast by isotope dilution analysis-HPLC-ICP-MS. J. Anal. At. Spectrom.,2004,19: 1230-1235.
    217. J. Zheng, H. Hintelmann, HPLC-ICP-MS for a comparative study on the extraction approaches for arsenic speciation in terrestrial plant, Ceratophyllum demersum. J. Radioanal. Nucl. Chem.,2009, 280:171-179.
    218. J.H. Huang, G. Ilgen, B. Decker, Sample pre-treatment to eliminate cationic methylated arsenic for determining arsenite on an anion-exchange column by high performance liquid chromatography-inductively coupled plasma mass spectrometry. Anal. Chim. Acta,2008,611:48-55.
    219. L. Ayouni, F. Barbier, J.L. Imbert, J.Y. Gauvrit, P. Lanteri, M.F. Grenier-Loustalot, New separation method for organic and inorganic selenium compounds based on anion exchange chromatography followed by inductively coupled plasma mass spectrometry. Anal. Bioanal. Chem.,2006,385: 1504-1512.
    220. A.P. Vonderheide, J. Meija, K. Tepperman, A. Puga, A.R. Pinhas, J.C. States, J.A. Caruso, Retention of Cr(Ⅲ) by high-performance chelation ion chromatography interfaced to inductively-coupled plasma mass spectrometric detection with collision cell. J. Chromatogr. A,2004,1024:129-137.
    221. T. Lindemann, A. Prange, W. Dannecker, B. Neidhart, Stability studies of arsenic, selenium, antimony and tellurium species in water, urine, fish and soil extracts using HPLC/ICP-MS. Fresenius J. Anal. Chem.,2000,368:214-220.
    222. K.E. Wang, S.J. Jiang, Determination of iodine and bromine compounds by ion chromatography/dynamic reaction cell inductively coupled plasma mass spectrometry. Anal. Sci., 2008,24:509-514.
    223. K. Muller, B. Daus, J. Mattusch, H.J. Stark, R. Wennrich, Simultaneous determination of inorganic and organic antimony species by using anion exchange phases for HPLC-ICP-MS and their application to plant extracts of Pteris vittata. Talanta,2009,78:820-826.
    224. K. Staff, M.B. Brown, R.C. Hider, X.L. Kong, P. Friden, S.A. Jones, Recovering Ga(Ⅲ) from coordination complexes using pyridine 2,6-dicarboxylic acid chelation ion chromatography. Biomed. Chromatogr.,2010,24:1015-1022.
    225. D. Malinovsky, R.E. Sturgeon, L. Yang, Anion-exchange chromatographic separation of Hg for isotope ratio measurements by multicollector 1CP-MS. Anal. Chem.,2008,80:2548-2555.
    226. W. Hang, C. Mahan, L.W. Zhu, E. Gonzales, Evaluation of chelation concentration and cation separation of actinides at ultra-trace levels in urine matrix. J. Radioanal. Nucl. Chem.,2005,263: 467-475.
    227. B. Krasnodebska-Ostrega, M. Asztemborska, J. Golimowski, K. Strusinska, Determination of thallium forms in plant extracts by anion exchange chromatography with inductively coupled plasma mass spectrometry detection (IC-ICP-MS). J. Anal. At. Spectrom.,2008,23:1632-1635.
    228. D. Esteban-Fernandez, M. Montes-Bayon, E.B. Gonzalez, M.M.G. Gomez, M.A. Palacios, A. Sanz-Medel, Atomic (HPLC-ICP-MS) and molecular mass spectrometry (ESI-Q-TOF) to study cis-platin interactions with serum proteins. J. Anal. At. Spectrom.,2008,23:378-384.
    229. T. Miyayama, Y. Ogra, K.T. Suzuki, Separation of metallothionein isoforms extracted from isoform-specific knockdown cells on two-dimensional micro high-performance liquid chromatography hyphenated with inductively coupled plasma-mass spectrometry. J. Anal. At. Spectrom.,2007,22:179-182.
    230. H.G. Infante, K. Van Campenhout, R. Blust, F.C. Adams, Anion-exchanee hieh performance liauid chromatography hyphenated to inductively coupled plasma-isotope dilution-time-of-flight mass spectrometry tor speciation analysis of metal complexes with metallothionein isoforms in eibel cam (Carassius auratus gibelio) exposed to environmental metal pollution. J. Chromatogr. A,2006,1121: 184-190.
    231. K. Bierla, A. Riu, L. Debrauwer, D. Zalko, B. Bouyssiere, J. Szpunar, Screening for polvbrominated diphenyl ethers in biological samples by reversed-phase fast HPLC-ICP MS. J. Anal. At. Spectrom., 2010,25:889-892.
    232. S. Trumpler, W. Lohmann, B. Meermann, W. Buscher, M. Sperling, U. Karst, Interaction of thimerosal with proteins-ethylmercury adduct formation of human serum albumin and beta-lactoglobulin A. Metallomics,2009,1:87-91.
    233. E.M. Krupp, B.F. Milne, A. Mestrot, A.A. Meharg, J. Feldmann, Investigation into mercury bound to biothiols:structural identification using ESI-ion-trap MS and introduction of a method for their HPLC separation with simultaneous detection by ICP-MS and ESI-MS. Anal. Bioanal. Chem.,2008,390: 1753-1764.
    234. K. Kanaki, S.A. Pergantis, Development of mass spectrometric methods for detecting arsenic-glutathione complexes. J. Am. Soc. Mass Spectrom.,2008,19:1559-1567.
    235. T. Shelbourn, L. Williamson, T. Gillespie, R. Montgomery, ICP-MS detection for HPLC analyses of pharmaceutical products. Lc GcN. Am.,2009,27:164-173.
    236. E.G. Yanes, N.J. Miller-Ihli, Cobalamin speciation using reversed-phase micro-high-performance liquid chromatography interfaced to inductively coupled plasma mass spectrometry. Spectroc. Acta Pt. B-Atom. Spectr.,2004,59:891-899.
    237. C.J. Duckett, I.D. Wilson, H. Walker, F. Abou-Shakra, J.C. Lindon, J.K. Nicholson, High-performance liquid chromatography/inductively coupled plasma mass spectrometry with iodine-specific detection for profiling the metabolites produced in the earthworm Eisenia veneta by exposure to 2-fluoro-4-iodoaniline. Rapid Commun. Mass Spectrom.,2003,17:1855-1858.
    238. T.H. Cao, R.A. Cooney, M.M. Woznichak, S.W. May, R.F. Browner, Speciation and identification of organoselenium metabolites in human urine using inductively coupled plasma mass spectrometry and tandem mass spectrometry. Anal. Chem.,2001,73:2898-2902.
    239. K. Polec, M. Perez-Calvo, O. Garcia-Arribas, j. Szpunar, B. Ribas-Ozonas, R. Lobinski, Investigation of metal complexes with metallothionein in rat tissues by hyphenated techniques. J. Inorg. Biochem., 2002,88:197-206.
    240. M. Kotrebai, J.F. Tyson, E. Block, P.C. Uden, High-performance liquid chromatography of selenium compounds utilizing perfluorinated carboxylic acid ion-pairing agents and inductively coupled plasma and electrospray ionization mass spectrometric detection. J. Chromatogr. A,2000,866:51-63.
    241. K. Bierla, J. Szpunar, R. Lobinski, Specific determination of selenoaminoacids in whole milk by 2D size-exclusion-ion-paring reversed phase high-performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICP MS). Anal. Chim. Acta,2008,624:195-202.
    242. K. Bierla, M. Dernovics, V. Vacchina, J. Szpunar, G. Bertin, R. Lobinski, Determination of selenocysteine and selenomethionine in edible animal tissues by 2D size-exclusion reversed-phase HPLC-ICP MS following carbamidomethylation and proteolytic extraction. Anal. Bioanal. Chem., 2008,390:1789-1798.
    243. A. Alzate, A. Fernandez-Fernandez, M.C. Perez-Conde, A.M. Gutierrez, C. Camara, Comparison of biotransformation of inorganic selenium by Lactobacillus and Saccharomyces in lactic fermentation process of yogurt and kefir. J. Agric. Food Chem.,2008,56:8728-8736.
    244. S. Afton, K. Kubachka, B. Catron, J.A. Caruso, Simultaneous characterization of selenium and arsenic analytes via ion-pairing reversed phase chromatography with inductively coupled plasma and electrospray ionization ion trap mass spectrometry for detection Applications to river water, plant extract and urine matrices. J. Chromatogr. A,2008,1208:156-163.
    245. F.M. Pan, J.F. Tyson, P.C. Uden, Simultaneous speciation of arsenic and selenium in human urine by high-performance liquid chromatography inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom,2007,22:931-937.
    246. E. Kapolna, M. Shah, J.A. Caruso, P. Fodor, Selenium speciation studies in Se-enriched chives (Allium schoenoprasum) by HPLC-ICP-MS. Food Chem.,2007,101:1398-1406.
    247. P.O. Amoako, C.L. Kahakachchi, E.N. Dodova, P.C. Uden, J.F. Tyson, Speciation, quantification and stability of selenomethionine, S-(methylseleno) cysteine and selenomethionine Se-oxide in yeast-based nutritional supplements. J. Anal. At. Spectrom.,2007,22:938-946.
    248. A. Alzate, B. Canas, S. Perez-Munguia, H. Hernandez-Mendoza, C. Perez-Conde, A.M. Gutierrez, C. Camara, Evaluation of the inorganic selenium biotransformation in selenium-enriched yogurt by HPLC-ICP-MS. J. Agric. Food Chem.,2007,55:9776-9783.
    249. V.D. Huerta, M.L.F. Sanchez, A. Sanz-Medel, An attempt to differentiate HPLC-ICP-MS selenium speciation in natural and selenised Agaricus mushrooms using different species extraction procedures. Anal. Bioanal. Chem.,2006,384:902-907.
    250. V. Gergely, M. Montes-Bayon, P. Fodor, A. Sanz-Medel, Selenium species in aqueous extracts of alfalfa sprouts by two-dimensional liquid chromatography coupled to inductively coupled plasma mass spectrometry and electrospray mass spectrometry detection. J. Agric. Food Chem.,2006,54: 4524-4530.
    251. V. Gergely, K.M. Kubachka, S. Mounicou, P. Fodor, J.A. Caruso, Selenium speciation in Agaricus bisporus and Lentinula edodes mushroom proteins using multi-dimensional chromatography coupled to inductively coupled plasma mass spectrometry.J. Chromatogr. A,2006,1101:94-102.
    252. E. Dumont, Y. Ogra, F. Vanhaecke, K.T. Suzuki, R. Cornelis, Liquid chromatography-mass spectrometry (LC-MS):a powerful combination for selenium speciation in garlic (Allium sativum). Anal. Bioanal. Chem.,2006,384:1196-1206.
    253. E. Dumont, Y. Ogra, K.I. Suzuki, F. Vanhaecke, R. Cornelis, Liquid chromatography-electrospray ionization tandem mass spectrometry for on-line characterization, monitoring and isotopic profiling of the main selenium-metabolite in human urine after consumption of Se-rich and Se-enriched food. Anal. Chim. Acta,2006,555:25-33.
    254. T.D. Grant, M. Montes-Bayon, D. LeDuc, M.W. Fricke, N. Terry, J.A. Caruso, Identification and characterization of Se-methyl selenomethionine in Brassica juncea roots. J. Chromatogr. A,2004, 1026:159-166.
    255. H. Zheng, Y. Shibata, N. Furuta, Determination of selenoamino acids using two-dimensional ion-pair reversed phase chromatography with on-line detection by inductively coupled plasma mass spectrometry. Talanta,2003,59:27-36.
    256. K. Wrobel, S.S. Kannamkumarath, J.A. Caruso, Identification of selenium species in urine by ion-pairing HPLC-ICP-MS using laboratory-synthesized standards. Anal. Bioanal. Chem.,2003,377: 670-674.
    257. J.A. Zheng, Y. Shibata, A. Tanaka, Study of the stability of selenium compounds in human urine and determination by mixed ion-pair reversed-phase chromatography with ICP-MS detection. Anal. Bioanal. Chem.,2002,374:348-353.
    258. J. Zheng, M. Ohata, N. Furuta, Reversed-phase liquid chromatography with mixed ion-pair reagents coupled with ICP-MS for the direct speciation analysis of selenium compounds in human urine. J. Anal. At. Spectrom.,2002,17:730-735.
    259. J.M. Marchante-Gayon, I. Feldmann, C. Thomas, N. Jakubowski, Speciation of selenium in human urine by HPLC-ICP-MS with a collision and reaction cell. J. Anal. At. Spectrom.,2001,16:457-463.
    260. N. Jakubowski, D. Stuewer, D. Klockow, C. Thomas, H. Emons, Speciation of organic selenium compounds using reversed-phase liquid chromatography and inductively coupled plasma mass spectrometry. Part Ⅲ. Application of a sector field instrument with low and high mass resolution for selenium speciation in herring gull eggs. J. Anal. At. Spectrom.,2001,16:135-139.
    261. A. Chatterjee, Y. Shibata, A. Tanaka, M. Morita, Determination of selenoethionine by flow injection-hydride generation-atomic absorption spectrometry/high-performance liquid chromatography-hydride generation-high power nitrogen microwave-induced plasma mass spectrometry. Anal. Chim. Acta,2001,436:253-263.
    262. J. Zheng, M. Ohata, N. Furuta, W. Kosmus, Speciation of selenium compounds with ion-pair reversed-phase liquid chromatography using inductively coupled plasma mass spectrometry as element-specific detection.J. Chromatogr. A,2000,874:55-64.
    263. P.L. Wang, G.L. Zhao, J. Tian, X.O. Su, High-performance liquid chromatography inductively coupled plasma mass spectrometry based method for the determination of organic arsenic feed additives and speciation of anionic arsenics in animal feed. J. Agric. Food Chem.,2010,58:5263-5270.
    264. M. Grotti, F. Soggia, C. Lagomarsino, W. Goessler, K..A. Francesconi, Arsenobetaine is a significant arsenical constituent of the red Antarctic alga Phyllophora antarctica. Environ. Chem.,2008,5: 171-175.
    265. R. Raml, W. Goessler, K.A. Francesconi, Improved chromatographic separation of thio-arsenic compounds by reversed-phase high performance liquid chromatography-inductively coupled plasma mass spectrometry. J. Chromatogr. A,2006,1128:164-170.
    266. C. B'Hymer, J.A. Caruso, Evaluation of HPLC systems for the separation and quantification of arsenic compounds from apple extracts.J. Liq. Chromatogr. Relat. Technol.,2002,25:639-653.
    267. S. Wangkarn, S.A. Pergantis, High-speed separation of arsenic compounds using narrow-bore high-performance liquid chromatography on-line with inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom.,2000,15:627-633.
    268. M.M. Santoyo, J.A.L. Figueroa, K. Wrobel, Analytical speciation of mercury in fish tissues by reversed phase liquid chromatography-inductively coupled plasma mass spectrometry with Bi3i+as internal standard. Talanta,2009,79:706-711.
    269. L.F. Chang, S.J. Jiang, A.C. Sahayam, Speciation analysis of mercury and lead in fish samples using liquid chromatography-inductively coupled plasma mass spectrometry. J. Chromatogr. A,2007,1176: 143-148.
    270. D. Profrock, A. Prange, Compensation of gradient related effects when using capillary liquid chromatography and inductively coupled plasma mass spectrometry for the absolute quantification of phosphorylated peptides. J. Chromatogr. A,2009,1216:6706-6715.
    271.B.B.M. Sadi, A.P. Vonderheide, J.M. Gong, J.I. Schroeder, J.R. Shann, J.A. Caruso, An HPLC-ICP-MS technique for determination of cadmium-phytochelatins in genetically modified Arabidopsis thaliana. J. Chromatogr. B,2008,861:123-129.
    272. Q. Tu, T.B. Wang, C.J. Welch, P. Wang, X.J. Jia, C. Raab, X.D. Bu, D. Bykowski, B. Hohenstaufen, M.P. Doyle, Identification and characterization of isomeric intermediates in a catalyst formation reaction by means of speciation analysis using HPLC-ICPMS and HPLC-ESI-MS. Anal. Chem.,2006, 78:1282-1289.
    273. T. Knispel, C. Ruhnau, S. Lassen, S. Griesel, A. Prange, E. Denkhaus, Nickel species analysis of human colonic tissue using liquid chromatography, gel electrophoresis and mass spectrometry. Anal. Bioanal. Chem.,2005,383:404-413.
    274. M. Colina, P.H.E. Gardiner, Z. Rivas, F. Troncone, Determination of vanadium species in sediment, mussel and fish muscle tissue samples by liquid chromatography-inductively coupled plasma-mass spectrometry. Anal. Chim. Acta,2005,538:107-115.
    275. Y. Inoue, K. Kawabata, Y. Suzuki, Speciation of organotin compounds using inductively coupled plasma mass spectrometry with micellar liquid chromatography. J. Anal. At. Spectrom.,1995,10: 363-366.
    276. J.M.G. LaFuente, M. Dlaska, M.L.F. Sanchez, A. Sanz-Medel, Organic and inorganic selenium speciation in urine by on-line vesicle mediated high-performance liquid chromotography-focused microwave digestion-hydride generation-inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom.,1998,13:423-429.
    277. H.G. Infante, M.L.F. Sanchez, A. Sanz-Medel, Vesicle-mediated high performance liquid chromatography coupled to hydride generation inductively coupled plasma mass spectrometry for cadmium speciation in fish cytosols. J. Anal. At. Spectrom.,2000,15:519-524.
    278. L.H. Reyes, J.M. Marchante-Gayon, J.I.G Alonso, A. Sanz-Medel, Quantitative speciation of selenium in human serum by affinity chromatography coupled to post-column isotope dilution analysis ICP-MS.J. Anal. At. Spectrom.,2003,18:1210-1216.
    279. P. Jitaru, M. Prete, G. Cozzi, C. Turetta, W. Cairns, R. Seraglia, P. Traldi, P. Cescon, C. Barbante, Speciation analysis of selenoproteins in human serum by solid-phase extraction and affinity HPLC hyphenated to ICP-quadrupole MS. J. Anal. At. Spectrom.,2008,23:402-406.
    280. U. Sidenius, O. Farver, O. Jons, B. Gammelgaard, Comparison of different transition metal ions for immobilized metal affinity chromatography of selenoprotein P from human plasma. J. Chromatogr. B, 1999,735:85-91.
    281. J.L. Gomez-Ariza, V. Bernal-Daza, M.J. Villegas-Portero, Comparative study of the instrumental couplings of high performance liquid chromatography with microwave-assisted digestion hydride generation atomic fluorescence spectrometry and inductively coupled plasma mass spectrometry for chiral speciation of selenomethionine in breast and formula milk. Anal. Chim. Acta,2004,520: 229-235.
    282. J. Bergmann, S. Lassen, A. Prange, Determination of the absolute configuration of selenomethionine from antarctic krill by RP-HPLC/ICP-MS using chiral derivatization agents. Anal. Bioanal. Chem., 2004,378:1624-1629.
    283. S.P. Mendez, E.B. Gonzalez, A. Sanz-Medel, Hybridation of different chiral separation techniques with ICP-MS detection for the separation and determination of selenomethionine enantiomers:chiral speciation of selenized yeast. Biomed. Chromatogr.,2001,15:181-188.
    284. A. Sanz-Medel, E. Blanco-Gonzalez, Chiral trace-element speciation in biological samples:present importance and application to speciation for seleno-amino acids. Trac-Trends Anal. Chem.,2002,21: 709-716.
    285. M. Busto, M. Montes-Bayon, J. Bettmer, A. Sanz-Medel, Stable isotope, labelling and FPLC-ICP-SFMS for the accurate determination of clinical iron status parameters in human serum. Analyst,2008,133:379-384.
    286. A.B.S. Cabezuelo, M.M. Bayon, E.B. Gonzalez, J.I.G Alonso, A. Sanz-Medel, Speciation of basal aluminium in human serum by fast protein liquid chromatography with inductively coupled plasma mass spectrometric detection. Analyst,1998,123:865-869.
    287. M.M. Bayon, A.B.S. Cabezuelo, E.B. Gonzalez, J.I.G Alonso, A. Sanz-Medel, Capabilities of fast protein liquid chromatography coupled to a double focusing inductively coupled plasma mass spectrometer for trace metal speciation in human serum. J. Anal. At. Spectrom.,1999,14:947-951.
    288. M. Dernovics, J. Far, R. Lobinski, Identification of anionic selenium species in Se-rich yeast by electrospray QTOF MS/MS and hybrid linear ion trap/orbitrap MSn. Metallomics,2009,1:317-329.
    289. C.J. Smith, S. Shillingford, A.M. Edge, C. Bailey, I.D. Wilson, Quantification of the in vitro and in vivo metabolic fates of 2-,3-and 4-bromobenzoic acids using high temperature LC coupled to ICP-MS and linear ion trap MS. Chromatographia,2008,67:673-678.
    290. D. Schaumloffel, Capillary liquid separation techniques with ICP MS detection. Anal. Bioanal. Chem., 2004,379:351-354.
    291. D. Schaumloffel, New ways in qualitative and quantitative protein analysis:nano chromatography coupled to element mass spectrometry. J. Trace Elem. Med. Biol.,2007,21:18-22.
    292. R.G. Brennan, S. Murdock, M. Farmand, K. Kahen, S. Samii, J.M. Gray, A. Montaser, Nano-HPLC-inductively coupled plasma mass spectrometry for arsenic speciation. J. Anal. At. Spectrom.,2007,22:1199-1205.
    293. R. Lobinski, D. Schaumloffel, J. Szpunar, Mass spectrometry in bioinorganic analytical chemistry. Mass Spectrom. Rev.,2006,25:255-289.
    294. D. Proefrock, A. Prange, Compensation of gradient related effects when using capillary liquid chromatography and inductively coupled plasma mass spectrometry for the absolute quantification of phosphorylated peptides. J. Chromatogr. A,2009,1216:6706-6715.
    295. J. Ruiz-Encinar, D. Schaumloeffel, Y. Ogra, R. Lobinski, Determination of selenomethionine and selenocysteine in human serum using speciated isotope dilution-capillary HPLC-inductively coupled plasma collision cell mass spectrometry. Anal. Chem.,2004,76:6635-6642.
    296. M.A. Jeannot, F.F. Cantwell, Mass transfer characteristics of solvent extraction into a single drop at the tip of a syringe needle. Anal. Chem.,1996,68:2236-2240.
    297. H. Liu, P.K. Dasgupta, Analytical chemistry in a drop. solvent extraction in a microdrop. Anal. Chem., 1996,68:1817-1821.
    298. S. Pedersen-Bjergaard, K.E. Rasmussen, Liquid-liquid-liquid microextraction for sample preparation of biological fluids prior to capillary electrophoresis. Anal. Chem.,1999,71:2650-2656.
    299. A. Favre-Reguillon, M. Draye, G. Lebuzit, S. Thomas, J. Foos, G. Cote, A. Guy, Cloud point extraction:an alternative to traditional liquid-liquid extraction for lanthanides(III) separation. Talanta, 2004,63:803-806.
    300. M. Rezaee, Y. Assadi, M.R.M. Hosseinia, F.A. E. Aghaee, S. Berijani, Determination of organic compounds in water using dispersive liquid-liquid microextraction. J. Chromatogr. A,2006,1116: 1-9.
    301.M.R.K. Zanjani, Y. Yamini, S. Shariati, J.A. Jonsson, A new liquid-phase microextraction method based on solidification of floating organic drop. Anal. Chim. Acta,2007,585:286-293.
    302. Y.L. Wu, Z.C. Jiang, B. Hu, A novel micro drop solvent extraction technique combined with low temperature electrothermal vaporization ICP-AES for ultra trace element analysis. Chem. J. Chin. Univ.-Chin.,2003,24:1793-1794.
    303. L.B. Xia, X. Li, Y.L. Wu, B. Hu, R. Chen, Ionic liquids based single drop microextraction combined with electrothermal vaporization inductively coupled plasma mass spectrometry for determination of Co, Hg and Pb in biological and environmental samples. Spectroc. Acta Pt. B-Atom. Spectr.,2008,63: 1290-1296.
    304. L.B. Xia, B. Hu, Y.L. Wu, Hollow fiber-based liquid-liquid-liquid microextraction combined with high-performance liquid chromatography for the speciation of organomercury. J. Chromatogr. A,2007, 1173:44-51.
    305. P.J. Li, J.K. Duan, B. Hu, High-sensitivity capillary electrophoresis for speciation of organomercury in biological samples using hollow fiber-based liquid-liquid-liquid microextraction combined with on-line preconcentration by large-volume sample stacking. Electrophoresis,2008,29:3081-3089.
    306. Q. Xiao, B. Hu, J.K. Duan, M. He, W.Q. Zu, Analysis of PBDEs in soil, dust, spiked lake water, and human serum samples by hollow fiber-liquid phase microextraction combined with GC-ICP-MS. J. Am. Soc. Mass Spectrom.,2007,18:1740-1748.
    307. C.L. Arthur, J. Pawliszyn, Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal. Chem.,1990,62:2145-2148.
    308. R. Eisert, J. Pawliszyn, Automated In-tube solid-phase microextraction coupled to high-performance liquid chromatography. Anal. Chem.,1997,69:3140-3147.
    309. E. Baltussen, P. Sandra, F. David, C. Cramers, Stir bar sorptive extraction (SBSE), a novel extraction technique for aqueous samples:Theory and principles. J. Microcolumn Sep.,1999,11:737-747.
    310. S. Akman, M. Ozcan, E. Demirel, Use of a syringe-mountable filter resin technique for the separation and enrichment of lead and cadmium prior to their determination by flame atomic absorption spectrometry.J. Anal. At. Spectrom.,2002,17:743-745.
    311. K. Hadjiivanov, D. Klissurski, M. Kantcheva, State and localization of cobalt, nickel and copper ions adsorbed on titania. J. Chem. Soc. Faraday Trans.,1991,87:907-911.
    312.徐丽,冯钰锜,达世禄,施治国,有序介孔材料在分离科学中的应用.分析化学,2004,32:374-380.
    313. H. Nishide, E. Tsuchida, Selective adsorption of metal ions on poly (4-vinylpyridine) resins in which the ligand chain is immobilized by cross-linking. Die Makromolekulare Chemie,1976,177: 2295-2310.
    314. S. Xie, F. Svec, J.M.J. Frechet, Porous Polymer Monoliths:Preparation of sorbent materials with high-surface areas and controlled surface chemistry for high-throughput, online, solid-phase extraction of polar organic compounds. Chem. Mater,1998,10:4072-4078.
    315. W.M. Mullett, K. Levsen, D. Lubda, J. Pawliszyn, Bio-compatible in-tube solid-phase microextraction capillary for the direct extraction and high-performance liquid chromatographic determination of drugs in human serum. J. Chromatogr. A,2002,963:325-334.
    316. M. Gallego, Y.P.d. Pena, M. Valcarcel, Fullerenes as sorbent materials for metal preconcentration. Anal. Chem.,1994,66:4074-4078.
    317. G.P. Rao, C. Lu, F. Su, Sorption of divalent metal ions from aqueous solution by carbon nanotubes:A review. Sep. Purif. Technol.,2007,58:224-231.
    318.C.Z. Huang, B. Hu, Silica-coated magnetic nanoparticles modified with gamma-mercaptopropyltrimethoxysilane for fast and selective solid phase extraction of trace amounts of Cd, Cu, Hg, and Pb in environmental and biological samples prior to their determination by inductively coupled plasma mass spectrometry. Spectrochim Acta B,2008,63:437-444.
    319. X.L. Pu, Z.C. Jiang, B. Hu, H.B. Wang, gamma-MPTMS modified nanometer-sized alumina micro-column separation and preconcentration of trace amounts of Hg, Cu, Au and Pd in biological, environmental and geological samples and their determination by inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom.,2004,19:984-989.
    320. J.K. Duan, B. Hu, Speciation of selenomethionine and selenocystine using online micro-column containing Cu(II) loaded nanometer-sized Al2O3 coupled with ICP-MS detection. Talanta,2009,79: 734-738.
    321. C.Z. Huang, B. Hu, M. He, J. Duan, Organic and inorganic selenium speciation in environmental and biological samples by nanometer-sized materials packed dual-column separation/preconcentration on-line coupled with ICP-MS. J. Mass Spectrom.,2008,43:336-345.
    322. J. Yin, Z.C. Jiang, G. Chang, B. Hu, Simultaneous on-line preconcentration and determination of trace metals in environmental samples by flow injection combined with inductively coupled plasma mass spectrometry using a manometer-sized alumina packed micro-column. Anal. Chim. Acta,2005,540: 333-339.
    323. X.L. Pu, C.Z. Huang, B. Hu, Z.C. Jiang, Determination of the trace refractory elements V, Nb and Ta in environmental samples by ICP-MS after separation and preconcentration with nanometre-sized alumina microcolumns following chemical modification by gallic acid. Geostand. Geoanal. Res.. 2006,30:97-105.
    324. X.L. Pu, B. Hu, Z.C. Jiang, C.Z. Huang, Speciation of dissolved iron(Ⅱ) and iron(Ⅲ) in environmental water samples by gallic acid-modified nanometer-sized alumina micro-column separation and ICP-MS determination. Analyst,2005,130:1175-1181.
    325. J. Chen, C.Z. Huang, B. Hu, Z.C. Jiang, Speciation of aluminum in drink samples by 8-hydroxyquinoline loaded silylanization silica gel microcolumn separation with off-line ICP-MS detection. J. Agric. Food Chem.,2004,52:6843-6847.
    326. N. Zhang, J.S. Suleiman, M. He, B. Hu, Chromium(Ⅲ)-imprinted silica gel for speciation analysis of chromium in environmental water samples with ICP-MS detection. Talanta,2008,75:536-543.
    327. J. Yin, B. Hu, M. He, M.M. Zheng, Y.Q. Feng, Polymer monolith microextraction combined with electrothermal vaporization inductively coupled plasma mass spectrometry for the determination of trace Cd, Tl, and Pb in human serum and urine. J. Anal. At. Spectrom.,2009,24:76-82.
    328. C. Huang, B. Hu, Speciation of inorganic tellurium from seawater by ICP-MS following magnetic SPE separation and preconcentration. J. Sep. Sci.,2008,31:760-767.
    329. X.L. Pu, Z.C. Jiang, B. Hu, Zirconia-coated graphite adsorption bar micro-extraction combined with ETV-ICP-MS for the determination of trace amounts of Cd, Hg and Pb in environmental and biological samples. J. Mass Spectrom.,2006,41:887-893.
    330. F. Zheng, B. Hu, Dual silica monolithic capillary microextraction (CME) on-line coupled with ICP-MS for sequential determination of inorganic arsenic and selenium species in natural waters. J. Anal. At. Spectrom.,2009,24:1051-1061.
    331. Y.W. Wu, B. Hu, Z.C. Jiang, Y.Q. Feng, P. Lu, B.Z. Li, Sol-gel zirconia coating capillary microextraction on-line hyphenated with inductively coupled plasma mass spectrometry for the determination of Cr, Cu, Cd and Pb in biological samples. Rapid Commun. Mass Spectrom.,2006,20: 3527-3534.
    332. Y.W. Wu, B. Hu, W.L. Hu, Z.C. Jiang, B.Y.Z. Li, A novel capillary microextraction on ordered mesoporous titania coating combined with electrothermal vaporization inductively coupled plasma mass spectrometry for the determination of V, Cr and Cu in environmental and biological samples. J. Mass Spectrom.,2007,42:467-475.
    333. W.L. Hu, F. Zheng, B. Hu, Simultaneous separation and speciation of inorganic As(III)/As(V) and Cr(III)/Cr(VI) in natural waters utilizing capillary microextraction on ordered mesoporous A12O3 prior to their on-line determination by ICP-MS. J. Hazard. Mater.,2008,151:58-64.
    334. B. Hu, F. Zheng, M. He, N. Zhang, Capillary microextraction (CME) and its application to trace elements analysis and their speciation. Anal. Chim. Acta,2009,650:23-32.
    335. F. Zheng, B. Hu, Dual-column capillary microextraction (CME) combined with electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) for the speciation of arsenic in human hair extracts. J. Mass Spectrom.,2010,45:205-214.
    336. F. Zheng, B. Hu, Novel bimodal porous N-(2-aminoethyl)-3-aminopropyltrimethoxysilane-silica monolithic capillary microextraction and its application to the fractionation of aluminum in rainwater and fruit juice by electrothermal vaporization inductively coupled plasma mass spectrometry. Spectroc. ActaPt. B-Atom. Spectr.,2008,63:9-18.
    337. J. Vercauteren, C. Peres, C. Devos, P. Sandra, F. Vanhaecke, L. Moens, Stir bar sorptive extraction for the determination of ppq-level traces of organotin compounds in environmental samples with thermal desorption-capillary gas Chromatography-ICP mass spectrometry. Anal. Chem.,2001,73: 1509-1514.
    338. X.J. Mao, B.B. Chen, C.Z. Huang, M. He, B. Hu, Titania immobilized polypropylene hollow fiber as a disposable coating for stir bar sorptive extraction-high performance liquid chromatography-inductively coupled plasma mass spectrometry speciation of arsenic in chicken tissues.J. Chromatogr. A,2010, doi:10.1016/j.chroma.2010.10.103
    339. J.S. Suleiman, B. Hu, H.Y. Peng, C.Z. Huang, Separation/preconcentration of trace amounts of Cr, Cu and Pb in environmental samples by magnetic solid-phase extraction with Bismuthiol-Ⅱ-immobilized magnetic nanoparticles and their determination by ICP-OES. Talanta,2009,77:1579-1583.
    340. S.Z. Chen, M.F. Xiao, D.B. Lu, X.L. Zhan, Use of a microcolumn packed with modified carbon nanofibers coupled with inductively coupled plasma mass spectrometry for simultaneous on-line preconcentration and determination of trace rare earth elements in biological samples. Rapid Commun Mass Spectrom.,2007,21:2524-2528.
    341. M. Gallego-Gallegos, R.M. Olivas, C. Camara, Imprinted polymers as an analytical tool for organotin compounds speciation. J. Anal. At. Spectrom.,2009,24:595-601.
    342. P.A. Auroux, D. Iossifidis, D.R. Reyes, A. Manz, Micro total analysis systems.2. Analytical standard operations and applications. Anal. Chem.,2002,74:2637-2652.
    343. D.R. Reyes, D. Iossifidis, P.A. Auroux, A. Manz, Micro total analysis systems.1. Introduction, theory, and technology. Anal. Chem.,2002,74:2623-2636.
    344.方肇伦等,微流控分析芯片.2003,北京:科学出版社.
    345. S. Song, A.K. Singh, On-chip sample preconcentration for integrated microfluidic analysis. An Bioanal. Chem.,2006,384:41-43.
    346. N.C. Cady, S. Stelick, C.A. Batt, Nucleic acid purification using microfabricated silicon structures. Biosen. Bioelectron.,2003,19:59-66.
    347. M. Tokeshi, T. Minagawa, K. Uchiyama, A. Hibara, K. Sato, H. Hisamoto, T. Kitamori, Continuous-flow chemical processing on a microchip by combining microunit operations and a multiphase flow network. Anal. Chem.,2002,74:1565-1571.
    348. C. Yu, F. Svec, J.M.J. Frechet, Towards stationary phases for chromatography on a microchip:Molded porous polymer monoliths prepared in capillaries by photoinitiated in situ polymerization as separation media for electrochromatography. Electrophoresis,2000,21:120-127.
    349. B.H. Huynh, B.A. Fogarty, R.S. Martin, S.M. Lunte, On-line coupling of microdialysis sampling with microchip-based capillary electrophoresis. Anal. Chem.,2004,76:6440-6447.
    350. R.S. Foote, J. Khandurina, S.C. Jacobson, J.M. Ramsey, Preconcentration of proteins on microfluidic devices using porous silica membranes. Anal. Chem.,2005,77:57-63.
    351. T. Maruyama, H. Matsushita, J. Uchida, F. Kubota, N. Kamiya, M. Goto, Liquid membrane operations in a microfluidic device for selective separation of metal ions. Anal. Chem.,2004,76: 4495-4500.
    352. J.P. Lafleur, E.D. Salin, Pre-concentration of trace metals on centrifugal microfluidic discs with direct determination by laser ablation inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom., 2009,24:1511-1516.
    353. T. Kagawa, M. Ohno, T. Seki, K. Chikama, Online determination of copper in aluminum alloy by microchip solvent extraction using isotope dilution ICP-MS method. Talanta,2009,79:1001-1005.
    354. K. Faure, Liquid chromatography on chip. Electrophoresis,2010,31:2499-2511.
    355. R.P. Baldwin, T.J. Roussel, M.M. Crain, V. Bathlagunda, D.J. Jackson, J. Gullapalli, J.A. Conklin, R. Pai, J.F. Naber, K.M. Walsh, R.S. Keynton, Fully integrated on-chip electrochemical detection for capillary electrophoresis in a microfabricated device. Anal. Chem.,2002,74:3690-3697.
    356. C. Wang, R. Oleschuk, F. Ouchen, J.J. Li, P. Thibault, D.J. Harrison, Integration of immobilized trypsin bead beds for protein digestion within a microfluidic chip incorporating capillary electrophoresis separations and an electrospray mass spectrometry interface. Rapid Commun. Mass Spectrom.,2000,14:1377-1383.
    357. C.S. Chu, M.R. Ninonuevo, B.H. Clowers, P.D. Perkins, H.J. An, H.F. Yin, K. Killeen, S. Miyamoto, R. Grimm, C.B. Lebrilla, Profile of native N-linked glycan structures from human serum using high performance liquid chromatography on a microfluidic chip and time-of-flight mass spectrometry. Proteomics,2009,9:1939-1951.
    358. W.R. Alley, M. Madera, Y. Mechref, M.V. Novotny, Chip-based reversed-phase liquid chromatography-mass spectrometry of permethylated n-linked glycans:a potential methodology for cancer-biomarker discovery. Anal. Chem.,2010,82:5095-5106.
    359. S.D. Tanner, O. Ornatsky, D.R. Bandura, V.I. Baranov, Multiplex bio-assay with inductively coupled plasma mass spectrometry:Towards a massively multivariate single-cell technology. Spectroc. Acta Pt. B-Atom. Spectr.,2007,62:188-195.
    360. H. Haraguchi, A. Ishii, T. Hasegawa, H. Matsuura, T. Umemura, Metallomics study on all-elements analysis of salmon egg cells and fractionation analysis of metals in cell cytoplasm. Pure Appl. Chem., 2008,80:2595-2608.
    361. F.M. Li, D.W. Armstrong, R.S. Houk, Behavior of bacteria in the inductively coupled plasma: atomization and production of atomic ions for mass spectrometry. Anal. Chem.,2005,77:1407-1413.
    362. S.D. Tanner, D.R. Bandura, O. Ornatsky, V.I. Baranov, M. Nitz, M.A. Winnik, Flow cytometer with mass spectrometer detection for massively multiplexed single-cell biomarker assay. Pure Appl. Chem., 2008,80:2627-2641.
    363. D.R. Bandura, V.I. Baranov, O.I. Ornatsky, A. Antonov, R. Kinach, X.D. Lou, S. Pavlov, S. Vorobiev, J.E. Dick, S.D. Tanner, Mass cytometry:technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal. Chem.,2009,81: 6813-6822.
    364. K.S. Ho, W.T. Chan, Time-resolved ICP-MS measurement for single-cell analysis and on-line cytometry. J. Anal. At. Spectrom.,2010,25:1114-1122.
    365. A. Sanz-Medel, M. Montes-Bayon, M. de la Campa, J.R. Encinar, J. Bettmer, Elemental mass spectrometry for quantitative proteomics. Anal. Bioanal. Chem.,2008,390:3-16.
    366. A. Prange, D. Proefrock, Chemical labels and natural element tags for the quantitative analysis of bio-molecules. J. Anal. At. Spectrom.,2008,23:432-459.
    367. A.P. Navaza, J.R. Encinar, A. Sanz-Medel, Absolute and accurate quantification of protein phosphorylation by using an elemental phosphorus standard and element mass spectrometry. Angew. Chem. Int. Edit.,2007,46:569-571.
    368. C. Zhang, F.B. Wu, Y.Y. Zhang, X. Wang, X.R. Zhang, A novel combination of immunoreaction and ICP-MS as a hyphenated technique for the determination of thyroid-stimulating hormone (TSH) in human serum. J. Anal. At. Spectrom.,2001,16:1393-1396.
    369. C. Zhang, Z.Y. Zhang, B.B. Yu, J.J. Shi, X.R. Zhang, Application of the biological conjugate between antibody and colloid Au nanoparticles as analyte to inductively coupled plasma mass spectrometry. Anal. Chem.,2002,74:96-99.
    370. B.B. Chen, H.Y. Peng, F. Zheng, B. Hu, M. He, W. Zhao, D.W. Pang, Immunoaffinity monolithic capillary microextraction coupled with ICP-MS for immunoassay with quantum dot labels. J. Anal. At. Spectrom.,2010,25:1674-1681.
    371. A. Campbell, A. Kumar, F.G. La Rosa, K.N. Prasad, S.C. Bondy, Aluminum increases levels of beta-amyloid and ubiquitin in neuroblastoma but not in glioma cells. Proc. Soc. Exp. Biol. Med.,2000, 223:397-402.
    372. C. Exley, Eds, Aluminum and alzheimer's disease,1st ed.2001, Elsevier, Amsterdam.
    373. H. Murayama, R.W. Shin, J. Higuchi, S. Shibuya, T. Muramoto, T. Kitamoto, Interaction of aluminum with PHF tau in Alzheimer's disease neurofibrillary degeneration evidenced by desferrioxamine-assisted chelating autoclave method. Am. J. Pathol,1999,155:877-885.
    374. G. Sposito, The environmental chemistry of aluminum,2nd ed.,1996, CRC Press. Inc. Boca Raton, Florida.
    375. T.M. Florence, G.E. Batley, P. Benes, Chemical speciation in natural waters. Crit. Rev. Anal. Chem., 1980,9:219-296.
    376. H. Keirsse, J. Smeyers-Verbeke, D. Verbeelen, D.L. Massart, Critical study of the speciation of aluminum in biological fluids by size-exclusion chromatography and electrothermal atomic absorption spectrometry. Anal. Chim.Acta,1987,196:103-114.
    377. E.B. Gonzalez, J.P. Parajon, J.I.G. Alonso, A. Sanz-Medel, Analytical approaches to the problem of protein binding of aluminium in blood serum. J. Anal. At. Spectrom.,1989,4:175-179.
    378. A.B.S. Cabezuelo, E.B. Gonz'alez, A. Sanz-Medel, Quantitative studies of aluminium binding species in human uremic serum by fast protein liquid chromatography coupled with electrothermal atomic absorption spectrometry. Analyst,1997,122:573-577.
    379. T. Bantan, R. Milacic, B. Pihlar, Quantitative determination of trace amounts of Al-citrate by anion-exchange FPLC-ETAAS. Talanta,1998,47:929-941.
    380. T. Bantan, R. Milacic, B. Mitrovic, B. Pihlar, Investigation of low molecular weight Al complexes in human serum by fast protein liquid chromatography (FPLC)-ETAAS and electrospray (ES)-MS-MS techniques. J. Anal. At. Spectrom.,1999,14:1743-1748.
    381. M.H. Nagaoka, T. Maitani, Binding patterns of co-existing aluminium and iron to human serum transferrin studied by HPLC-high resolution ICP-MS. Analyst,2000,125:1962-1965.
    382. S. Murko, R. Milacic, J. Scancar, Speciation of Al in human serum by convective-interaction media fast-monolithic chromatography with inductively coupled plasma mass spectrometric detection. J Inor%. Biochem.,2007,101:1234-1241.
    383. S. Murko, R. Milacic, B. Kralj, J. Scancar, Convective interaction media monolithic chromatography with icpms and ultraperformance liquid chromatography-electrospray ionization ms detection:a powerful tool for speciation of aluminum in human serum at normal concentration levels. Anal. Chem.,2009,81:4929-4936.
    384. T. Umemura, R. Kitaguchi, K. Inagaki, H. Haraguchi, Direct injection determination of theophylline and caffeine in blood serum by high-performance liquid chromatography using an ODS column coated with a zwitterionic bile acid derivative. Analyst,1998,123:1767-1770.
    385. H. Matsuura, T. Hasegawa, H. Nagata, K. Takatani, M. Asano, A. Itoh, H. Haraguchi, Speciation of small molecules and inorganic ions in salmon egg cell cytoplasm by surfactant-mediated HPLC/ICP-MS. Anal. Sci.,2003,19:117-121.
    386. E. Kaneko, H. Hoshino, T. Yotsuyanagi, N. Gunji, M. Sato, T. Kikuta, M. Yuasa, Determination of aluminum in the human serum of a dialysis patient by ion-pair reversed-phase partition high-performance liquid chromatography. Anal. Chem.,1991,63:2219-2222.
    387. M. Sato, J. Matsuda, H. Murayama, R.W. Shin, E. Kaneko, T. Yotsuyanagi, Determination of aluminium in biological samples and drinking water by kinetic-differentiation mode HPLC with fluorescent detection. Bunseki Kagaku,2000,49:429-435.
    388. B. Kralj, J. Scancar, I. Krizaj, M. Benedik, P. Bukovec, R. Milacic, Determination of high molecular mass A1 species in serum and spent CAPD fluids of dialysis patients combining SEC and anion-exchange FPLC with ETAAS detection. J. Anal. At. Spectrom.,2004,19:101-106.
    389. M.H. Nagaoka, T. Maitani, Binding affinity of aluminium to human serum transferrin and effects of carbohydrate chain modification as studied by HPLC/high-resolution ICP-MS-Speciation of aluminium in human serum. J. Inorg. Biochem.,2005,99:1887-1894.
    390. A.E. Martell, R.D. Hancock, R.M. Smith, R.J. Motekaitis, Coordination of Al(Ⅲ) in the environment and in biological systems. Coord. Chem. Rev.,1996,149:311-328.
    391. W.R. Harris, J. Sheldon, Equilibrium constants for the binding of aluminum to human serum transferrin. Inorg. Chem.,1990,29:119-124.
    392. M. Zhu, X. Shen, Y. Zhang, D.L. H. Zhu, Modern clinical biochemistry.1996, Shanghai Medical University Press.
    393. W.R. Harris, Equilibrium model for speciation of aluminum in serum. Clin. Chem.,1992,38: 1809-1818.
    394. W.R. Harris, Z.P. Wang, Y.Z. Hamada, Competition between transferrin and the serum ligands citrate and phosphate for the binding of aluminum. Inorg. Chem.,2003,42:3262-3273.
    395. M.P. Rayman, The importance of selenium to human health. Lancet,2000,356:233-241.
    396. C. Ip, Lessons from basic research in selenium and cancer prevention. J. Nutr.,1998,128:1845-1854.
    397. S.J. Fairweather-Tait, The importance of trace element speciation in nutritional sciences. Fresen. J. Anal. Chem.,1999,363:536-540.
    398. S.G Patching, P.H. Gardiner, Recent developments in selenium metabolism and chemical speciation: a review. J. Trace. Elem. Med. Biol,1999,13:193-214.
    399. C.I. Measures, J.D. Burton, Behaviour and speciation of dissolved selenium in estuarine waters. Nature,1978,273:293-295.
    400. C. B'Hymer, J.A. Caruso, Selenium speciation analysis using inductively coupled plasma-mass spectrometry. J. Chromatogr. A,2006,1114:1-20.
    401. A. Polatajko, N. Jakubowski, J. Szpunar, State of the art report of selenium speciation in biological samples. J. Anal. At. Spectrom.,2006,21:639-654.
    402. B. Gammelgaard, C. Gabel-Jensen, S. Sturup, H.R. Hansen, Complementary use of molecular and element-specific mass spectrometry for identification of selenium compounds related to human selenium metabolism. Anal. Bioanal. Chem.,2008,390:1691-1706.
    403. J.K. Kirby, G.H. Lyons, M.P. Karkkainen, Selenium speciation and bioavailability in biofortified products using species-unspecific isotope dilution and reverse phase ion paidng-inductively coupled plasma-mass spectrometry. J. Agr. Food Chem.,2008,56:1772-1779.
    404. M. Dernovics, R. Lobinski, Characterization of the selenocysteine-containing metabolome in selenium-rich yeast. J. Anal. At. Spectrom.,2008,23:72-83.
    405. K. Biera, V. Vacchina, J. Szpunar, G. Bertin, R. Lobinski, Simultaneous derivatization of selenocysteine and selenomethionine in animal blood prior to their specific determination by 2D size-exclusion ion-pairing reversed-phase HPLC-ICP-MS. J. Anal. At. Spectrom.,2008,23:508-513.
    406. M. Dernovics, R. Lobinski, Speciation analysis of selenium metabolites in yeast-based food supplements by ICPMS-Assisted hydrophilic interaction HPLC-Hybrid linear ion trap/orbitrap MSn. Anal. Chem.,2008,80:3975-3984.
    407. P. Jitaru, G Cozzi, A. Gambaro, P. Cescon, C. Barbante, Simultaneous speciation analysis of glutathione peroxidase, selenoprotein P and selenoalbumin in human serum by tandem anion exchange-affinity HPLC and on-line isotope dilution ICP-quadrupole MS. Anal. Bioanal. Chem., 2008,391:661-669.
    408. S.Y. Lin, G.R. Wang, Q.P. Huang, C.Y. Liu, Speciation of selenium compounds by open tubular capillary electrochromatography-inductively coupled plasma mass spectrometry. Electrophoresis, 2006,27:4257-4265.
    409. R.R.D. St Remy, M. Montes-Bayon, A. Sanz-Medel, Determination of total homocysteine in human serum by capillary gas chromatography with sulfur-specific detection by double focusing ICP-MS. Anal. Bioanal. Chem.,2003,377:299-305.
    410. C. Dietz, J.S. Landaluze, P. Ximenez-Embun, Y. Madrid-Albarran, C. Camara, Volatile organo-selenium speciation in biological matter by solid phase microextraction-moderate temperature multicapillary gas chromatography with microwave induced plasma atomic emission spectrometry detection. Anal. Chim.Acta,2004,501:157-167.
    411. F.N. Tsopelas, M.T. Ochsenkuhn-Petropoulo, I.G Mergias, L.V. Tsakanika, Comparison of ultra-violet and inductively coupled plasma-atomic emission spectrometry for the on-line quantification of selenium species after their separation by reversed-phase liquid chromatography. Anal. Chim. Acta, 2005,539:327-333.
    412. O. Muniz-Naveiro, R. Dominguez-Gonzalez, A. Bermejo-Barrera, P. Bermejo-Barrera, J.A. Cocho, J.M. Fraga, Selenium speciation in cow milk obtained after supplementation with different selenium forms to the cow feed using liquid chromatography coupled with hydride generation-atomic fluorescence spectrometry. Talanta,2007,71:1587-1593.
    413. E. Dumont, K. De Cremer, M. Van Hulle, C.C. Chery, F. Vanhaecke, R. Cornelis, Separation and detection of Se-compounds by ion pairing liquid chromatography-microwave assisted hydride generation-atomic fluorescence spectrometry. J. Anal. At. Spectrom.,2004,19:167-171.
    414. H.G. Infante, G. O'Connor, M. Rayman, R. Wahlen, J. Entwisle, P. Norris, R. Hearn, T. Catterick, Selenium speciation analysis of selenium-enriched supplements by HPLC with ultrasonic nebulisation ICP-MS and electrospray MS/MS detection. J. Anal. At. Spectrom.,2004,19:1529-1538.
    415. E. Kapolna, P. Fodor, Bioavailability of selenium from selenium-enriched green onions (Allium fistulosum) and chives (Allium schoenoprasum) after'in vitro'gastrointestinal digestion. Int. J. Food Sci. Nutr.,2007,58:282-296.
    416. Y.F. Li, C.Y. Chen, B. Li, Q. Wang, J.X. Wang, Y.X. Gao, Y.L. Zhao, Z.F. Chai, Simultaneous speciation of selenium and mercury in human urine samples from long-term mercury-exposed populations with supplementation of selenium-enriched yeast by HPLC-ICP-MS. J. Anal. At. Spectrom.,2007,22:925-930.
    417. T. Welton, Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev.,1999,99: 2071-2083.
    418. P. Wasserscheid, W. Keim, Ionic liquids-New "solutions" for transition metal catalysis. Angew. Chem. Int. Edit.,2000,39:3772-3789.
    419. R.D.Rogers, K.R.Seddon, Ionic Liquids as Green Solvents:Progress and Prospects. J. Am. Chem. Soc, 2003,125:15684.
    420. D.W. Armstrong, L.F. He, Y.S. Liu, Examination of ionic liquids and their interaction with molecules, when used as stationary phases in gas chromatography. Anal. Chem.,1999,71:3873-3876.
    421. J.L. Anderson, D.W. Armstrong, High-stability ionic liquids. A new class of stationary phases for gas chromatography. Anal. Chem.,2003,75:4851-4858.
    422. J.L. Anderson, D.W. Armstrong, Immobilized ionic liquids as high-selectivity/high-temperature/ high-stability gas chromatography stationary phases. Anal. Chem.,2005,77:6453-6462.
    423. L.J. He, W.Z. Zhang, L. Zhao, X. Liu, S.X. Jiang, Effect of 1-alkyl-3-methylimidazolium-based ionic liquids as the eluent on the separation of ephedrines by liquid chromatography. J. Chromatogr. A, 2003,1007:39-45.
    424. X.H. Xiao, L. Zhao, X. Liu, S.X. Jiang, Ionic liquids as additives in high performance liquid chromatography-Analysis of amines and the interaction mechanism of ionic liquids. Anal. Chim. Acta,2004,519:207-211.
    425. R. Kaliszan, M.P. Marszall, M.J. Markuszewski, T. Baczek, J. Pernak, Suppression of deleterious effects of free silanols in liquid chromatography by imidazolium tetrafluoroborate ionic liquids. J. Chromatogr. A,2004,1030:263-271.
    426. A. Berthod, M.J. Ruiz-Angel, S. Huguet, Nonmolecular solvents in separation methods:Dual nature of room temperature ionic liquids. Anal. Chem.,2005,77:4071-4080.
    427. D.S. Van Meter, O.D. Stuart, A.B. Carle, A.M. Stalcup, Characterization of a novel pyridinium bromide surface confined ionic liquid stationary phase for high-performance liquid chromatography under normal phase conditions via linear solvation energy relationships. J. Chromatogr. A,2008,1191: 67-71.
    428. Y. Bao, A.W. Lantz, J.A. Crank, J.M. Huang, D.W. Armstrong, The use of cationic surfactants and ionic liquids in the detection of microbial contamination by capillary electrophoresis. Electrophoresis, 2008,29:2587-2592.
    429. Y.H. Xu, J. Li, E.K. Wang, Sensitive, label-free protein assay using 1-ethyl-3-methylimidazolium tetraflucroborate-supported microchip electrophoresis with laser-induced fluonescence detection. Electrophoresis,2008,29:1852-1858.
    430. A. Berthod, M. Ruiz-Angel, S. Carda-Broch, Ionic liquids in separation techniques. J. Chromatogr. A, 2008,1184:6-18.
    431. P.H. Shetty, P.J. Youngberg, B.R. Kersten, C.F. Poole, Solvent properties of liquid organic salts used as mobile phases in microcolumn reversed-phase liquid chromatography, J. Chromatogr. A,1987,411: 61-79.
    432. M.P. Marszall, T. Baczek, R. Kaliszan, Reduction of silanophilic interactions in liquid chromatography with the use of ionic liquids. Anal. Chim. Acta,2005,547:172-178.
    433. M.J. Ruiz-Angel, S. Carda-Broch, A. Berthod, Ionic liquids versus triethylamine as mobile phase additives in the analysis of beta-blockers. J. Chromatogr. A,2006,1119:202-208.
    434. F. Tang, L. Tao, X.B. Luo, L. Ding, M.L. Guo, L.H. Nie, S.Z. Yao, Determination of octopamine, synephrine and tyramine in citrus herbs by ionic liquid improved'green'chromatography. J. Chromatogr. A,2006,1125:182-188.
    435. M. Cruz-Vera, R. Lucena, S. Cardenas, M. Valcarcel, Combined use of carbon nanotubes and ionic liquid to improve the determination of antidepressants in urine samples by liquid chromatography. Anal. Bioanal. Chem.,2008,391:1139-1145.
    436. B. Buszewski, S. Studzinska, A review of ionic liquids in chromatographic and electromigration techniques. Chromatographia,2008,68:1-10.
    437. M.P. Marszall, T. Baczek, R. Kaliszan, Evaluation of the silanol-suppressing potency of ionic liquids. J. Sep. Sci,2006,29:1138-1145.
    438. Y. Polyakova, Y.Z. Jin, J.Z. Zheng, K.H. Row, Effect of concentration of ionic liquid l-butyl-3-methylimidazolium, tetrafuoroborate, for retention and separation of some amino and nucleic acids. J. Liq. Chromatogr. R. T.,2006,29:1687-1701.
    439. C.G. Yoo, S.C. Yi, S. Mun, Effect of ionic liquid on the retention and separation behavior of various amino acids in reversed phase chromatography. J. Liq. Chromatogr. R. T.,2007,30:2989-3006.
    440. Q. Jiang, H.D. Qiu, X.S. Wang, X. Liu, S.S. Zhang, Effect of ionic liquids as additives on the separation of bases and amino acids in HPLC. J. Liq. Chromatogr. R. T.,2008,31:1448-1457.
    441. K.J. Sambroo, D.W. Russell, Molecular cloning:a laboratory manual-3rd, Ed.,2001, New York:Cold Spring Harbor Laboratory Press.
    442. L.R.Snyder, J.J.Kirkland, Introduction to modern liquid chromatography,2 Ed.,1979, New York: John Wiley&Sons.
    443. E. Warburton, H. Goenaga-Infante, Methane mixed plasma-improved sensitivity of inductively coupled plasma mass spectrometry detection for selenium speciation analysis of wheat-based food. J. Anal. At. Spectrom.,2007,22:370-376.
    444. B.Y. Deng, J.R. Feng, J. Meng, Speciation of inorganic selenium using capillary electrophoresis-inductively coupled plasma-atomic emission spectrometry with on-line hydride generation. Anal. Chim. Acta,2007,583:92-97.
    445. L. Liang, S.M. Mo, P. Zhang, Y.Q. Cai, S.F. Mou, G.B. Jiang, M.J. Wen, Selenium speciation by high-performance anion-exchange chromatography-post-column UV irradiation coupled with atomic fluorescence spectrometry. J. Chromatogr. A,2006,1118:139-143.
    446. Y.C. Sun, Y.C. Chang, C.K. Su, On-line HPLC-UV/nano-TiO2-ICP-MS system for the determination of inorganic selenium species. Anal. Chem.,2006,78:2640-2645.
    447. K. Polec-Pawlak, R. Ruzik, T. Makowska, M. Jarosz, Determination of selenium species in food by liquid chromatography coupled to mass spectrometry. Chem. Anal,2005,50:249-263.
    448. S. McSheehy, L. Yang, R. Sturgeon, Z. Mester, Determination of methionine and selenomethionine in selenium-enriched yeast by species-specific isotope dilution with liquid chromatography-mass spectrometry and inductively coupled plasma mass spectrometry detection. Anal. Chem.,2005,77: 344-349.
    449. K.T. Suzuki, Metabolomics of selenium:Se metabolites based on speciation studies. J. Health. ScL, 2005,51:107-114.
    450. G.N. Schrauzer, Selenomethionine:A review of its nutritional significance, metabolism and toxicity. J. Nutr.,2000,130:1653-1656.
    451.Y.F. Li, X.Y. Wang, L.M. Wang, B. Li, Y.X. Gao, C.Y. Chen, Direct quantitative speciation of selenium in selenium-enriched yeast and yeast-based products by X-ray absorption spectroscopy confirmed by HPLC-ICP-MS. J. Anal. At. Spectrom.,2010,25:426-430.
    452. J. Far, H. Preud'homme, R. Lobinski, Detection and identification of hydrophilic selenium compounds in selenium-rich yeast by size exclusion-microbore normal-phase HPLC with the on-line ICP-MS and electrospray Q-TOF-MS detection. Anal. Chim. Acta,2010,657:175-190.
    453. L. Tastet, D. Schaumloffel, R. Lobinski, ICP-MS-assisted proteomics approach to the identification of selenium-containing proteins in selenium-rich yeast. J. Anal. At. Spectrom.,2008,23:309-317.
    454. K. Abbas-Ghaleb, N. Gilon, G. Cretier, J.M. Mermet, Preconcentration of selenium compounds on a porous graphitic carbon column in view of HPLC-ICP-AES speciation analysis. Anal. Bioanal. Chem., 2003,377:1026-1031.
    455. X.Q. Liu, Z.Y. Ma, J.M. Xing, H.Z. Liu, Preparation and characterization of amino-silane modified superparamagnetic silica nanospheres. J. Magn. Magn. Mater.,2004,270:1-6.
    456. D. Arunbabu, Z. Sanga, K.M. Seenimeera, T. Jana, Emulsion copolymerization of styrene and sodium styrene sulfonate:kinetics, monomer reactivity ratios and copolymer properties. Polym. Int.,2009,58: 88-96.
    457. M. Kotrebai, M. Birringer, J.F. Tyson, E. Block, P.C. Uden, Identification of the principal selenium compounds in selenium-enriched natural sample extracts by ion-pair liquid chromatography with inductively coupled plasma- and electrospray ionization-mass spectrometric detection. Anal. Commun.,1999,36:249-252.
    458. M. Dauthieu, M. Bueno, K. Darrouzes, N. Gilon, M. Potin-Gautier, Evaluation of porous graphitic carbon stationary phase for simultaneous preconcentration and separation of organic and inorganic selenium species in "clean" water systems. J. Chromatogr. A,2006,1114:34-39.
    459. A.P. Vonderheide, M. Montes-Bayon, J.A. Caruso, Solid-phase microextraction as a sample preparation strategy for the analysis of seleno amino acids by gas chromatography-inductively coupled plasma mass spectrometry. Analyst,2002,127:49-53.
    460. R.S. Oremland, J.F. Stolz, The ecology of arsenic. Science,2003,300:939-944.
    461. K.F. Akter, G. Owens, D.E. Davey, R. Naidu, Arsenic speciation and toxicity in biological systems. Rev. Environ. Contam. T.,2005,184:97-149.
    462. X.C. Le, X.F. Lu, X.F. Li, Arsenic speciation. Anal. Chem.,2004,76:26a-33a.
    463. K.A. Francesconi, D. Kuehnelt, Determination of arsenic species:A critical review of methods and applications,2000-2003. Analyst,2004,129:373-395.
    464. C. B'Hymer, J.A. Caruso, Arsenic and its speciation analysis using high-performance liquid chromatography and inductively coupled plasma mass spectrometry. J. Chromatogr. A,2004,1045: 1-13.
    465. S. Rabieh, A.V. Hirner, J. Matschullat, Determination of arsenic species in human urine using high performance liquid chromatography (HPLC) coupled with inductively coupled plasma mass spectrometry (ICP-MS). J. Anal. At. Spectrom,2008,23:544-549.
    466. T. Narukawa, K. Inagaki, T. Kuroiwa, K. Chiba, The extraction and speciation of arsenic in rice flour by HPLC-ICP-MS. Talanta,2008,77:427-432.
    467. R.Y. Wang, Y.L. Hsu, L.F. Chang, S.J. Jiang, Speciation analysis of arsenic and selenium compounds in environmental and biological samples by ion chromatography-inductively coupled plasma dynamic reaction cell mass spectrometer. Anal. Chim. Acta,2007,590:239-244.
    468. S.N. Ronkart, V. Laurent, P. Carbonnelle, N. Mabon, A. Copin, J.P. Barthelemy, Speciation of five arsenic species (arsenite, arsenate, MMAA(V), DMAA(V) and AsBet) in different kind of water by HPLC-ICP-MS. Chemosphere,2007,66:738-745.
    469. Z. Chen, K.F. Akter, M.M. Rahman, R. Naidu, Speciation of arsenic by ion chromatography inductively coupled plasma mass spectrometry using ammonium eluents. J. Sep. Sci.,2006,29: 2671-2676.
    470. H.M. Jiang, B. Hu, B.B. Chen, L.B. Xia, Hollow fiber liquid phase microextraction combined with electrothermal atomic absorption spectrometry for the speciation of arsenic (Ⅲ) and arsenic (Ⅴ) in fresh waters and human hair extracts. Anal. Chim. Acta,2009,634:15-21.
    471. C. Xiong, M. He, B. Hu, On-line separation and preconcentration of inorganic arsenic and selenium species in natural water samples with CTAB-modified alkyl silica microcolumn and determination by inductively coupled plasma-optical emission spectrometry. Talanta,2008,76:772-779.
    472. C. Dietz, J. Sanz, E. Sanz, R. Munoz-Olivas, C. Camara, Current perspectives in analyte extraction strategies for tin and arsenic speciation. J. Chromatogr. A,2007,1153:114-129.
    473. S.J. Cathum, C.E. Brown, A. Obenauf, M. Punt, Speciation of arsenic using chelation solvent extraction and high performance liquid chromatography. Clean-Soil Air Water,2007,35:71-80.
    474. V.G Mihucz, E. Tatar, I. Virag, C. Zang, Y. Jao, G. Zaray, Arsenic removal from rice by washing and cooking with water. Food Chem.,2007,105:1718-1725.
    475. C.H. Yu, Q.T. Cai, Z.X. Guo, Z.G Yang, S.B. Khoo, Inductively coupled plasma mass spectrometry study of the retention behavior of arsenic species on various solid phase extraction cartridges and its application in arsenic speciation. Spectrochim. Acta. B,2003,58:1335-1349.
    476. L.H. Reyes, J.L.G Mar, G.M.M. Rahman, B. Seybert, T. Fahrenholz, H.M.S. Kingston, Simultaneous determination of arsenic and selenium species in fish tissues using microwave-assisted enzymatic extraction and ion chromatography-inductively coupled plasma mass spectrometry. Talanta,2009,78: 983-990.
    477. E. Sanz, R. Munoz-Olivas, C. Dietz, J. Sanz, C. Camara, Alternative extraction methods for arsenic speciation in hair using ultrasound probe sonication and pressurised liquid extraction. J. Anal. At. Spectrom.,2007,22:131-139.
    478. J.C. Wu, Z. Mester, J. Pawliszyn, Speciation of organoarsenic compounds by polypyrrole-coated capillary in-tube solid phase microextraction coupled with liquid chromatography/electrospray ionization mass spectrometry. Anal. Chim. Acta,2000,424:211-222.
    479. M.J. Mato-Fernandez, J.R. Otero-Rey, J. Moreda-Pineiro, E. Alonso-Rodriguez, P. Lopez-Mahia, S. Muniategui-Lorenzo, D. Prada-Rodriguez, Arsenic extraction in marine biological materials using pressurised liquid extraction. Talanta,2007,71:515-520.
    480. T. Wang, Y.F. Guan, Removal of arsenic in the form of anions from solid matrices by supercritical CO2 extraction with ion-pairing. Sep. Purif. Technol.,2003,31:225-230.
    481. A. Moreda-Pineiro, E. Pena-Vazquez, P. Hermelo-Herbello, P. Bermejo-Barrera, J. Moreda-Pineiro, E. Alonso-Rodriguez, S. Muniategui-Lorenzo, P. Lopez-Mahia, D. Prada-Rodriguez, Matrix solid-phase dispersion as a sample pretreatment for the speciation of arsenic in seafood products. Anal. Chem., 2008,80:9272-9278.
    482.1. Bruheim, X.C. Liu, J. Pawliszyn, Thin-film microextraction. Anal. Chem.,2003,75:1002-1010.
    483. C. Basheer, V. Suresh, R. Renu, H.K. Lee, Development and application of polymer-coated hollow fiber membrane microextraction to the determination of organochlorine pesticides in water. J. Chromatogr. A,2004,1033:213-220.
    484. C. Basheer, M. Vetrichelvan, S. Valiyaveettil, H.K. Lee, On-site polymer-coated hollow fiber membrane microextraction and gas chromatography-mass spectrometry of polychlorinated biphenyls and polybrominated diphenyl ethers. J. Chromatogr. A,2007,1139:157-164.
    485. C. Basheer, A.A. Ainedhary, B.S.M. Rao, S. Valliyaveettil, H.K. Lee, Development and application of porous membrane-protected carbon nanotube micro-solid-phase extraction combined with gas chromatography/mass spectrometry. Anal. Chem.,2006,78:2853-2858.
    486. N. Carretta, V. Tricoli, F. Picchioni, Ionomeric membranes based on partially sulfonated poly(styrene): synthesis, proton conduction and methanol permeation. J. Membrane. Sci.,2000,166:189-197.
    487. F. Zheng, B. Hu, MPTS-silica coated capillary microextraction on line hyphenated with inductively coupled plasma atomic emission spectrometry for the determination of Cu, Hg and Pb in biological samples. Talanta,2007,73:372-379.
    488. S. Caroli, E. Coni, A. Alimonti, F. Petrucci, G.B. Bolis, E. Cristallini, A pilot study on colon cancer occurrence as related to serum selenium levels. Ann Ist Super Sanita,1994,30:243-247.
    489. Q.J. Wan, P. Kuban, J. Tanyanyiwa, A. Rainelli, P.C. Hauser, Determination of major inorganic ions in blood serum and urine by capillary electrophoresis with contactless conductivity detection. Anal. Chim. Acta,2004,525:11-16.
    490. S. Caroli, A. Alimonti, E. Coni, F. Petrucci, O. Senofonte, The assessment of reference values for elements in human biological tissues and fluids:a systematic review. Crit. Rev. Anal. Chem.,1994,24: 363-398.
    491. Z. Mester, G. Vitanyi, R. Morabito, P. Fodor, Speciation of dimethylarsinic acid and monomethylarsonic acid by gas chromatography mass spectrometry. J. Chromatogr. A,1999,832: 183-190.
    492. A.M. Florea, D. Busselberg, Occurrence, use and potential toxic effects of metals and metal compounds. Biometals,2006,19:419-427.
    493. J.K. Nicholson, M.D. Kendall, D. Osborn, Cadmium and mercury nephrotoxicity. Nature,1983,304: 633-635.
    494. M.P. Waalkes, Cadmium carcinogenesis in review. J. Inorg. Biochem.,2000,79:241-244.
    495. T.W. Clarkson, L. Magos, G.J. Myers, The toxicology of mercury--current exposures and clinical manifestations. N. Engl. J. Med.,2003,349:1731-1737.
    496. T.I. Lidsky, J.S. Schneider, Lead neurotoxicity in children:basic mechanisms and clinical correlates. Brain,2003,126:5-19.
    497. R. Lobinski, Characterizing speciation of trace elements in the chemistry of life. Fresen. J. Anal. Chem.,2001,369:113-114.
    498. V. Camel, Solid phase extraction of trace elements. Spectrochim. Acta B,2003,58:1177-1233.
    499. M. Safarikova, I. Safarik, Magnetic solid-phase extraction. J. Magn. Magn. Mater.,1999,194: 108-112.
    500. R. Abu-Reziq, H. Alper, D.S. Wang, M.L. Post, Metal supported on dendronized magnetic nanoparticles:Highly selective hydroformylation catalysts. J. Am. Chem. Soc.,2006,128:5279-5282.
    501. H.H. Yang, S.Q. Zhang, X.L. Chen, Z.X. Zhuang, J.G. Xu, X.R. Wang, Magnetite-containing spherical silica nanoparticles for biocatalysis and bioseparations. Anal. Chem.,2004,76:1316-1321.
    502. H.W. Gu, P.L. Ho, K.W.T. Tsang, L. Wang, B. Xu, Using biofunctional magnetic nanoparticles to capture vancomycin-resistant enterococci and other gram-positive bacteria at ultralow concentration. J. Am. Chem. Soc.,2003,125:15702-15703.
    503. A.K. Gupta, M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials,2005,26:3995-4021.
    504. L. Li, M.H. Fan, R.C. Brown, J.H. Van Leeuwen, J.J. Wang, W.H. Wang, Y.H. Song, P.Y. Zhang, Synthesis, properties, and environmental applications of nanoscale iron-based materials:A review. Crit. Rev. Env. Sci. Tec,2006,36:405-431.
    505. P.G. Wu, Z.H. Xu, Silanation of nanostructured mesoporous magnetic particles for heavy metal recovery. Ind. Eng. Chem. Res.,2005,44:816-824.
    506. C.Y. Chen, C.L. Chiang, P.C. Huang, Adsorptions of heavy metal ions by a magnetic chelating resin containing hydroxy and iminodiacetate groups. Sep. Purif. Technol.,2006,50:15-21.
    507. J. West, M. Becker, S. Tombrink, A. Manz, Micro total analysis systems:Latest achievements. Anal. Chem.,2008,80:4403-4419.
    508. G.M. Whitesides, The origins and the future of microfluidics. Nature,2006,442:368-373.
    509. D. Janasek, J. Franzke, A. Manz, Scaling and the design of miniaturized chemical-analysis systems. Nature,2006,442:374-380.
    510. J. El-Ali, P.K. Sorger, K.F. Jensen, Cells on chips. Nature,2006,442:403-411.
    511.M.A.M. Gijs, Magnetic bead handling on-chip:new opportunities for analytical applications. Microfluid Nanofluid.,2004,1:22-40.
    512. N. Pamme, Magnetism and microfluidics. Lab Chip,2006,6:24-38.
    513. K.S. Kim, J.K. Park, Magnetic force-based multiplexed immunoassay using superparamagnetic nanoparticles in microfluidic channel. Lab Chip,2005,5:657-664.
    514. K.D. Barbee, X.H. Huang, Magnetic assembly of high-density DNA arrays for genomic analyses. Anal. Chem.,2008,80:2149-2154.
    515. M. Slovakova, N. Mine, Z. Bilkova, C. Smadja, W. Faigle, C. Futterer, M. Taverna, J.L. Viovy, Use of self assembled magnetic beads for on-chip protein digestion. Lab Chip,2005,5:935-942.
    516. C.Q. Yi, C.W. Li, S.L. Ji, M.S. Yang, Microfluidics technology for manipulation and analysis of biological cells. Anal. Chim. Acta,2006,560:1-23.
    517. S.Q. Li, B. Hu, Z.C. Jiang, Direct determination of trace impurities in niobium pentaoxide solid powder with slurry sampling fluorination assisted electrothermal vaporization inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom.,2004,19:387-391.
    518. Y.J. Liu, S.S. Guo, Z.L. Zhang, W.H. Huang, D. Baigl, M. Xie, Y. Chen, D.W. Pang, A micropillar-integrated smart microfluidic device for specific capture and sorting of cells. Electrophoresis,2007,28:4713-4722.
    519. L. Ceriotti, R. de, E. Verpoorte, An integrated fritless column for on-chip capillary electrochromatography with conventional stationary phases. Anal. Chem.,2002,74:639-647.
    520. P.Q. Zhang, C.Y. Chen, M. Horvat, R. Jacimovic, I. Falnoga, M. Logar, B. Li, J.J. Zhao, Z.F. Chai, Element content and element correlations in Chinese human liver. Anal. Bioanal. Chem.,2004,380: 773-781.
    521.G.D. Chen, C.J. Alberts, W. Rodriguez, M. Toner, Concentration and purification of human immunodeficiency virus type 1 virions by microfiuidic separation of superparamagnetic nanoparticles. Anal. Chem.,2010,82:723-728.
    522. B. Dimitrova-Koleva, K. Benkhedda, E. Ivanova, F. Adams, Determination of trace elements in natural waters by inductively coupled plasma time of flight mass spectrometry after flow injection preconcentration in a knotted reactor. Talanta,2007,71:44-50.
    523. V.L. Dressler, D. Pozebon, A.J. Curtius, Determination of heavy metals by inductively coupiea plasma mass spectrometry after on-line separation and preconcentration. Spectrochimica. Acta Part B, 1998.53:1527-1539.
    524. S. Hammarstrom, The carcinoembryonic antigen (CEA) family:structures, suggested functions and expression in normal and malignant tissues. Semin. Cancer. Biol.,1999,9:67-81.
    525. M.J. Duffy, Carcinoembryonic antigen as a marker for colorectal cancer:Is it clinically useful? Clin Chem.,2001,47:624-630.
    526. N. Laboria, A. Fragoso, W. Kemmner, D. Latta, O. Nilsson, M.L. Botero, K. Drese, C.K. O'Sullivan, Amperometric immunosensor for carcinoembryonic antigen in colon cancer samples based on monolayers of dendritic bipodal scaffolds. Anal. Chem.,2010,82:1712-1719.
    527. J. Ferrer, M.A. Villarino, G. Encabo, E. Felip, B. Bermejo, S. Vila, R. Orriols, Diagnostic utility of CYFRA 21-1, carcinoembryonic antigen, CA 125, neuron specific enolase, and squamous cell antigen level determinations in the serum and pleural fluid of patients with pleural effusions. Cancer,1999,86: 1488-1495.
    528. L.S. Zhao, S.Y. Xu, G. Fjaertoft, K. Pauksen, L. Hakansson, P. Venge, An enzyme-linked immunosorbent assay for human carcinoembryonic antigen-related cell adhesion molecule 8, a biological marker of granulocyte activities in vivo. J. Immunol. Methods,2004,293:207-214.
    529. Z.Q. Gao, J. Zhang, B.P. Ting, A doubly amplified electrochemical immunoassay for carcinoembryonic antigen. Biosens. Bioelectron.,2009,24:1825-1830.
    530. X. Pei, B. Chen, L. Li, F. Gao, Z. Jiang, Multiplex tumor marker detection with new chemiluminescent immunoassay based on silica colloidal crystal beads. Analyst,2010,135:177-181.
    531. J. Yuan, G. Wang, K. Majima, K. Matsumoto, Synthesis of a terbium fluorescent chelate and its application to time-resolved fluoroimmunoassay. Anal. Chem.,2001,73:1869-1876.
    532. M. Seydack, Nanoparticle labels in immunosensing using optical detection methods. Biosens. Bioelectron.,2005,20:2454-2469.
    533. M.Y. Liu, C.P. Jia, Y.Y. Huang, X.H. Lou, S.H. Yao, Q.H. Jin, J.L. Zhao, J.Q. Xiang, Highly sensitive protein detection using enzyme-labeled gold nanoparticle probes. Analyst,2010,135:327-331.
    534. Y. Xiang, Y.Y. Zhang, Y. Chang, Y.Q. Chai, J. Wang, R. Yuan, Reverse-micelle synthesis of electrochemically encoded quantum dot barcodes:application to electronic coding of a cancer marker. Anal. Chem.,2010,82:1138-1141.
    535.J.A.A. Ho, Y.C. Lin, L.S. Wang, K.C. Hwang, P.T. Chou, Carbon nanoparticle enhanced immunoelectrochemical detection for protein tumor marker with cadmium sulfide biotracers. Anal. Chem.,2009,81:1340-1346.
    536. A.A. Patel, F.X. Wu, J.Z. Zhang, C.L. Torres-Martinez, R.K. Mehra, Y. Yang, S.H. Risbud, Synthesis, optical spectroscopy and ultrafast electron dynamics of PbS nanoparticles with different surface capping. J. Phys. Chem. B,2000,104:11598-11605.
    537. J.L. Machol, F.W. Wise, R.C. Patel, D.B. Tanner, Vibronic quantum beats in PbS microcrystallites. Phys. Rev. B Condens. Matter,1993,48:2819-2822.
    538. J.J. Peterson, T.D. Krauss, Fluorescence spectroscopy of single lead sulfide quantum dots. Nano. Lett., 2006,6:510-514.
    539. V. Sukhovatkin, S. Hinds, L. Brzozowski, E.H. Sargent, Colloidal quantum-dot photodetectors exploiting multiexciton generation. Science,2009,324:1542-1544.
    540. Y. Zhou, H. Itoh, T. Uemura, K. Naka, Y. Chujo, Preparation, optical spectroscopy, and electrochemical studies of novel pi-conjugated polymer-protected stable PbS colloidal nanoparticles in a nonaqueous solution. Langmuir,2002,18:5287-5292.
    541. J.A. Hansen, R. Mukhopadhyay, J.O. Hansen, K.V. Gothelf, Femtomolar electrochemical detection of DNA targets using metal sulfide nanoparticles. J. Am. Chem. Soc,2006,128:3860-3861.
    542. K.C. Hu, P. Liu, S.J. Ye, S.S. Zhang, Ultrasensitive electrochemical detection of DNA based on PbS nanoparticle tags and nanoporous gold electrode. Biosens. Bioelectron.,2009,24:3113-3119.
    543. S.F. Wang, X. Zhang, X. Mao, Q.X. Zeng, H. Xu, Y.H. Lin, W. Chen, G.D. Liu, Electrochemical immunoassay of carcinoembryonic antigen based on a lead sulfide nanoparticle label. Nanotechnology,2008,19:435501.
    544. E. Razumienko, O. Ornatsky, R. Kinach, M. Milyavsky, E. Lechman, V. Baranov, M.A. Winnik, S.D. Tanner, Element-tagged immunoassay with ICP-MS detection:Evaluation and comparison to conventional immunoassays. J. Immunol. Methods,2008,336:56-63.
    545. C.T. Lim, Y. Zhang, Bead-based microfluidic immunoassays:the next generation. Biosens. Bioelectron.,2007,22:1197-1204.
    546. T.G. Henares, F. Mizutani, H. Hisamoto, Current development in microfluidic immunosensing chip. Anal. Chim. Acta,2008,611:17-30.
    547. H.X. Jia, Z.Y. Wu, Z.L. Fang, Microfluidic chip-based immunoassay. Chin. J. Anal. Chem.,2005,33: 1489-1493.
    548. W.S. Liu, D.L. Chen, W.B. Du, K.P. Nichols, R.F. Ismagilov, Slip chip for immunoassays in nanoliter volumes. Anal Chem,2010,82:3276-3282.
    549. E.P. Dupont, E. Labonne, C. Vandevyver, U. Lehmann, E. Charbon, M.A.M. Gijs, Monolithic silicon chip for immunofluorescence detection on single magnetic beads. Anal. Chem.,2010,82:49-52.
    550. X.Q. Xu, C.H. Deng, M.X. Gao, W.J. Yu, P.Y. Yang, X.M. Zhang, Synthesis of magnetic microspheres with immobilized metal ions for enrichment and direct determination of phosphopeptides by matrix-assisted laser desorption ionization mass spectrometry. Adv. Mater.,2006,18:3289-3293.
    551. M. Terenghi, L. Elviri, M. Careri, A. Mangia, R. Lobinski, Multiplexed determination of protein biomarkers using metal-tagged antibodies and size exclusion chromatography-inductively coupled plasma mass spectrometry. Anal. Chem.,2009,81:9440-9448.
    552. M.Y. Li, Y.M. Sun, L. Chen, L. Li, G.Z. Zou, X.L. Zhang, W.R. Jin, Ultrasensitive eletrogenerated chemiluminescence immunoassay by magnetic nanobead amplification. Electroanal.,2010,22: 333-337.
    553. K.G. Liu, R. Yuan, Y.Q. Chai, D.P. Tang, H.Z. An, [AuCl4](-) and Fe3+/[Fe(CN)(6)](3-) ions-derivated immunosensing interface for electrochemical immunoassay of carcinoembryonic antigen in human serum. Bioproc. Biosyst. Eng.,2010,33:179-185.
    554. G.A. Pedersen, E.H. Larsen, Speciation of four selenium compounds using high performance liquid chromatography with on-line detection by inductively coupled plasma mass spectrometry or flame atomic absorption spectrometry. Fresen. J. Anal. Chem.,1997,358:591-598.
    555. L.B. Xia, B. Hu, Z.C. Jiang, Y.L. Wu, R. Chen, L. Li, Hollow fiber liquid phase microextraction combined with electrothermal vaporization ICP-MS for the speciation of inorganic selenium in natural waters. J. Anal. At. Spectrom.,2006,21:362-365.
    556. M. Shen, R. Guo, Z.M. Liu, T.Q. Liu., The Effect of organic acids on the cloud points of Triton X-100. Chem. J. Chin. Univer.,1996,17:1603-1607.
    557. E.K. Paleologos, M.I. Prodromidis, D.L. Giokas, A.C. Pappas, M.I. Karayannis, Highly selective spectrophotometric determination of trace cobalt and development of a reagentless fiber-optic sensor. Anal. Chim. Acta,2002,467:205-215.
    558. C.M. Santana, Z.S. Ferrera, J.J.S. Rodriguez, Use of non-ionic surfactant solutions for the extraction and preconcentration of phenolic compounds in water prior to their HPLC-UV detection. Analyst, 2002,127:1031-1037.
    559. C.L. Liu, D.T. Kamei, J.A. King, D.I.C. Wang, D. Blankschtein, Separation of proteins and viruses using two-phase aqueous micellar systems. J. Chromatogr. B,1998,711:127-138.
    560. H. Tani, T. Kamidate, H. Watanabe, Aqueous micellar two-phase systems for protein separation. Anal. Sci.,1998,14:875-888.
    561. Y.J. Li, B. Hu, Z.C. Jiang, On-line cloud point extraction combined with electrothermal vaporization inductively coupled plasma atomic emission spectrometry for the speciation of inorganic antimony in environmental and biological samples. Anal. Chim. Acta,2006,576:207-214.
    562. Y.J. Li, B. Hu, Z.C. Jiang, Y.W. Wu, Speciation of chromium in water samples by cloud point extraction combined with low temperature electrothermal vaporization ICP-OES. Anal. Lett.,2006, 39:809-822.
    563. X.S. Zhu, B. Hu, Z.C. Jiang, M.F. Li, Cloud point extraction for speciation of chromium in water samples by electrothermal atomic absorption spectrometry. Water Res.,2005,39:589-595.
    564. T. Kamada, T. Shiraishi, Y. Yamamoto, Differential determination of selenium(IV) and selenium(VI) with sodium diethyldithiocarbamate, ammonium pyrrolidinedithiocarbamate and dithizone by atomic-absorption spectrophotometry with a carbon-tube atomizer. Talanta,1978,25:15-19.
    565. J. Stripeikis, J. Pedro, A. Bonivardi, M. Tudino, Determination of selenite and selenate in drinking water:a fully automatic on-line separation/pre-concentration system coupled to electrothermal atomic spectrometry with permanent chemical modifiers. Anal. Chim. Acta,2004,502:99-105.
    566. C.H. Yu, Q.T. Cai, Z.X. Guo, Z.G. Yang, S.B. Khoo, Simultaneous speciation of inorganic selenium and tellurium by inductively coupled plasma mass spectrometry following selective solid-phase extraction separation. J. Anal. At. Spectrom.,2004,19:410-413.
    567. J.Y. Cabon, W. Erler, Determination of selenium species in seawater by flow injection hydride generation in situ trapping followed by electrothermal atomic absorption spectrometrv. Analvst.1998. 123:1565-1569.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700