用户名: 密码: 验证码:
新型酸碱双功能介孔材料的合成、表征及催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
介孔氧化硅材料具有规则的孔道结构、纳米范围可调变的孔径、大的比表面,以及表面大量存在的可供修饰的硅羟基等优异的结构特征,在催化、吸附等领域具有广阔的应用前景。酸碱活性位的协同催化作用可以有效改善催化性能与效率,延长催化剂寿命,受到广泛重视。因此,本工作力图开发简便、高效介孔材料酸碱双功能化新方法,将酸碱活性位与介孔硅基体相结合,合成出兼具酸碱协同效应及优异介孔骨架结构的新型酸碱双功能介孔材料。
     提出制备酸碱双功能化介孔材料的固态离子迁移法,一步完成酸碱活性位的产生与母体模板剂的移除,实现介孔硅材料功能化。该方法采用无溶剂路线,简便、高效。通过该方法成功合成了一系列的酸碱双功能化介孔纳米复合材料MgO-Al2O3–SBA-15 (MA–SBA-15)。表征结果表明,合成的纳米复合材料的介孔骨架结构完好,活性物种能够进入到母体SBA-15的介孔孔道中,并有效的分散到孔道表面,与母体表面的硅醇基团发生作用,形成Si–O–Mg与Si–O–Al共价键。MA–SBA-15样品表面酸性位,包括Lewis酸与Br?nsted酸,与碱性位共存。同时,探讨了功能化过程机理。该酸碱双功能化介孔复合材料在碳酸二甲酯和碳酸二乙酯酯交换合成碳酸甲乙酯过程中显示了较高的活性。
     利用原位合成法,通过向合成介孔氧化硅(SBA-15)的原料混合物中引入锆盐和镁盐,成功合成了一系列具有酸碱双功能的介孔纳米复合材料MgO-ZrO2–SBA-15(MZ–SBA-15)。表征结果表明,制备的功能化介孔材料具有酸碱性能及完好的介孔骨架结构。
     采用模板法自组装合成了两种新型纯硅基介孔材料GML-MGE与GMS-MGE,并探讨了不同晶化温度、晶化时间、老化温度、模板剂脱除方式、不同碳链长度的表面活性剂对介孔结构的影响。采用XRD、N2吸附-脱附和FTIR对其进行表征,结果显示其具有介孔结构特征。在此基础上合成了新型功能化的M-MGE介孔材料(M=Al,Mg),并考察了不同镁铝前驱体对介孔结构的影响。表征结果表明活性物种进入了介孔硅的骨架结构并保持了介孔结构特征,活性物种在母体表面分散较好。以十八酸和丙三醇反应生成硬脂酸单甘酯的酯化反应作为探针反应,考察了M-MGE介孔材料的催化性能。结果表明M-MGE介孔材料有较好的酯化反应活性。反应时间10 h,催化剂用量5 wt%,反应温度110℃,十八酸的转化率为52%,硬脂酸单甘酯的选择性达96 %。
Ascribing to their excellent textural properties, including highly ordered pore channels, controllable narrow pore size distribution, large surface area, as well as a large amounts of Si-OH, which can facilitate the modification of their surface with metals and organic group, the functionalization of mesoporous silicas have attracted more and more attention. And in many cases, the synergism of the acid-base active centres usually contributes to promote the progress of the reaction, and results in an enhancement of the reaction velocity, in an improvement of the selectivity and in a prolongation of the catalyst life. Therefore, acid-basic bifunctional mesoporous materials, which could combine the advantages of mesoporous structure and acid-basic properties, that is, combining the specific chemical reactivity of the acid-basic groups with attractive structure properties, have generated considerable interest in their application such as shape-selective catalysis, adsorption-separation processes, and other fields. In this work, we attempt to develop new facile and efficient strategies for the acidic-basic bifunctionalization of mesoporous silicas.
     A new acidic-basic bifunctional approach with high efficiency and facility, named solid state ionics migration, for mesoporous silica was developed. The generation of acid-base active sites and removal of host template were achieved in a single step by this method. A series of acid-base bifunctional mesoporous nanocomposites MgO-Al2O3–SBA-15 (MA–SBA-15) have been successfully synthesized by means of this approach. The characterization results indicated that the resultant bifunctional mesoporous nanocomposites can keep mesoporous framework well, and the guest species can be efficiently introduced into the channel and fully dispersed on the surface of the host. The electric positive Mg2+ and Al3+ can form covalent bonds between the metal ions and the oxygen atoms of the Si-OH groups on the surface of the host during calcination. Hence, the Si–O–Mg and/or Si–O–Al interlinkages can conveniently establish between the mesoporous host and the introduced guests to achieve the bifuctionalization. The results of NH3, CO2-TPD and pyridine adsorption unambiguously indicated the acidic sites, including Lewis and Br?nsted acid sites, and basic sites co-exist on the surface of the mesoporous nanocomposites synthesized by the titled method. And the mechanism and inherent rules of bifuctionalization was also investigated. In addition, the resultant nanocomposite exhibits high activity for the synthesis of ethyl methyl carbonate.
     By the in-situ grafting method, a series of surface-modified mesoporous silicas, MgO-ZrO2–SBA-15(MZ–SBA-15), endowed with acid-base properties have been firstly successfully synthesized in one pot by the introduction of zirconium and magnesium salts into the initial mixture of synthesizing mesoporous silica (SBA-15). The characterization results indicated the resultant nanocomposites exhibit excellent acid-basic properties with well periodically ordered mesoporous backbone.
     Two novel mesoporous silica materials, GML-MGE and GMS-MGE, have been firstly synthesized by self-assembly route, and the influence of the crystallization temperature, crystallization time, aging temperature, removal method of template and surfactants with different chain length on mesoporous framework have been investigated. XRD, N2 adsorption-desorption isotherms and FTIR employed to characterize the structure properties of the new mesoporous silica materials, and the results showed that GML-MGE and GMS-MGE possess the typical mesoporous structure properties. Subsequently, the modification of GMS-MGE mesoporous material with metal ions (M-MGE, M=Al,Mg) was performed and the effect of different metal salt precursors on the mesoporous structure was investigated. The characterization results indicated the resultant mesoporous nanocomposites can keep mesoporous structure properties well and the active species can fully disperse on the channel surface of the host. The esterification reation of stearic acid and glycerol was employed as a probe reaction to evaluate the catalytic performance of M-MGE mesoporous material. The results suggested the M-MGE mesoporous material exhibits good performance on this reaction. The conversion of stearic acid reach 52 % and the selectivity of monoglyceric stearate can reach 96 % under the condition: reaction time 10 h, catalyst loading 5 wt %, reaction temperature 110℃.
引文
[1] Everett D. H., IUPAC manual of symbols and terminology, Pure. Appl. Chem., 1972, 31:578~638
    [2]徐如人,庞文琴,于吉红,等,分子筛与多孔材料化学,北京:科学出版社,2004
    [3] Edle K. J., White J. W., Room-temperature formation of molecular sieve MCM-41, J. Chem. Soc., Chem. Commun., 1995: 155~156
    [4] Han Y., Li D., Zhao L., et al., High-Temperature Generalized Synthesis of Stable Ordered Mesoporous Silica-Based Materials by Using Fluorocarbon-Hydrocarbon Surfactant Mixtures, Angew. Chem. Int. Ed. Eng., 2003, 42: 3633~3637
    [5]王树国,吴东,孙予罕,等,物理化学学报,2001, 17(7): 659~661
    [6] Wu C. G., Bein T., Microwave synthesis of molecular sieve MCM-41, J. Chem.Soc., Chem. Commun., 1996: 925~926
    [7] Lin W., Chen J., Sun Y., et al., Bimodal mesopore distribution in a silica prepared by calcining a wet surfactant-containing silicate gel, J. Chem. Soc., Chem. Commun., 1995: 2367~2368
    [8] Brinker C. J., Lu Y. F., Sellinger A., et al., Evaporation-Induced Self-Assembly: Nanostructures Made Easy, Adv. Mater., 1999, 11: 579~585
    [9] Yang P. D., Zhao D. Y., Margolese D. I., et al., Block Copolymer Templating Syntheses of Mesoporous Metal Oxides with Large Ordering Lengths and Semicrystalline Framework., Chem. Mater., 1999, 11(10): 2813~2826
    [10] Gallis K. W., Landry C. C., Synthesis of MCM-48 by a Phase Transformation Process, Chem. Mater., 1997, 9(10): 2035~2038
    [11] Yang P. D., Zhao D. Y., Margolese D. I., et al., Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks, Nature, 1998, 396: 152~155
    [12] Kresge C. T., Leonowicz M. E., Roth W. J., et al., Ordered mesoporous sieves synthesized by a liquid Ctystal template mechanism, Nature, 1992, 359: 710~712
    [13] Beck J. S., Vartuli J. C., Roth W. J., et al., A new family of mesoporous molecular sieves Prepared with liquid crystal templates, J.Am Chem Soc., 1992, 114: 10834~10843
    [14] Zhao D.Y., Feng J. L., Huo Q. S., et al., Triblock copolymer syntheses of mesoporous silica with Periodic 50 to 300 angstrom pores, Science, 1998, 279: 548~552
    [15] Huo Q. S., Margolese D. I., Ciesla U., et al., Generalized synthesis of Periodic surfactant inorganic composite materials, Nature, 1994, 368: 317~321
    [16] Lin H. P., Kuo C. L., Wan B. Z., et al.,. Optimum synthesis of mesoporous silica materials from acidic condition, J. Chin. Chem. Soc., 2002, 49(5): 899~906
    [17] Monnier A., Schüth F. , Huo Q., et al., Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures, Science, 1993, 261:1299~1303
    [18] Huo Q. S., margolese D. I., Stucky G. D., Surfactant control of phases in the synthesis of mesoporous silica-based materials, Chem. Mater.,1996, 8:1147~1160
    [19] Collart O., Van Der Voort P., Vansant E. F., et al., A high-yield reproducible synthesis of MCM-48 starting from fumed silica, J. Phys. Chem. B., 2001, 105(51): 12771~12777
    [20] Inagaki S., Fukushima Y., Kuroda K., Synthesis of highly ordered mesoporous materials from a layered polysilicate, J. Chem. Soc., Chem. Commun., 1993: 680~682
    [21] Huo Q. S., Leon R., Petroff P. M., et al., Mesostructure design with gemini surfactants supercage formation in a 3-dimensional hexagonal array, Science, 1995, 268: 1324~1327
    [22] Zhao D. Y., Huo Q. S., Feng J. L., et al., Novel mesoporous silicates with two-dimensional mesostucture direction using rigid bolaform surfactants, Chem. Mater., 1999, 11(10): 2668~2672
    [23] Zhao D.Y., Huo Q. S., Feng J. L., et al., Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures, J. Am. Chem. Soc.,1998, 120(24): 6024~6036.
    [24] Ryoo R., Kim J. M., Ko C. H., et al., Disordered molecular sieve with brached mesoporous channel network, J. Phys. Chem., 1996, 100(45): 17718~17721
    [25] Kleitz F., Choi S. H., Ryoo R., Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes, Chem. Commun., 2003, (17): 2136~2137
    [26] Tanev P. T., Chibwe M., Pinnavaia T. J., Titanium-containing mesoperous molecular sieves for catalytic oxidation of aromatic compounds, Nanture, 1994, 368: 321~323
    [27] Tanev P. T., Pinnavaia T. J., A neutral templating Route to Mesoporous molecular sieves, Science, 1995, 267(10): 865~867
    [28] Tanev P. T., Pinnavaia T. J., Mesoporous silica molecular sieves prepared by ionic and neutral surfactant templating: A comparison of physical properties, Chem. Mater., 1996, 8: 2068~2079
    [29] Bagshaw S. A., Prouzet E., Pinnavaia T. J., Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactant, Scienc, 1995, 269: 1242~1244
    [30] Yu C. Z., Yu Y. H., Zhao D. Y., Highly ordered large caged cubic mesoporous silica structures templated by triblock PEO-PBO-PEO copolymer, Chem. Commun., 2000, (7): 575~576
    [31] Yu Y. H., Yu C. Z., Yu Z., et al., Polymorphism of silica mesostructures templated by poly(ethylene oxide)-b-poly(butylene oxide) diblock copolymer, Chem. Lett., 2000, 29(5): 504~505
    [32] Liu X. Y., Tian B. Z., Yu C. Z., et al., Room-temperature synthesis in acidic media of large-pore three-dimensional bicontinuous mesoporous silica with Ia3d symmetry, Angew. Chem. Int. Ed. Eng., 2002, 41: 3876~3878
    [33] Fan J., Yu C. Z., Gao T., et al., Cubic mesoporous silica with large controllable entrance sizes and advanced adsorption properties, Angew. Chem. Int. Ed. Eng., 2003, 42: 3146~3150
    [34]刘超,成国祥,模板法制备介孔材料的研究进展,离子交换与吸附, 2003, 19(4): 374~384
    [35] Antonelli D. M., Ying J. Y., Synthese von stabilen, hexagonal gepackten, mesopor sen Molekularsieben aus Nioboxid mittels eines neuartigen, Ligand-unterstützten Templatmechanismus, Angew. Chem., 1996, 108(4): 461~464
    [36] Behrens P., Voids in variable chemical surroundings: mesoporous metal oxides, Angew. Chem. Int. Ed. Eng., 1996, 35: 515~518
    [37] Beck J. S., Vartuli J. C., Roth W. J., et al., A New Family of Mesoporous Molecular Sieves Prepared wth Liquid Crystal Tempiaets, J. Am. Chem. Soc.,1992, 114:10834~10843
    [38] Chen C. Y., Burkett S. L., Li H. X., et al., Studies on mesoporous materialsⅡ. Synthesis mechanism of MCM-41, Micorpor. Mater., 1993, 2(1):27~34
    [39] Firouzi A., Kumar D., Bull L. M., et al., Cooperative organization of inorganic-surfactant and biomimetic assembles, Science, 1995, 267: 1138~1143
    [40] Zhao X. S., Lu G. Q., Whittaker A. K., et al., Comprehensive study of surfacechemistry of MCM-41 using 29Si CP/MAS NMR, FTIR, Pyridine-TPD, and TGA, J. Phys. Chem. B., 1997, 101(33): 6525~6531
    [41] Li Y., Shi J., Hua Z., et al., Hollow Spheres of mesoporous alumisilicates with a There Dimensional Pore Network and Extraordinary Hydrothermally stablility, Nano. Letters., 2003, 3(5): 609~612
    [42] Zhang W. H., Shi J. L., Wang L. Z., et al., Preparation and Characterization of ZnO Clusters inside Mesoporous Silica, Chem. Mater., 2000, 12(5): 1408~1413
    [43] Luan Z., Cheng C. F., Zhou W., et al., Mesopore Molecular Sieve MCM-41 Containing Framework Aluminum, J. Phys. Chem., 1995, 99(3): 1018~1024
    [44] Fu G., Fyfe C. A., Schwieger W., et al., Structure Organization of Aluminosilicate Polyanions with Surfactants: Optimization of Al Incorporation in Aluminosilicate Mesostructural Materials, Angew. Chem., Int. Ed. Engl., 1995, 34(13-14):1499~1502
    [45] Fyfe C. A., Fu G., Structure Organization of Silicate Polyanions with Surfactants: A New Approach to the Syntheses, Structure Transformations, and Formation Mechanisms of Mesostructural Materials, J. Am. Chem. Soc., 1995, 117(38): 9709~9714
    [46] Takeguchi T., Kim J. B., Kang M., et al., Synthesis and Characterization of Alkali-free, Ga-Substituted MCM-41 and Its Performance for n-Hexane Conversion, J. Catal., 1998, 175(1): 1~6
    [47] Sayari A., Danumah C., Moudrakovski I. L., Boron-Modified MCM-41 Mesoporous Molecular Sieves, Chem. Mater., 1995, 7(5): 813~815
    [48] Zhang W., Froba M., Wang J., et al., Mesoporous Titanosilicate Molecular Sieves Prepared at Ambient Temperature by Electrostatic (S+I-, S+X-I+) and Neutral (S I ) Assembly Pathways: A Comparison of Physical Properties and Catalytic Activity for Peroxide Oxidations, J. Am Chem . Soc., 1996, 118(38): 9164~9171
    [49] Blasco T., Corma A., Navarro M.T., et al., Synthesis, Characterization, and Catalytic Activity of Ti-MCM-41 Structures, J.Catal., 1995,156(1): 65~74
    [50] Alba M. D., Luan Z., Klinowski J., Titanosilicate Mesoporous Molecular Sieve MCM-41: Synthesis and Characterization, J. Phys. Chem., 1996,100(6): 2178~2182
    [51] Wei D., Wang H., Feng X., et al., Synthesis and Characterization of Vanadium-Substituted Mesoporous Molecular Sieves, J. Phys. Chem. B., 1999, 103(12): 2113~2121
    [52] Chatterjee M., Iwasaki T., Hayashi H., et al., Characterization of Tetrahedral Vanadium-Containing MCM-41 Molecular Sieves Synthesized at Room Temperature,Chem. Mater., 1999, 11(5): 1368~1375
    [53] Zhao D., Goldfarb D., Synthesis of mesoporous manganosilicates: Mn-MCM-41, Mn-MCM-48 and Mn-MCM-L, J. Chem. Soc., Chem.Commun., 1995: 875~876
    [54] Zhang J., Goldfarb D., Manganese Incorporation into the Mesoporous Material MCM-41 under Acidic Conditions as Studied by High Field Pulsed EPR and ENDOR Spectroscopies, J. Am .Chem. Soc., 2000, 122(29): 7034~7041
    [55] Stein A., Melde B. J., Schroden R. C., Hybrid Inorganic-Organic Mesoporous Silicates-Nanoscopic Reactors Coming of Age, Adv. Mater., 2000, 12(19): 1403~1419
    [56] Koyano K. A., Tatsumi T., Tanaka Y., et al., Stabilization of Mesoporous Molecular Sieves by Trimethylsilylation, J. Phys. Chem. B., 1997, 101(46): 9436~9440
    [57] Feng X., Fryxell G. E., Wang L. Q., et al., Functionalized Monolayers on Ordered Mesoporous Supports, Science, 1997, 276: 923~926
    [58] Mercier L., Pinnavaia T. J., Access in mesoporous materials: Advantages of a uniform pore structure in the design of a heavy metal ion adsorbent for environmental remediation, Adv. Mater.,1997, 9(6): 500~503
    [59] Lim M. H., Blanford C. F., Stein A., Synthesis of Ordered Microporous Silicates with Organosulfur Surface Groups and Their Applications as Solid Acid Catalysts, Chem. Mater., 1998, 10(2): 467~470
    [60] Van Rhijn W. M., De Vos D. E., Sels B. F., et al., Sulfonic acid functionalised ordered mesoporous materials as catalysts for condensation and esterification reactions, Chem. Commun., 1998: 317~318
    [61] Burkett S. L., Sims S. D., Mann S., Synthesis of hybrid inorganic–organic mesoporous silica by co-condensation of siloxane and organosiloxane precursors, Chem. Commun., 1996: 1367~1368
    [62] Macquarrie D. J., Direct preparation of organically modified MCM-type materials. Preparation and characterisation of aminopropyl–MCM and 2-cyanoethyl–MCM, Chem. Commun.,1996: 1961~1962
    [63] Subba Rao Y. V., De Vos D. E., Jacobs P. A., 1,5,7-Triazabicyclo[4.4.0]dec -5-ene Immobilized in MCM-41: A Strongly Basic Porous Catalyst, Angew. Chem., Int. Ed. Engl., 1997, 36 (23): 2661~2663
    [64] Subba Rao Y. V., De Vos D. E., Bein T. et al., Practical heterogenisation of an active manganese triazacyclononane epoxidation catalyst via surface glycidylation, Chem. Commun., 1997: 355~356
    [65] Taguchi A., Schüth F., Ordered mesoporous materials in catalysis, Micropor. Mesopor. Mater., 2005, 77: 1~45
    [66] Abe T., Tachibana Y., Uemastsu T., et al., Preparation and characterization of Fe2O3 nanoparticles in mesoporous silicate, J. Chem. Soc. Chem. Commun.,1995: 1617~1618
    [67] Hartmann M., Poppl A., Kevan L., Formation and Stability of Ni(Ⅰ) Ions in MCM-41 Mesoporous Molecular Sieves, J. Phys. Chem., 1995, 99: 17494~17496
    [68] Hartmann M., Poppl A., Kevan L., Ethylene Dimerization and Butene Isomerization in Nickel-Containing MCM-41 and AlMCM-41 Mesoporous Molecular Sieves: An Electron Spin Resonance and Gas Chromatography Study, J. Phys. Chem., 1996, 100: 9906~9910
    [69] Ryoo R., Ko C. H., Kim J. M., et al., Preparation of nanosize Pt clusters using ion exchange of Pt(NH3)(4)(2+) inside mesoporous channel of MCM-41, Catal. Lett., 1996, 37: 29~33
    [70] Go'mez S., Giraldo O., Garce's L., et al., New Synthetic Route for the lncorporation of Manganese Species into the Pores of MCM-48, Chem. Mater., 2004, 16: 2411~2417
    [71] Lang N., Tuel A., Alkati-containing mesoporous (alumino) silicate materials with very high metal loading, Micropor. Mesopor. Mater., 2005, 77 (2-3): 147~157
    [72] Lang N., Tuel A., Low-silica [Me]AlMCM-41 (Me=Na, K, Cs, Ca) mesophases and corresponding mesoporous materials, Chem. Mater., 2004, 16 (15): 2969~2974
    [73] Badiel A. R., Bonneviot L., Modification of Mesoporous Silica by Direct Template Ion Exchange Using Cobalt Complexes, Inorg. Chem., 1998, 37: 4142~4145
    [74] Kim J. M., Kwak J. H., Jun S., et al., Ion-exchange and thermal-stability of mcm-4l, J. Phys. Chem., 1995, 99 (45): 16742~16747
    [75]高峰,介孔SBA-15在生物分离和纳米材料制备上的应用及相关研究:[博士学位论文],上海;复旦大学,2003
    [76] Szegedi A., Konya Z., Mehn D., Spherical mesoporous MCM-41 materials containing transition metals: synthesis and characterization, Appl. Catal. A: Gen., 2004, 272(1 -2): 257~266
    [77] Yuan S., Sheng Q. R., Zhang J. L., Synthesis of La3+ doped mesoporous titania with highly crystallized walls, Micropor. Mesopor. Mater., 2005, 79 (1-3): 93~99
    [78] Gago S., Zhang Y. M., Santos A. M., Synthesis and characterization of a manganese (II) acetonitrile complex supported on functionalized MCM-41, Micropor.Mesopor. Mater., 2004, 76 (1-3): 131~136
    [79] Selvaraj M., Sinha P. K., Lee K., Synthesis and characterization of Mn-MCM-41 and Zr-Mn-MCM-41, Micropor. Mesopor. Mater., 2005, 78 (2-3): 139~149
    [80]沈绍典,多头季铵盐表面活性剂导向下新结构介孔分子筛的合成与表征:[博士学位论文],上海;复旦大学,2003
    [81] Yue Y., Cedeon A., Bonardet J. L., et al., Direct synthesis of AlSBA rnesoporous molecular sieves: characterization and catalytic activities, Chem. Commun., 1999: 1697~1968
    [82] Cedeon A., Lassoued A., Bonardet J. L., et al., Surface acidity diagnosis and catalytic activity of AlSBA-15 materials obtained by direct synthesis, Micropor. Mesopor. Mater., 2001, 44-45: 801~806
    [83] Han Y., Xiao F. S., Wu S., et al., A novel method for incorporation of heteroatoms into the framework of ordered rnesoporous silica materials synthesized in strong acidic media, J. Phys. Chem. B., 2001, 105(33): 7963~7966
    [84] Wu S., Han Y., Zou Y. C., et al., Synthesis of heteroatom substituted SBA-15 by the "pH-adjusting" method, Chem. Mater., 2004, 16 (3): 486~492
    [85] Newalkar B. L., Olanrewaju J., Komarneni S., Direct synthesis of titanium-substituted mesoporous SBA-15 molecular sieve under microwave-hydrothermal conditions, Chem. Mater., 2001, 13(2): 552~557
    [86] Newalkar B. L., Olanrewaju J., Komarneni S., Microwave-hydrothermal synthesis and characterization of zirconium substituted SBA-15 mesoporous silica, J. Phys. Chem. B., 2001, 105(35): 8356~8360
    [87] Leon R., Margolese D., Stucky G. D., et al., Nanocrystalline Ge filments in the pores of a mesosilicate, Phys. Rev. B: Condens. Mater., 1995, 52: 2285~2288
    [88] Zhang L. X., Shi J. L., Yu J., et al., A new in-situ reduction route for the synthesis of Pt nanoclusters in the channels of mesoporous silica SBA-15, Adv. Mater., 2002, 14(20): 1510~1513
    [89] Moller K., Bein T., Inclusion chemistry in periodic mesoporous hosts, Chem. Mater., 1998, 10(10), 2950~2963
    [90] Fowler C. E., Burkett S. L., Mann S., Synthesis and characterization of ordered organosilica-surfactant mesophases with functionalized MCM-41-type architecture, Chem. Commun., 1997: 1769~1770
    [91] Lim M. H., Blanford C. F., Stein A., Synthesis and characterization of reactive vinyl-functionalized MCM-41: probing the internal pore structure by a bormination reaction, J. Am. Chem. Soc., 1997, 119: 4090~4091
    [92] Subba P., Brunel D., Preparation of MCM-41 type silica-bound mangnese(III) Schif-base complexes, Chem. Commun., 1996: 2485~2486
    [93] Liu C. J., Li S. G., Pang W. Q., et al., Ruthenium porphyrin encapsulated in modified mesoporous molecular sieve MCM-41 for alkene oxidation, Chem. Commun., 1997: 65~66
    [94] Cauvel A., Renard G., Brunel D., Monoglyceride Synthesis by Heterogeneous Catalysis Using MCM-41 Type Silicas Functionalized with Amino Gorups, J. Org.Chem., 1997, 62: 749~751
    [95] Diaz J. F., Balkus K. J. Jr., Bedioui F., et al., Synthesis and Characterization of Cobalt-Complex Functionalized MCM-41, Chem. Mater., 1997, 9(1): 61 ~67
    [96] Brunel D., Cauvel A., Fajula F., et al., MCM-41 type silicas as supports for immobilized catalysts, Stud. Surf. Sci. Cattal., 1995, 97: 173~180
    [97] Feng X., Fryxell G., Wang L., Functionalized Monolayers on Ordered Mesoporous Supports, Science,1997, 276: 942~945
    [98] Gao F., Lu X., Liu Y., et al., Controlled synthesis of semiconductor PbS nanowires inside mesoporous silica SBA-15 phase, Nanolett., 2001, 1: 738~743
    [99] Gao F., Lu Q., Zhao D., In-situ adsorption method for synthesis of binary semiconductor CdS nanoparticles inside mesoporous SBA-15, Chem. Phys. Lett., 2002, 360: 585~588
    [100] Davis M. E., Ordered porous materials for emerging applications, Nature, 2002, 417: 813~821
    [101] Antonietti M., Ozin G. A., Promises and Problems of Mesoscale Materials Chemistry or Why Meso? Chem. Eur. J., 2004, 10(1): 28~41
    [102] Corma A., From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis, Chem. Rev., 1997, 97(6): 2373~2420
    [103] Sayari A., Catalysis by Crystalline Mesoporous Molecular Sieves, Chem. Mater., 1996, 8(8): 1840~1852
    [104] Wight A. P., Davis M. E., Design and Preparation of Organic-Inorganic Hybrid Catalysts, Chem. Rev., 2002, 102(10): 3589~3614
    [105] Apelian M. R., Degnan Jr. T. F., Marler D. O., et al., Production of lubricants by hydrocracking and hydroisomerization, U. S. Patent, 5264116, 1993-11-23
    [106] Murugavel R., Roesky H. W., Titanosilicates: Recent Developments in Synthesis and Use as Oxidation Catalysts, Angew. Chem. Int. Ed. Engl., 1997, 36(5): 477~479
    [107] Kresge C. T., Marler D. O., Rav G. S., et al., Supported heteropoly acidcatalysts, U. S. Patent, 5366945, 1994-11-22
    [108] Kloetstra K. R., Van Bekkum H., Base and acid catalysis by the alkali-containing MCM-41 mesoporous molecular sieve, J. Chem. Soc., Chem. Conumm., 1995(10): 1005~1006
    [109] Chenite A., Le Page Y., Sayari A., Direct TEM Imaging of Tubules in Calcined MCM-41 Type Mesoporous Materials, Chem. Mater., 1995, 7(5): 1015~1019
    [110] Laha S. C., Mukherjee P., Sainkar S. R., et al., Cerium Containing MCM-41-Type Mesoporous Materials and their Acidic and Redox Catalytic Properties, J. Catal., 2002, 207: 213~223
    [111] Jia M., Seifert A., Berger M., et al., Hybrid Mesoporous Materials with a Uniform Ligand Distribution: Synthesis, Characterization, and Application in Epoxidation Catalysis, Chem. Mater., 2004, 16(5): 877~882
    [112] Li L., Shi J. L., Zhang L. X., et al., A Novel and Simple In-Situ Reduction Route for the Synthesis of an Ultra-Thin Metal Nanocoating in the Channels of Mesoporous Silica Materials, Adv. Mater., 2004, 16(13): 1079~1082
    [113] Han Y. J., Kim J. M., Stucky G. D., Preparation of Noble Metal Nanowires Using Hexagonal Mesoporous Silica SBA-15, Chem. Mater., 2000; 12(8): 2068~2069
    [114] Tuel A., Modification of mesoporous silicas by incorporation of heteroelements in the framework, Micropor. Mesopor. Mater., 1999, 27 (2-3): 151~169
    [115] Trong On D., Joshi P. N., Kaliaguine S., Synthesis, Stability and State of Boron in Boron-Substituted MCM-41 Mesoporous Molecular Sieves., J. Phys. Chem., 1996, 100(16): 6743~6748
    [116] Trong On D., Joshi P. N., Lemay G., et al., Acidity and structural state of boron in mesoporous boron silicate MCM-41, Stud. Surf. Sci. Catal., 1995, 97: 543~549
    [117] Dumitriu E., Trong On D., Kaliaguine S., Isoprene by Prins Condensation over Acidic Molecular Sieves., J. Catal., 1997, 170(1): 150~160
    [118] Fricke R., Kosslick H., Lischke G., et al., Incorporation of Gallium into Zeolites: Syntheses, Properties and Catalytic Application, 2000, 100(6): 2303~2406
    [119] Kosslick H., landmesser H., Fricke R., Acidity of substituted MCM-41-type mesoporous silicates probed by ammonia, J. Chem. Soc., Faraday Trans., 1997, 93: 1849~1854
    [120] Kosslick H., Lischke G., Walther G., et al., Physico-chemical and catalytic properties of Al-, Ga- and Fe-substituted mesoporous materials related to MCM-41, Micropor. Mater., 1997, 9 (1-2): 13~33
    [121] Landmesser H., Kosslick H., Kürschner U., et al., Acidity of substituted mesoporous molecular sieve MCM-48, J. Chem. Soc., Faraday Trans., 1998, 94: 971~977
    [122] Lim S., Haller G. L., Preparation of highly structured V-MCM-41 and determination of its acidic properties, Stud. Surf. Sci. Catal., 2000, 130C: 3053~3058
    [123] He N. Y., Bao S. L., Xu Q. H., Synthesis and characterization of FeSiMCM-41 and LaSiMCM-41, Stud. Surf. Sci. Catal., 1997, 105: 85~92
    [124] Choi S., Wang Y., Nie Z., et al., Mesoporous silica supported solid acid catalysts, Stud. Surf. Sci. Catal., 2000, 130: 965~970
    [125] Choi S., Wang Y., Nie Z., et al., Cs-substituted tungstophosphoric acid salt supported on mesoporous silica, Catal. Today., 2000, 55(1-2): 117~124
    [126] Soled S., Miseo S., McVicker G., et al., Preparation of bulk and supported heteropolyacid salts, Catal. Today., 1997, 36(4): 441~450
    [127] Margolese D., Melero J. A., Christiansen S. C., et al., Direct Syntheses of Ordered SBA-15 Mesoporous Silica Containing Sulfonic Acid Groups, Chem. Mater., 2000, 12(8): 2448~2459
    [128] Biz S., Occelli M. L., Synthesis and characterization of mesostructured materials, Catal. Rev. -Sci. Eng., 1998, 40(3): 329~407
    [129] Kloetstra K. R., Zandbergen H. W., Jansen J. C., et al., Overgrowth of mesoporous MCM-41 on faujasite, Micropor. Mater., 1996, 6 (5-6): 287~293
    [130] Karlsson A., St?cker M., Schmidt R., Composites of micro- and mesoporous materials: simultaneous syntheses of MFI/MCM-41 like phases by a mixed template approach, Micropor. Mesopor. Mater., 1999, 27 (2-3): 181~192
    [131] Karlsson A., Stocker M., Schafer K., In situ Synthesis of Micro- and Mesoporous Al-MFI / MCM-41 like Phases with High Hydrothermal Stability, Stud. Surf. Sci. Catal., 2000, 129: 99~106
    [132] Huang L., Guo W., Deng P., et al., Investigation of Synthesizing MCM-41/ZSM-5 Composites, J. Phys. Chem. B., 2000, 104(13): 2817~2823
    [133] Corma A., Martinez A., Martinezsoria V., et al., Hydrocracking of vacuum gasoil on the novel mesoporous MCM-41 aluminosilicate catalyst, J. Catal., 1996, 153(1): 25~31
    [134] Roos K., Liepold A., Koch H., et al., Impact of accessibility and acidity oil novel molecular sieves for catalytic cracking of hydrocarbons, Chem. Eng. & Tech., 1997, 20(5): 326~332
    [135]王素珍,罗国华,徐新,等,介孔分子筛MCM-41的合成及其催化噻吩与异丁烯烷基化反应性能,石油化工,2004, 33( 2):113~117
    [136] Climent M. J., Corma A., Iborra S., et al., Use of mesoporous MCM-41 aluminosilicates as catalysts in the production of fine chemicals: Preparation of dimethylacetals, J. Catal., 1996, 161 (2): 783~789
    [137] Pauly T. R., Liu Y., Pinnavaia T. J., et al., Textural mesoporosity and the catalytic activity of mesoporous molecular sieves with wormhole framework structures, J. Am. Chem. Soc., 1999, 121: 8835~8842
    [138] Yang Q., Li Y., Zhang L., et al., Hydrothermal stability and catalytic activity of aluminum-containing mesoporous ethane-silicas, J. Phys. Chem. B., 2004, 108(23): 7934~7937
    [139] Armengol E., Cano M. L., Corma A., et al., Mesoporous aluminosilicate MCM-41 as a convenient acid catalyst for Friedel-crafts alkylation of a bulky aromatic compound with cinnamyl alcohol, J. Chem. Soc., Chem. Commun., 1995: 519~520
    [140] Kozhevnikov I. V., Sinnema A., Jansen R. J. J., et al., New acid catalyst comprising heteropoly acid on a mesoporous molecular sieve MCM-41, Catal. Lett., 1995, 30: 241~252
    [141] Bachari K., Millet J. M. M., Benaichouba B., et al., Benzylation of benzene by benzyl chloride over iron mesoporous molecular sieves materials, J. Catal., 2004, 221: 55~61
    [142] Wang Y., Zhang Q., Shishido T., et al., Characterizations of iron-containing MCM-41 and its catalytic properties in epoxindation of styrene with hydrogen peroxide, J. Catal., 2002, 209: 186~296
    [143] Kloetstra K. R., Van Laren M., Van Bekkum H., Binary caesium–lanthanum oxide supported on MCM-41: A new stable heterogeneous basic catalyst, J. Chem. Soc., Faraday Trans., 1997, 93: 1211~1220
    [144]魏一伦,曹毅,朱建华,等,MgO/SBA-15固体碱介孔材料的研制,无机化学学报, 2003, 19 (3): 232~238
    [145] Lasperas M., Llorett T., Chaves L., et al., Amine functions linked to MCM-41-type silicas as a new class of solid base catalysts for condensation reactions, Stud. Surf. Sci. Catal., 1997, 108: 75~82
    [146] Derrien A., Renard G., Brunel D., Guanidine linked to micelle-templated mesoporous silicates as base catalyst for transesterification, Stud. Surf. Sci. Cata1., 1998, 117: 445~452
    [147] Choudary B. M., Lakshmi Kantam M., Sreekanth P., et al., Knoevenagel and aldol condensations catalysed by a new diamino-functionalised mesoporous material, J. Mol. Catal. A: Chem., 1999, 142(3): 361~365
    [148] Ying J. Y., Mehnert C. P., Wong M. S., Synthesis and applications of supramolecular-templated mesoporous materials, Angew. Chem. Int. Ed., 1999, 38(1-2): 56~77
    [149] Kantam M. L., Sreekanth P., Transesterification ofβ-keto esters catalysed by basic porous material, Catal. Lett., 2001, 77(4): 241~243
    [150] Huh S., Chen H. T., Wiench J. W., et al., Cooperative Catalysis by General Acid and Base Bifunctionalized Mesoporous Silica Nanospheres, Angew. Chem. Int. Ed. Engl., 2005, 44(12): 1826~1830
    [151] Janssen A. H., Yang C. M., Wang Y., et al., Localization of Small Metal (Oxide) Particles in SBA-15 Using Bright-Field Electron Tomography, J. Phys. Chem. B., 2003, 107(38): 10552~10556
    [152] Wei Y. L., Wang Y. M., Zhu J. H., et al., In-Situ Coating of SBA-15 with MgO: Direct Synthesis of Mesoporous Solid Bases from Strong Acidic Systems, Adv. Mater., 2003, 15(22): 1943~1945
    [153] Morey M. S., O’Brien S., Schwarz S., et al., Hydrothermal and Postsynthesis Surface Modification of Cubic, MCM-48, and Ultralarge Pore SBA-15 Mesoporous Silica with Titanium, Chem. Mater., 2000, 12(4): 898~911
    [154] Melero J. A., Stucky G. D., Grieken R. V., et al., Direct syntheses of ordered SBA-15 mesoporous materials containing arenesulfonic acid groups, J. Mater.Chem., 2002, 12: 1664~1670
    [155] Yang C. M., Zibrowius B., Schüth F., A novel synthetic route for negatively charged ordered mesoporous silica SBA-15, Chem. Commun., 2003: 1772~1773
    [156] Luau Z. H., Bae J. Y., Kevan L., Vanadosilicate Mesoporous SBA-15 Molecular Sieves Incorporated with N-Alkylphenothiazines, Chem. Mater., 2000, 12(10): 3202~3207
    [157] Bass J. D., Solovyov A., Pascall A. J., et al., Acid-Base Bifunctional and Dielectric Outer-Sphere Effects in Heterogeneous Catalysis: A Comparative Investigation of Model Primary Amine Catalysts, J. Am. Chem. Soc., 2006, 128(11): 3737~3747
    [158] Huh S., Chen H. T., Wiench J. W., et al., Controlling the Selectivity of Competitive Nitroaldol Condensation by Using a Bifunctionalized Mesoporous Silica Nanosphere-Based Catalytic System, J. Am. Chem. Soc., 2004, 126: 1010~1011
    [159] Shi L. Y., Wang Y. M., Ji A., et al., In situ direct bifunctionalization of mesoporous silica SBA-15, J. Mater. Chem., 2005, 15 1392~1396
    [160] Sauer J., Marlow F., Schüth F., Simulation of powder diffraction patterns of modified ordered mesoporous materials, Phys. Chem. Chem. Phys., 2001, 3: 5579~5584
    [161] Wang Y. M., Wu Z. Y., Wei Y. L., et al., In situ coating metal oxide on SBA-15 in one-pot synthesis, Micropor. Mesopor. Mater., 2005, 84(1-3): 127~136
    [162] Kruk M., Jaroniec M., Ko C. H., et al., Characterization of the Porous Structure of SBA-15, Chem. Mater., 2000, 12(7): 1961~1968
    [163] Wu Z. Y., Jiang Q., Wang Y. M., et al., Generating Superbasic Sites on Mesoporous Silica SBA-15, Chem. Mater., 2006, 18: 4600~4608
    [164] Timofeeva M. N., Jhung S. H., Hwang Y. K., et al., Ce-silica mesoporous SBA-15-type materials for oxidative catalysis: Synthesis, characterization, and catalytic application, Appl. Catal. A: Gen., 2007, 317 (1) 1~10
    [165] Hu L., Ji S., Xiao T., et al., Preparation and Characterization of Tungsten Carbide Confined in the Channels of SBA-15 Mesoporous Silica, J. Phys. Chem. B., 2007, 111(14): 3599-3608
    [166] Helmkamp M. M., Davis M. E., Synthesis of porous silicates, Ann. Rev. Mater. Sci., 1995, 25: 161~192
    [167] Stucky G. D., Huo Q. S., Firouzi A., et al., Directed synthesis of organic/inorganic composite structures, In Progress in Zeolite and Microporous Materials, Chon H., Ihm S. K., Uh Y.S., et al., Studies in Surface Science and Catalysis, Amsterdam: Elsevier Science Publishers B. V., 1997, 105: 3~28.
    [168] Ozin G. A., Chomski E., Khushalani D., et al., Mesochemistry, Curr. Opin. Colloid Interface Sci., 1998, 3(2): 181~193
    [169] Zhao D. Y., Yang P. D., Huo Q. S., et al., Topological construction of mesoporous materials, Curr. Opin. Solid. State. Mat. Sci., 1998, 3(1): 111~121
    [170] Kim J. M., Ryoo, R., Synthesis of MCM-48 single crystals, Chem. Commun., 1998: 259~260
    [171] Huo Q. S., Zhao D. Y., Feng J. L., et al., Room temperature growth of mesoporous silica fibers: A new high-surface-area optical waveguide, Adv. Mater.,1997, 9(12): 974~978
    [172] Attard, G. S., Glyde, J. C., Goltner, C.G., Liquid-crystalline phases as templates for the synthesis of mesoporous silica, Natuer, 1995, 378: 366~368
    [173] Kim S. S., Pauly T. R., Pinnavaia T. J., Non-ionic surfactant assembly ofordered, very large pore molecular sieve silicas from water soluble silicates, Chem. Commun., 2000: 1661~1662
    [174] Prouzet E., Cot F., Nabias G., et al., Assembly of Mesoporous Silica Molecular Sieves Based on Nonionic Ethoxylated Sorbitan Esters as Structure Directors, Chem. Mater., 1999, 11(6): 1498~1503
    [175] Kim J. M., Sakamoto Y., Hwang Y. K., et al., Structural Design of Mesoporous Silica by Micelle-Packing Control Using Blends of Amphiphilic Block Copolymers, J. Phys. Chem. B., 2002, 106(10): 2552~2558
    [176] Corma A., State of the art and future challenges of zeolites as catalysts, J. Catal., 2003, 216(1-2): 298~312
    [177] Corma A., Navarro M. T., Pariente J. P., Synthesis of an ultralarge pore titanium silicate isomorphous to MCM-41 and its application as a catalyst for selective oxidation of hydrocarbons, J. Chem. Soc., Chem. Commun., 1994: 147~148
    [178] Corma A., Fornes V., Navarro M. T., et al., Acidity and Stability of MCM-41 Crystalline Aluminosilicates, J. Catal., 1994, 148(2): 569~574
    [179] Reddy K. M., Moudrakovski I., Sayari A., Synthesis of mesoporous vanadium silicate molecular sieves, J. Chem. Soc., Chem. Commun.,1994: 1059~1060
    [180] Maschmeyer T., Rey F., Sankar G., et al., Heterogeneous catalysts obtained by grafting metallocene complexes onto mesoporous silica, Nature, 1995, 378: 159~162
    [181] Branton P. J., Hall P. G., Sing K. S. W., et al., Physisorption of argon, nitrogen and oxygen by MCM-41, a model mesoporous adsorbent, J. Chem. Soc., Faraday Trans.,1994, 90: 2965~2967
    [182] Wu C. G., Bein T., Conducting Polyaniline Filaments in a Mesoporous Channel Host, Science, 1994, 264: 1757~1759
    [183] Wu C. G., Bein T., Conducting Carbon Wires in Ordered, Nanometer-Sized Channels, Science, 1994, 266:1013~1015
    [184] Lee B., Zhu H. G., Zhang Z. T., et al., Preparation of bicontinuous mesoporous silica and organosilica materials containing gold nanoparticles by co-synthesis method, Micropor. Mesopor. Mater., 2004, 70(1-3): 71~80
    [185] Wang L. P., Kong A. G., Chen B., et al., Direct synthesis, characterization of Cu-SBA-l5 and its high catalytic activity in hydroxylation of phenol by H2O2, J. Mole. Catal. A., 2005, 230(1-2): 143~150
    [186] Yasuda H., Nakayama Y., Satoh Y., et al., Activity of samarocene catalysis adsorbed on mesoporous silicates for the polymerization of methyl methacrylate, Polymer Int, 2004, 53(11): 1682~1685
    [187] Rodríguez-Castellón E., Díaz L., Braos-García P., et al., Nickel-impregnated zirconium-doped mesoporous molecular sieves as catalysts for the hydrogenation and ring-opening of tetralin, Appl. Catal. A: Gen., 2003, 240(1-2): 83~94
    [188] Inaki Y., Kajita Y., Yoshida H., et al., New basic mesoporous silica catalyst obtained by ammonia grafting, Chem. Common., 2001, (22): 2358-2359
    [189] Shylesh S., Singh A. P., Synthesis, characterization, and catalytic activity of vanadium-incorporated, -grafted, and -immobilized mesoporous MCM-41 in the oxidation of aromatics, J. Catal., 2004, 228(2): 333~346
    [190] Kapoor M. P., Ichihashi Y., Kuraoka K., et al., Catalytic methanol decomposition over palladium deposited on thermally stable mesoporos titanium oxide, J. Mole. Catal. A., 2003, 198(1-2): 303-308
    [191] Chiker F., Nogier J. P., Launay E., et al., Optimisation of gas phase deposition of titanium on mesoporous silica SBA-15: active site counting and catalytic activity in cyclohexene epoxidation, Appl. Catal. A: Gen., 2004, 259(2): 153-162
    [192] Boccuti M. R., Rao K. M., Zecchina A., et al., Spectroscopic characterization of silicalite and titanium-silicalite, Stud. Surf. Sci. Catal., 1989, 48: 133~144
    [193]冯春祥,宋永才,谭自烈,元素有机化合物及其聚合物,长沙:国防科技大学出版社,1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700