用户名: 密码: 验证码:
磷腈系抗菌阻燃蛋白粘胶纤维的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的发展和消费水平的提高,人们对阻燃粘胶纤维及其制品的需求量和其使用性能的要求都不断提高。因此,阻燃粘胶纤维的发展不仅要求使用环境友好型阻燃剂,而且要具有良好的服用性及抗菌、抑菌性。然而,目前将这几种功能结合在一起的多功能复合型粘胶纤维的研究还未见报道。本文以六苯氧基环三磷腈(hexaphenoxycyclotriphosphazene,HPTP)这种符合环保要求的磷腈衍生物为阻燃剂制备了阻燃粘胶纤维。在湿法纺丝过程中添加动物蛋白胶液,制备了阻燃蛋白粘胶纤维。应用壳聚糖抗菌剂对纤维进行整理,在国内首次制备了抗菌阻燃蛋白粘胶纤维。系统地研究了这几种粘胶纤维的阻燃性能、机械强度和服用性等性能。
     本文将HPTP应用于粘胶纤维的阻燃研究。以六氯环三磷腈和苯酚钠为反应物,制备了HPTP。采用正交试验法研究了反应过程中温度、反应时间和投料比对产物产率的影响,得到了制备苯氧基磷腈的最佳合成工艺,产率为76.52%,加入聚乙二醇脂肪酸酯催化剂后,达到97.3%。所得产物的红外光谱图和31P核磁共振谱证明产物为取代完全的HPTP。差示扫描量热法(DSC)和热重分析(TG)的结果表明HPTP比HCTP的分解温度提高了约250℃,是耐热性更好的阻燃材料。
     在将HPTP应用于湿法纺丝前,本文通过正交试验法选择了APG/EL-20乳化分散体系,解决了HPTP颗粒大、分散性不好的问题,使阻燃剂在湿法纺丝过程中与粘胶纺丝液混合均匀,在阻燃粘胶纤维断面上可看到形成了分布均匀的绒毛状结构。采用扫描电镜法、极限氧指数(LOI)法、45度燃烧法、差示扫描量热法(DSC)、热重分析(TG)法等方法测试了阻燃粘胶纤维的燃烧性能和热稳定性。随着阻燃剂含量的增加,其阻燃效果明显增强,含16%阻燃剂的阻燃粘胶纤维LOI值为28.5%,接火3次以上,燃烧失重率为21.12%,属于难燃纤维,经30次水洗测试仍保持阻燃效果。阻燃剂的加入使粘胶纤维的第一次分解温度提前约20℃,分解速度加快;二次碳化时变得困难,第二次分解速度变缓,碳化温度滞后约30~50℃。纤维燃烧后表面生成碳化层,保留了纤维的结构。
     首先采用共混法将蛋白液、阻燃剂与粘胶纺丝液共混制备出阻燃蛋白粘胶纤维。在阻燃剂添加量保持在16%的基础上再加入5%的动物蛋白,通过SEM观察发现制得的阻燃蛋白粘胶纤维内部结构更加紧密,纤维表面出现了均匀散状分布的小孔;经LOI及45度燃烧测试,30次水洗前后的阻燃蛋白粘胶纤维均能达到难燃纤维标准。性能测试表明,阻燃蛋白粘胶纤维的主要改善是取向度、机械强度明显提高,回潮率比普通粘胶纤维略差,但较阻燃粘胶纤维的回潮率大13.3%,保温性有所提高;摩擦系数较阻燃粘胶纤维要小;膨松度提高,并超过普通粘胶纤维;在后加工过程中通过改性氨基有机硅柔软剂进行表面改性得到了具有丝滑手感的纤维。
     采用表面抗菌整理的方法将壳聚糖及纳米银-壳聚糖复合抗菌整理液应用到阻燃蛋白粘胶纤维中。处理后的抗菌阻燃蛋白粘胶纤维对混合菌的抑菌率分别达92.4%和97.6%,水洗30次后仍能达到89.3%和93.8%。纤维水洗前后LOI值均保持在29%以上,通过氮元素含量的测定发现了阻燃效果叠加规律;抗菌整理后的纤维干强比抗菌整理前有所提高,比普通粘胶纤维低,湿强则较普通粘胶纤维高;摩擦系数较抗菌整理前增大;通过改性氨基有机硅柔软剂的柔软整理,使最终制备的纤维摩擦系数低于普通粘胶纤维的摩擦系数,使最终样品的阻燃性能、机械强度、服用性能、抗菌性能都达到最优。
The demands of quantity and quality of flame-retardant textiles increasedramatically with the rapid development of technology and the booming consumptionlevel. In viscose fiber industry, environemental-firendly flame retardants are required, aswell as excellent wearing performance and antibacterial property. However,multi-functional product with combined features has not been reported. In this paper,flame-retardant viscose fiber was prepared by the addition of an environment-friendlyphosphazene derivative, hexaphenoxycyclotriphosphazene (HPTP). Flame-retardantprotein viscose fiber was prepared by adding animal protein solution to spinning solution.By using chitosan as antibacterial agent, Antibacterial flame-retardant protein viscosefiber was prepared for the first time. Flame retardancy, mechanical strength, wearingperformance and other properties of these viscose fibers were studied systematically.
     In this paper, HPTP was applied to the study of flame-retardant viscose fiber for thefirst time. Sodium phenate and hexachlorocyclotriphosphazene (HCTP) were used asreactants to synthesize HPTP. Reaction factors such as temperature, time and reactantratio were optimized using orthogonal test design, which gave a yield of76.52%. A yieldof97.3%was accomplished after PEG400was added as catalyst. Infrared spectrum and31P NMR spectrum were employed to characterize and determine the structure of theproduct. Results showed that Cl atoms were replaced completely. Differential scanningcalorimetry (DSC) and Thermogravimetry (TG) results indicated that the decompositiontemperature of HPTP is250degree centigrade higher than that of HCTP. It proved thatHPTP is a flame retardant with better heat-resistance.
     APG/EL-20emulsification system was selected and optimized using orthogonal testdesign to solve the bad dissolubility of HPTP before wet spinning. HPTP was blendedwith viscose spinning solution thoroughly. Fluffy structures spread uniformly wereobserved on the cross section of flame-retardant viscose fiber. The igniting property andthermal stability of the samples were evaluated by scanning electron microscope (SEM),Limited oxygen index (LOI),45degree igniting test, DSC, TG. The results indicated thathigher flame retardant percentage fiber has better flame retardancy. Viscose fiber with 16%flame retardant was evaluated as flame-retardant fiber (LOI=28.5%, ignition time>3, ignition weight loss=21.12%). The flame retardancy of the fiber remained after30times wash test. The first decomposition temperature of flame-retardant viscose fiber wasdecreased by20degree centigrade, decomposition rate was accelerated. Secondarycarbonization was more difficult than beforedecomposition rate was slower and the peakof decomposition was lagged by30~50degree centigrade. After igniting test, carbonizedlayer was formed on the surface of flame-retardant viscose fiber, the structure of fiberremained. Mechanical strength of the fiber with our emulsification system performedbetter than viscose fiber with common emulsification system.
     Protein solution, flame retardant and viscose spinning solution were blended for thefirst time to prepare flame-retardant protein viscose fiber. Animal protein was added5%by weight to spinning solution on the basis of16%flame retardant. The product has morecompact structure inside the fiber and evenly scattered small pores on the surface. Resultsof LOI and45degree igniting test showed that the flame-retardant protein viscose fibercan reach the flame-retardant standard both before and after30times wash test. The chiefimprovement of this product is the better orientation and mechanical strength. Moistureregain of the fiber is a little lower than that of normal viscose fiber, however, it is13.3%higher than the moisture regain of flame-retardant viscose fiber, heat retention is alsoimproved. Friction coefficient of the product is lower than that of flame-retardant viscosefiber. Bulking intensity is increased, better than that of normal viscose fiber. The productwas modified with modified amino organic silicon softener to obtain silk-like feel.
     Chitosan and Ag nanoparticles-chitosan antibacterial agent were used to finish theflame-retardant protein viscose fiber. After modification the antibacterial flame-retardantprotein viscose fiber showed92.4%and97.6%inhibition to mixed strain,89.3%and93.8%after30times wash teat, respectively. LOI of the product is higher than29%before and after wash test. The improvement of the flame retardanc is based on theaccumulation of N element. Dry mechanical strength of the fiber is increased while stilllower than normal viscose fiber. However, the wet mechanical strength is much improvedthan that of normal viscose fiber. Friction coefficient is increased. After modification byusing modified amino organic silicon softener, the friction coefficient is lower than that of normal viscose fiber. The final product has optimized flame retardancy, mechanicalstrength, wearing performance and antibacterial function.
引文
1Chivas C, Guillaume E, Sainrat A et al. Assessment of risks and benefits in the use of flameretardants in upholstered furniture in continental Europe. Fire Safety Journal,2009,44(5):801-807.
    2Kandare E, Kandola BK, Staggs JEJ. Global kinetics of thermal degradation of flame-retardedepoxy resin formulations. Polymer Degradation and Stability,2007,92(10):1778-1787.
    3Scarff FR, Westoby M. The influence of tissue phosphate on plant flammability: A kinetic study.Polymer Degradation and Stability,2008,93(10):1930-1934.
    4Stankovic SB, Popovic D, Poparic GB. Thermal properties of textile fabrics made of natural andregenerated cellulose fibers. Polymer Testing,2008,27(1):41-48.
    5Abd El-Wahab H, Abd El-Fattah M, Gabr MY. Preparation and characterization of flameretardant solvent base and emulsion paints. Progress in Organic Coatings,2010,69(3):272-277.
    6Flambard X, Bourbigot S, Kozlowski R et al. Progress in safety, flame retardant textiles andflexible fire barriers for seats in transportation. Polymer Degradation and Stability,2005,88(1):98-105.
    7Weil E, Levchik S. Flame retardants in commercial use or development for textiles. Journal ofFire Sciences,2008,26(3):243.
    8Horrocks AR. Flame-retardant Finishing of Textiles. Review of Progress in Coloration andRelated Topics,1986,16(1):62-101.
    9Cazzaro G, Horak E. Guidelines for making chemical fibres intrinsically flame-retardant.Polymer Degradation and Stability,1990,30(1):169-180.
    10孙晋良,吕伟元.纤维新材料.上海大学出版社,2007.
    11鲁博,张林文,曾竟成等.天然纤维复合材料.化学工业出版社,2005.
    12Laoutid F, Bonnaud L, Alexandre M et al. New prospects in flame retardant polymer materials:From fundamentals to nanocomposites. Materials Science and Engineering: R: Reports,2009,63(3):100-125.
    13Stepanik TM, Ewing DE, Whitehouse R. Electron treatment of wood pulp for the viscose process.Radiation Physics and Chemistry,2000,57(3-6):377-379.
    14Carrillo F, Colom X, López-Mesas M et al. Cellulase processing of lyocell and viscose typefibres: kinetics parameters. Process Biochemistry,2003,39(2):257-261.
    15Siroka B, Noisternig M, Griesser UJ et al. Characterization of cellulosic fibers and fabrics bysorption/desorption. Carbohydrate Research,2008,343(12):2194-2199.
    16Colom X, Carrillo F. Crystallinity changes in lyocell and viscose-type fibres by caustic treatment.European Polymer Journal,2002,38(11):2225-2230.
    17Ibbett RN, Phillips DAS, Kaenthong S. Evaluation of a dye isotherm method for characterisationof the wet-state structure and properties of lyocell fibre. Dyes and Pigments,2006,71(3):168-177.
    18Horrocks AR. Flame retardant challenges for textiles and fibres: New chemistry versusinnovatory solutions. Polymer Degradation and Stability,2010,Inpress.
    19Godfrey LEA. Flame-retardant regenerated cellulose:United States,3455713.1969.
    20Riedel MB, DT), Wolf, Rainer (Allschwil Basel, CH). Flame-retardant regeneratedcellulose:United States,3865604.1975.
    21Franko-filipasic BRM, PA), Orwoll, Edward F.(Langhorne, PA), Patel, Vithal C.(Glen Burnie,MD). Flame retardant regenerated cellulose filaments containing cross-linked polymericphosphazenes:United States,4111701.1978.
    22Gordon PG. Flame retardants and textile materials. Fire Safety Journal,1981,4(2):109-123.
    23aszkiewicz B, Struszczyk H. Thermal properties of flame retardant viscose fibers. Journal ofThermal Analysis and Calorimetry,1980,19(3):425-434.
    24Lecoeur E, Vroman I, Bourbigot S et al. Flame retardant formulations for cotton. PolymerDegradation and Stability,2001,74(3):487-492.
    25Kandola BK, Horrocks S, Horrocks AR. Evidence of interaction in flame-retardantfibre-intumescent combinations by thermal analytical techniques. Thermochimica Acta,1997,294(1):113-125.
    26Liu Q, Lv C, Yang Y et al. Investigation on the effects of fire retardants on the thermaldecomposition of wood-derived rayon fiber in an inert atmosphere by thermogravimetry-massspectrometry. Thermochimica Acta,2004,419(1-2):205-209.
    27Was-Gubala J, Krau W. Damage caused to fibres by the action of two types of heat. ForensicScience International,2006,159(2-3):119-126.
    28Gaan S, Sun G. Effect of phosphorus and nitrogen on flame retardant cellulose: A study ofphosphorus compounds. Journal of Analytical and Applied Pyrolysis,2007,78(2):371-377.
    29Belyaeva O, Bychkova E, Panova L. Effect of the composition of flame retardant systems on theproperties of viscose fibres. Fibre Chemistry,2008,40(6):510-512.
    30Yang CQ, He Q, Lyon RE et al. Investigation of the flammability of different textile fabrics usingmicro-scale combustion calorimetry. Polymer Degradation and Stability,2010,95(2):108-115.
    31Wu W, Yang CQ. Comparison of different reactive organophosphorus flame retardant agents forcotton: Part I. The bonding of the flame retardant agents to cotton. Polymer Degradation andStability,2006,91(11):2541-2548.
    32Wu W, Yang CQ. Comparison of different reactive organophosphorus flame retardant agents forcotton. Part II: Fabric flame resistant performance and physical properties. Polymer Degradationand Stability,2007,92(3):363-369.
    33Hribernik S, Smole MS, Kleinschek KS et al. Flame retardant activity of SiO2-coatedregenerated cellulose fibres. Polymer Degradation and Stability,2007,92(11):1957-1965.
    34Delhom CD, White-Ghoorahoo LA, Pang SS. Development and characterization ofcellulose/clay nanocomposites. Composites Part B: Engineering,2010,41(6):475-481.
    35Horrocks AR, Kandola BK, Davies PJ et al. Developments in flame retardant textiles-a review.Polymer Degradation and Stability,2005,88(1):3-12.
    36张志宏,邸风荣.阻燃粘胶丝试验研究.产业用纺织品,1991,(01):20-23.
    37管维觉,党永胜.粘胶纤维内添加型阻燃剂的研制.印染助剂,1988,(04):20-22.
    38史勖段,王翠菊,王西晋等.阻燃粘胶纤维织物的开发和应用.产业用纺织品,1988,(06):10-17+19.
    39李琪,胡家臻.焦磷酸酯类阻燃剂NLD-02的合成.南京工业大学学报(自然科学版),1992,(02):22-25.
    40程博闻.环境友好型阻燃纤维素纤维的阻燃性能及机理研究.天津工业大学学报,2005,(01):1-3.
    41程博闻,任元林,康卫民.氨基甲酸酯法纺制阻燃纤维素纤维.纺织学报,2007,No.253(04):19-21.
    42任元林,程博闻,张金树. N,N′-二(2-硫代-5,5-二甲基-1,3,2-二氧磷杂环己基)乙二胺的合成及阻燃性能.应用化学,2007,(11):1314-1317.
    43山东海龙股份有限公司.阻燃粘胶纤维制造方法:中国,CN200710116512.4.2008-07-09.
    44田家伟. Visil纤维的制造及其阻燃性.产业用纺织品,1994,(03):32-33.
    45赵玉山,冯守知,王惠福.纤维素聚硅酸盐阻燃纤维及其生产方法:中国.1995-02-01.
    46周琳琳,纪全,隋坤艳等.纤维素/硅酸钠纺丝原液流变性能的研究.应用化工,2009,v.38;No.212(10):1398-1400+1407.
    47朱传祥,刘迪,刘美娜等.无机纳米阻燃黏胶纤维的性能研究.针织工业,2005,(08):19-21.
    48全凤玉,纪全,孔庆山等.无机阻燃粘胶纤维制备及结构性能研究.青岛大学学报(工程技术版),2008,No.89(03):19-22.
    49孔庆岭,纪全,夏延致.阻燃粘胶/Basofil混纺消防防护织物的研究.科技信息(科学教研),2007,No.231(19):27+45.
    50孙慧,全凤玉,纪全等.阻燃PVA/SiO2复合膜的研究.化工新型材料,2008,No.422(02):28-29+41.
    51青岛大学.一种纳米SiO2阻燃粘胶纤维及膜的制备方法:中国.2007-10-10.
    52田素峰,王乐军,马君志等.阻燃抗熔融粘胶纤维——Anti-fcell~(上).纺织导报,2006,(11):66-69+110-111.
    53山东海龙股份有限公司.阻燃抗熔融粘胶纤维及其生产方法:中国,CN200610069338.8.2008-04-16.
    54郑振荣,杨文芳,顾振亚等.染整试剂对安芙赛纤维阻燃性能的影响.纺织学报,2008,v.29;No.273(12):61-64+68.
    55山东海龙股份有限公司.阻燃抗熔融粘胶纤维及其生产方法:中国,CN200610170997.0.2008-07-02.
    56田俊莹,杨文芳,顾振亚等.阻燃粘胶纤维中铝含量的测定.纺织学报,2006,(12):66-69.
    57杨丽.用分光法测定阻燃粘胶纤维中硅元素的含量.染整技术,2007,No.175(11):39-41+56.
    58Hettich BV,眭伟民.阻燃粘胶织物的性能和应用.纺织特品技术,1985,(S1):3-13.
    59成晓旭,管保琼.阻燃化学纤维发展概况.纺织学报,1985,(10):59-62+54.
    60陈胜,叶光斗,桂明胜等.含磷腈衍生物阻燃粘胶纤维的结构与性能.合成纤维工业,2006,(02):33-36.
    61Chen S, Zheng Q-k, Ye G-d et al. Fire-retardant properties of the viscose rayon containingalkoxycyclotriphosphazene. Journal of Applied Polymer Science,2006,102(1):698-702.
    62陈胜,郑庆康,管宇.阻燃粘胶纤维的染色性能.印染,2006,(04):4-6.
    63陈胜,郑庆康,叶光斗等.烷氧基环三磷腈共混改性阻燃粘胶纤维阻燃机理研究.四川大学学报(工程科学版),2006,(02):109-113.
    64凌晓东.粘胶纤维用阻燃剂-氯化螺环磷酸酯-间苯二酚共聚物的合成及性能研究.皮革化工,2007,No.114(04):40-42.
    65蔡润之,周向东.膨胀型阻燃剂的合成及应用.印染,2010,v.36;No.392(08):1-4.
    66褚明利,胡江涛,肖明慧等.接枝改性阻燃粘胶纤维的性能研究.山东纺织科技,2007,No.178(06):12-14.
    67胡江涛,刘秀森,姚永南等.一种新型无甲醛耐久阻燃剂的制备及应用.印染助剂,2008,No.142(06):24-27.
    68长春工业大学.一种粘胶纤维的无甲醛阻燃剂:中国,CN200910066578.6.2009-08-05.
    69Hu Jt, Yao Yn, Liu Xs et al. The application of a novel flame retardant on viscose fiber. Fire andMaterials,2009,33(3):145-156.
    70李树锋,程博闻,孙坤松等.接枝改性阻燃高湿模量粘胶纤维的性能研究.纺织学报,2006,(04):60-62.
    71李树锋,程博闻,孙坤松等.接枝阻燃改性粘胶纤维性能测试.纺织学报,2006,(08):61-63.
    72任元林,程博闻,徐玲等.粘胶纤维接枝含磷阻燃单体的研究.高分子通报,2010,No.135(07):57-61.
    73浙江恒逸集团有限公司,东华大学.一种含硅膦酸酯阻燃剂及其合成方法:中国,CN200310117742.4.2004-12-22.
    74浙江恒逸集团有限公司,东华大学.棉、粘胶织物磷-硅协效应阻燃整理液:中国,CN200310117755.1.2004-12-22.
    75Gu H. Research on thermal properties of Nomex/Viscose FR fibre blended fabric. Materials&Design,2009,30(10):4324-4327.
    76D.Mach,施予长.阻燃粘胶纤维用于阻燃混纺织物的生产.纺织特品技术,1986,(01):50-54.
    77马涟.阻燃纤维混纺——改善产品性能的一个途径.产业用纺织品,1987,(04):23-25+10.
    78Ibrahim N, Fahmy H, Hassan T et al. Effect of cellulase treatment on the extent of post-finishingand dyeing of cotton fabrics. Journal of Materials Processing Technology,2005,160(1):99-106.
    79朱正锋,董新蕾.不锈钢纤维混纺织物的抗静电功能与风格.上海纺织科技,2007,No.293(11):24-26.
    80朱正锋,董新蕾,王军华.阻燃粘胶/不锈钢纤维混纺纱线的开发及其性能.上海纺织科技,2007,No.290(08):51-53.
    81朱正锋,董新蕾,王军华.抗静电阻燃混纺纱的纺制及其主要性能.棉纺织技术,2007,No.434(12):21-23.
    82程明明,纪全,夏延致等.阻燃粘胶纤维的热降解性能研究.合成纤维工业,2009,v.32;No.184(02):11-13.
    83张华,张杰,张建春.汉麻杆芯阻燃黏胶长丝的结构与性能研究.针织工业,2008,No.230(03):4-7.
    84朱正锋,陈志强,李并珊.基于阻燃粘胶纤维性能的实验研究.中原工学院学报,2007,No.79(02):31-34.
    85李杰,吴妤时,李中等.粘胶基防火阻燃面料的制备与性能研究.产业用纺织品,2009,v.27;No.227(08):22-26.
    86Johnston JH, Kelly FM, Moraes J et al. Conducting polymer composites with cellulose andprotein fibres. Current Applied Physics,2006,6(3):587-590.
    87Lee J, Lee H, Eom S et al. UV absorber aftertreatment to improve lightfastness of natural dyeson protein fibres. Coloration Technology,2001,117(3):134-138.
    88Schmidt A, Bach E, Schollmeyer E. The dyeing of natural fibres with reactive disperse dyes insupercritical carbon dioxide. Dyes and Pigments,2003,56(1):27-35.
    89Hardy JG, Scheibel TR. Composite materials based on silk proteins. Progress in Polymer Science,2010,35(9):1093-1115.
    90李青山.功能高分子材料.机械工业出版社,2009.
    91Schroeder M, Lenting HBM, Kandelbauer A et al. Restricting detergent protease action tosurface of protein fibres by chemical modification. Applied Microbiology and Biotechnology,2006,72(4):738-744.
    92宋心远.新型纤维及织物染整.中国纺织出版社,2006.
    93Pillai CKS, Paul W, Sharma CP. Chitin and chitosan polymers: Chemistry, solubility and fiberformation. Progress in Polymer Science,2009,34(7):641-678.
    94Ye W, Xin JH, Li P et al. Durable antibacterial finish on cotton fabric by using chitosan basedpolymeric core\shell particles. Journal of Applied Polymer Science,2006,102(2):1787-1793.
    95梅自强,屠仁溥,林其棱.纺织工业中的表面活性剂.中国石化出版社,2001.
    96Xu X, Zhuang X, Cheng B et al. Manufacture and properties of cellulose/O-hydroxyethylchitosan blend fibers. Carbohydrate Polymers,2010,81(3):541-544.
    97Li Z, Zhuang XP, Liu XF et al. Study on antibacterial O-carboxymethylated chitosan/celluloseblend film from LiCl/N, N-dimethylacetamide solution. Polymer,2002,43(4):1541-1547.
    98Bang ES, Lee ES, Kim SI et al. Durable antimicrobial finish of cotton fabrics. Journal of AppliedPolymer Science,2007,106(2):938-943.
    99庄旭品,李治,刘晓非等.壳聚糖/纤维素抗菌纤维的研究与展望.化工进展,2002,(05):310-313.
    100Muslim T, Morimoto M, Saimoto H et al. Synthesis and bioactivities of poly (ethyleneglycol)-chitosan hybrids. Carbohydrate Polymers,2001,46(4):323-330.
    101Liu R, Wang X. Synthesis, characterization, thermal properties and flame retardancy of a novelnonflammable phosphazene-based epoxy resin. Polymer Degradation and Stability,2009,94(4):617-624.
    102Ding J, Shi W. Thermal degradation and flame retardancy of hexaacrylated/hexaethoxylcyclophosphazene and their blends with epoxy acrylate. Polymer Degradation and Stability,2004,84(1):159-165.
    103El Gouri M, El Bachiri A, Hegazi SE et al. Thermal degradation of a reactive flame retardantbased on cyclotriphosphazene and its blend with DGEBA epoxy resin. Polymer Degradation andStability,2009,94(11):2101-2106.
    104Shin YJ, Ham YR, Kim SH et al. Application of cyclophosphazene derivatives as flameretardants for ABS. Journal of Industrial and Engineering Chemistry,2010,16(3):364-367.
    105Besli S, Durmus M, Ibisoglu H et al. Fluorescent aminoarylcyclotetraphosphazenes. Polyhedron,2010,29(13):2609-2618.
    106Fei S-T, Allcock HR. Methoxyethoxyethoxyphosphazenes as ionic conductive fire retardantadditives for lithium battery systems. Journal of Power Sources,2010,195(7):2082-2088.
    107Dal H, Süzen Y. Phosphorus-nitrogen compounds: Synthesis and spectral investigations on newspiro-cyclic phosphazene derivatives. Spectrochimica Acta Part A: Molecular and BiomolecularSpectroscopy,2007,67(5):1392-1397.
    108Lu S-Y, Hamerton I. Recent developments in the chemistry of halogen-free flame retardantpolymers. Progress in Polymer Science,2002,27(8):1661-1712.
    109Liu Y, Zhao G. Study on the Properties of Microcapsulated ChlorocyclophosphazenePolypropylene Composites. Chinese Journal of Chemical Engineering,2007,15(3):429-432.
    110Nguyen C, Kim J. Thermal stabilities and flame retardancies of nitrogen-phosphorus flameretardants based on bisphosphoramidates. Polymer Degradation and Stability,2008,93(6):1037-1043.
    111Allcock HR. Recent advances in phosphazene (phosphonitrilic) chemistry. Chemical Reviews,1972,72(4):315-356.
    112孔祥建,刘述梅,叶华等.苯氧基环三磷腈的合成及表征.广州化工,2008,(02):31-33.
    113Jiang J, Li J, Hu J et al. Effect of nitrogen phosphorus flame retardants on thermal degradation ofwood. Construction and Building Materials,2010,24(12):2633-2637.
    114Gaan S, Sun G. Effect of phosphorus flame retardants on thermo-oxidative decomposition ofcotton. Polymer Degradation and Stability,2007,92(6):968-974.
    115Hirano S, Nakahira T, Zhang M et al. Wet-spun blend biofibers of cellulose-silk fibroin andcellulose-chitin-silk fibroin. Carbohydrate Polymers,2002,47(2):121-124.
    116Horrocks AR. Developments in flame retardants for heat and fire resistant textiles--the role ofchar formation and intumescence. Polymer Degradation and Stability,1996,54(2-3):143-154.
    117Carrillo F, Colom X, Su ol JJ et al. Structural FTIR analysis and thermal characterisation oflyocell and viscose-type fibres. European Polymer Journal,2004,40(9):2229-2234.
    118Eichhorn SJ, Young RJ, Davies RJ et al. Characterisation of the microstructure and deformationof high modulus cellulose fibres. Polymer,2003,44(19):5901-5908.
    119Müller M, Riekel C, Vuong R et al. Skin/core micro-structure in viscose rayon fibres analysed byX-ray microbeam and electron diffraction mapping. Polymer,2000,41(7):2627-2632.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700