用户名: 密码: 验证码:
基于激波管实验平台的甲烷燃烧化学动力学机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
如何更环保、更安全地使用能源是当今社会发展面临的主要问题,而燃烧则是能源获取的最主要方式。激波管是进行燃烧相关机理研究的重要手段。本文建立了一套激波管实验装置,在这个平台上对甲烷,特别是低热值的超低浓度甲烷燃烧的基础性问题进行了研究,并对激波管内的流场进行了数值模拟。
     首先,建立了激波管的基本实验装置(包括激波管及其配气、压力测试和光谱测量系统)。同时,研制了低压大电流的电热式电控破膜装置,实现对激波产生时机的控制(控制精度+1ms),而且对测控设备电磁干扰小,不对化学反应产生污染。还研制了基于Atmega单片机的可编程时序控制器,完成对激光器预热、激波产生和到达、反应进程检测触发、诊断激光发射和ICCD曝光时序的总体同步控制,进而搭建了基于Nd:YAG激光器的PLIF测量平台。利用该平台对激波压缩后的流场进行了丙酮示踪PLIF测量,定量分析结果与理论计算相符,既验证了电热破膜方式的可靠性,也表明了PLIF用作激波管实验的流场显示的可行性。这种高时间和空间分辨率的测试手段在激波管实验上的成功尝试,为激波与气相物质相互作用的机理研究提供了新的思路和方法。
     其次,对激波诱导当量比甲烷/空气混和物点火的反应区结构进行了化学发光数字成像和OH-PLIF的可视化测量。在不同强度激波的诱导下,诱导区的温度不同,直接导致了甲烷/空气混合物的空间放热率不同,从而形成了强点燃和弱点燃两种典型的反应区结构特征,其化学自发光特征、压力特征和OH-PLIF分布的测量结果相互印证,也与前人的实验和计算分析结论一致。由于在弱点燃工况下,诱导区的着火延迟期相对于激波传播时间来说较长,导致不可消除的湍流、压力波等因素造成的扰动作用更为明显,反应特征出现显著的不均匀性。弱点燃工况的不同阶段都存在OH分布或化学发光相对于周围强很多的热点:这些化学反应强烈的热点在点火初期呈核状,随后交织成斑状,促进了火焰面的形成;而后,位于未燃气体和火焰面交界处的热点,加速了火焰面的推进。随着诱导激波的增强,这种不均匀性显著减小,在强点燃工况反应区呈规则的爆轰波结构。
     再次,搭建了并行化Fluent计算平台,采用空间项三阶MUSCL格式,时间项二阶隐式,Roe-Flux差分裂格式,RNG k-ε模型,基于密度法的时间导数预处理法和双重时间步进格式求解二维N-S方程,模拟了激波管内激波形成、推进、反射以及激波与边界层相互作用、激波与接触面相互作用的整个非定常流过程,计算结果与前人的结果定性一致,指出了影响5区实验条件的关键因素。
     最后,在激波管平台上,用OH~*和CH~*光谱,测量了超低浓度甲烷的点火延迟时间,并与详细机理、经典经验公式和一些简化机理进行了对比,发现GRI-Mech 3.0详细机理完全适用于超低浓度甲烷氧化历程的研究。通过数据分析发现,表观活化能与甲烷浓度成幂律关系的规律,并得到温度1100~1900K、常压条件下甲烷的点火延迟时间经验公式。该活化能修正的方法可能同样适用于总包反应机理。此外,通过局部和总体敏感性分析,探讨了低浓度甲烷燃烧的反应特征。当甲烷浓度低时,在与氧气竞争的反应中(如H+O_2<=>OH+O VS.H+CH_4<=>CH_3+H_2)竞争能力明显下降,造成链分支反应活跃,点火延迟时间减小;同样由于甲烷浓度低,CH_3的复合反应2CH_3(+M)<=>C_2H_6(+M)的影响被削弱,在决定低浓度甲烷氧化过程的基元反应中,CH_3+O_2<=>O+CH_3O占绝对主导地位。
As the main access to energy, combustion is much concerned with the environment-friendly and safe use of energy which becomes more and more important in today's social and economic development. Since shock tube is a primary apparatus to investigate the chemical kinetics of combustion, a shock tube experiment platform was designed and established and CFD simulations were carried out to better understand the unsteady flow fields in it. Further more, the fundamental researches on combustion mechanism of methane, especially ultra lean methane, were conducted.
     Firstly, a shock tube device as the fundamental equipment together with the gas delivery, pressure test and spectral measurement system was established. In order to control the arrival time of shock wave, we developed a low- voltage/high-current electro-heating diaphragm bursting device. It is demonstrated that this method have little influence on the chemical reaction process and EMI impact on the instruments, and the shock wave arrival time tolerance is less than±1ms. All synchronizations of instruments of Nd:YAG Laser pumped PLIF measurement were harmonized by a self-developed Atmega-MCU-based central controller. The coordinating process included laser preheating, shock wave creating and arriving, reaction process monitoring, diagnostic laser pulse firing and ICCD photography. The uniformity of incident shock wave was also validated by acetone PLIF measurement. Semi-quantitative analysis of the results agrees well with the empirical results. It gives a demonstration to the visualization of flow filed in shock tube experiments and confirms the validity of the high spatial and temporal resolution PLIF measurement technique as a new method for the mechanism research of the interactions between shock wave and gaseous matter, such as combustion, detonation and nonstationary wave.
     Secondly, Shock-induced ignition of stoichiometric methane/air mixture was experimentally studied by digital chemiluminescence imaging and OH-PLIF visualization technique. Shock waves of different strengths lead to different post shock temperatures of methane/air mixture, and then result in different energy release powers per unit mass. So there are two typical characteristics of reaction zones in strong and weak ignition models. The OH-PLIF results agreed well with the measurements of spontaneous luminescence and pressure profiles in this paper, and were in accordance with the former conclusion from experiments and numerical simulations. In weak ignition, because ignition delay was relatively long compared with the time scale of the shock wave propagation, the role of fluctuations caused by turbulence, pressure perturbations, etc., became more obvious. That means more time was provided to non-linear chemical reaction and the reaction zone showed distinctively irregular structure. When inducing shock wave was strengthened, the nonuniform characteristics decreased. Regular detonation wave structure could be seen in reaction zone of strong ignition. Lots of hot spots, in which the OH radical distribution or chemiluminescence is much more intensive than the surrounding area, exist in different stages of weak ignition process. At the initial stage of ignition, the hot spots are small kernels, then interact with each other to plaques and form the flame; at the subsequent flame propagating stage, the hot spots will appear at the interface between the unburned mixture and the flame front, speeding up the propagation of the flame front.
     Thirdly, we developed a computing platform for parallel Fluent. The third order MUSCL scheme for spatial discretization, second order implicit time integration, Roe Flux-Difference splitting scheme for convective fluxes, RNG k-εturbulence model, preconditioning and dual-time formulation were employed to solve 2D, unsteady, compressible, time-averaged N-S equations. The simulation results of unsteady fields exhibit the processes of shock forming, propagating and reflecting and the interactions between reflected shock and unsteady boundary layer and between bifurcated shock and contact surface in shock tube operation and show a good qualitative agreement with the previous research. Also the key impact factors of region 5 experimental condition are pointed out.
     Finally, the ignition delays of ultra lean methane (ULM) were measured by OH* and CH* spectral method in shock tube platform. The experimental results were compared with predicting results from detailed mechanism, the typical empirical expression and some reduced mechanisms and verified the applicability of GRI-Mech 3.0 mechanism. Through analyzing the results, we found the power law relationship between the effective active energy and methane fraction. An improved empirical expression for predicting ignition delay of methane oxidation at temperature of 1100~1900K is obtained. Also it provides a potential correction to overall reaction mechanism parameter. The reaction characteristics of ULM were studied by local and overall sensitivity analysis. There are several competing reactions to radical between methane and oxygen, like H+O_2<=>OH+O VS. H+CH_4<=>CH_3+H_2. Low methane concentration would certainly activate the most important branch reaction of H+O_2<=>OH+O. So the ignition delay time of ULM is decreased. Meanwhile, low methane concentration case weakens the influence of complex reaction of methyl (CH_3+O_2<=>O+CH_3O). And the oxidation of methyl (CH_3+O_2<=>O+CH_3O) would dominate ULM combustion.
引文
1 江泽民.对巾国能源问题的思考.上海交通大学学报,2008,42(3).
    2 Weinberg,F.J.Combustion Temperature:the future.Nature,1971,233(239-241).
    3 Jones,A.R.,Lloyd,S.A.and Weinberg,EJ.Combustion in heat exchanger.Proc.R.Soc.Load A,1978,360(97-115).
    4 Ronney,P.D.Analysis of non-adiabatic heat-recirculating combustors.Combustion and Flame,2003,135(4),421-439.
    5 Kotani,Y.,Behbahani,H.E and Takeno,T.An excess enthalpy flame combustor for extended flow ranges.Symposium(International) on Combustion,1985,20(I),2025-2033.
    6 Shinoda,M.,Tanaka,R.and Arai,N.Optimization of heat transfer performances of a heat-recirculating ceramic burner during methane/air and low-calorific-fuel/air combustion.Energy Conv.and Manag,2002,43,1497-1491.
    7 Hoffmann,J.G.,Eehigo,R.,Yoshida,H.and Tada,S.Experimental study on combustion in porous media with a reciprocating flow system.Combustion and Flame,1997,111(1-2),32-46.
    8 Jugjai,S.and Sawananon,A.The surface combustor-heater with cyclic flow reversal combustion embedded with water tube bank.Fuel,2004,83(17-18),2369-2379.
    9 Xiong,T.-Y.,Khinkis,M.J.and Fish,EF.Experimental study of a high-efficiency,low emission porous matrix combustor--heater.Fuel,1995,74(11),1641-1647.
    10 Cavaliere,A.and de Joannon,M.Mild Combustion.Progress in Energy and Combustion Science,2004,30(4),329-366.
    11 邢献军,王宝源and林其钊.常温空气无焰燃烧在燃煤锅炉煤改气巾的应用.热能动力工程,2007,22(3),284-287.
    12 孟凡生.我固低热值燃气内燃机的研究现状.内燃机,2007(3),46-49.
    13 赵黛青,夏亮and何立波.低热值燃料稳定燃烧的研究现状与进展.世界科技研究与发展,2005,27(5),33-39.
    14 史俊瑞,解茂昭and李刚.稀混合气低速过滤燃烧的数值模拟与理论分析.燃烧科学与技术,2008,14(1),79-85.
    15 王恩宇,程乐鸣,骆仲泱and岑可法.天然气在渐变型多孔介质中的预混燃烧启动特性.然烧科学与技术,2007,13(5),393-397.
    16 Lloyd,S.A.and Weinberg,EJ.A burner for mixtures of very low heat content.Nature,1974,251,47-49.
    17 Lloyd,S.A.and Weinberg,F.J.Limits to energy release and utilisation from chemical fuels.Nature,1975,257,367-370.
    18 Lloyd,S.A.Combustion in Double Spiral Burners.Ind.Eng.Chem.Res.,1994,33,1809-1816.
    19 Kim,N.i.,Kato,S.,Kataoka,T.,Yokomori,T.,Maruyama,S.,Fujimori,T.and Maruta,K.Flame stabilization and emission of small Swiss-roll combustors as heaters.Combustion and Flame,2005,141(3),229-240.
    20 罗士杰.新式热再循环热水器设讣之灾作研究,(国立中央大学,2006).
    21 常心洁,刘应书,刘文海,张辉and乐恺.变压吸附法分离低浓度瓦斯的试验研究.低温与特气,2006,24(6),18-21.
    22 王盈,朱吉钦and李成岳.低浓度甲烷流向变换催化燃烧取热技术.北京化工大学学报, 2006,33(5),14-17.
    23 董志勇and吕阳泉.激波与边界层干扰研究综述.浙江工业大学学报,2001,29(3),295-300.
    24 陈强.激波管流动的理论和试验技术,(中国科学技术大学出版社,合肥,1980).
    25 Weber,Y.S.,Oran,E.S.,Boris,J.P.and Anderson,J.D.The numerical simulation of shock bifurcation near the end wall of a shock tube.Phys.Fluids,1995,7,2475-2488.
    26 宗南,杨基明,潘建平and韩肇元.非定常同向激波边界层干扰的实验和数值模拟.流体力学实验与测量,2000,14(3),32-36.
    27 BRON,O.Numerical and experimental study of the shock-boundary layer interaction in transonic unsteady flow.Department of Energy Technology,Division of Heat and Power Technology(Royal Institute of Technology,2004).
    28 拉赫马杜林,X.A.and谢苗诺夫,C.C.激波管:上册(一般理论赫实验技术).(国防工业出版社,1965).
    29 Brown,C.J.and Thomas,GO.Experimental studies of shock-induced ignition and transition to detonation in ethylene and propane mixtures.Combustion and Flame,1999,117(4),861-870.
    30 Thomas,G.,Bambrey,R.and Brown,C.Experimental observations of flame acceleration and transition to detonation following shock-flame interaction.Combustion Theory and Modelling,2001,5(4),573-594.
    31 Oran,E.S.and Gamezo,V.N.Origins of the deflagration-to-detonation transition in gas-phase combustion.Combustion and Flame,2007,148(1-2),4-47.
    32 Lifshitz,A.Anatomy of complex reaction systems.Proceedings of the 14th International Symposium on Shock Tubes and WavesKensington,1983).
    33 Lifshitz,A.,Scheller,K.,Burcat,A.and Skinner,G.B.Shock-tube investigation of ignition in methan e-oxygen-argon mixtures.Combustion and Flame,1971,16(3),311-321.
    34 Tsang,W.and Lifshitz,A.Shock tube techniques in chemical kinetics.Ann Rev Phys Chem.,1990,41.
    35 Grillo,A.and Slack,M.W.Shock tube study of ignition delay times in methane---oxygen--nitrogen---argon mixtures.Combustion and Flame,1976,27,377-381.
    36 Borisov,A.A.,Kogarko,S.M.and Lyubimov,A.V.Ignition of fuel films behind shock waves in air and oxygen.Combustion and Flame,1968,12(5),465-468.
    37 Cheng,R.K.and Oppenheim,A.K.Autoignition in Methane-Hydrogen mixture.Combustion and Flame,1984,58,125-139.
    38 D.F.Davidson,R.K.H.Interpreting shock tube ignition data.International Journal of Chemical Kinetics,2004,36(9),510-523.
    39 D.F.Davidson,B.M.G,R.K.Hanson.Shock tube ignition measurements of iso-octane/air and toluene/air at high pressures.Proceedings of the Combustion Institute,2005,30,1175-1182.
    40 Herbon,J.T.Shock tube measurements of CH3+O2 Kinetics and the heat of formation of the OH radical.High Temperature Gasdynamics Laboratory,Mechanical Engineering Department(Stanford University,California,2004).
    41 Homma,R.and Chen,J.Y.Reduced mechanisms for prediction of NO2 formation and ignition delay in methane-air combustion,journal of Engineering for gas turbines and power,2001,123,303-307.
    42 Horning,D.C.A study of the high-temperature autoignition and thermal decomposition of hydrocarbons.High-temperature Gasdynamics Laboratory(Stanford University,2001).
    43 Hughes,K.J.,Turanyi,T.,Clague,A.R.and Pilling,M.J.Development and testing of a comprehensive chemical mechanism for the oxidation of methane,lnt d Chem Kinet,2001,33,513-538.
    44 Kim,K.and Shin,K.S.Shock tube and modeling study of the ignition of propane.Bull.Korean Chem.Soc.,2001,22(3),303-307.
    45 Krishnan,K.S.,Ravikumar,R.and Bhaskaran,K.A.Experimental and analytical studies on the ignition of methane---acetylene mixtures.Combustion and Flame,1983,49(1-3),41-50.
    46 Levy,Y.,Olchanski,E.,Sherbaum,V.,Erenburg,V.and Bureat,A.Shock-Tube Ignition Study of Methane in Air and Recirculating Gases Mixture.2006,22(3),669-676.
    47 Moshan S.E Kahandawala,S.A.EC.,et al.Investigation of kinetics of lso-Octane ignition under scramjet conditions.Int J Chem Kinet,2006,38,194-201.
    48 N.Lamoureux,C.-E.E,V.Vaslier.Low hydrocarbon mixture ignition delay times investigation behind reflected shock waves.Shock Wave,2002,11,309-322.
    49 N.Lamoureux,C.-E.E Natural gas ignition delay times behind reflected shock wave:Application to modelling and safety.Shock Wave,2003,13,57-68.
    50 Nagaboopathy,M.,Vijayanand,C.,Hegde,G.,Reddy,K.P.J.and Arunan,E.Single-pulse chemical shock tube for ignition delay measurements.Current Science,2008,95(1),78-82.
    51 Spadaccini,L.J.and Colket,M.B.Ignition delay characteristics of methane fuels.Progress in Energy and Combustion Science,1994,20(5),431-460.
    52 Wang,S.,Gou,H.-j.,Fan,B.-c.,He,Y.-z.,Zhang,S.-t.and Cui,J.-p.Shock Tube Study of JP-10 Ignition Delay Time.Chinese Journal of Chemical Physics,2007(1),48.
    53 王苏,崔季平,范秉诚,何宇中.促进剂对高碳数碳氢燃料点火特性的影响.实验流体力学,2007,21(2),25-28.
    54 王苏,范秉诚,何字中,崔季平.硅烷对JP10和煤油点火特性影响的激波管研究.力学学报,2007,39(4),460-465.
    55 Herzler,J.,Jerig,L.and Roth,P.Shock tube study of the ignition of lean n-heptane/air mixtures at intermediate temperatures and high pressures.Proceedings of the Combustion Institute,2005,30(1),1147-1153.
    56 Gregory P.Smith,D.M.G.,Michael Frenklach,Nigel W.Moriarty,Boris Eiteneer,Mikhail Goldenberg,C.Thomas Bowman,Ronald K.Hanson,Soonho Song,William C.Gardiner,Jr.,Vitali V.Lissianski,and Zhiwei Qin.http://www.me.berkeley.edu/gri_mech/
    57 Coppens,EH.V.,De Ruyck,J.and Konnov,A.A.The effects of composition on burning velocity and nitric oxide formation in laminar premixed flames of CH4 + H2 + O2 + N2.Combustion and Flame,2007,149(4),409-417.
    58 Konnov,A.A.Detailed reaction mechanism for small hydrocarbons combustion.Release 0.5.2000).
    59 Li,S.C.and Williams,F.A.NOx formation in two-stage methane-air flames.Combustion and Flame,1999,118(3),399-414.
    60 Warnatz,J.Hydrocarbon oxidation high-temperature chemistry.Pure Appl.Chem.,2000,72(11),2101-2110.
    61 Warnatz,J.and Klaus,P.CEC reaction mechanism for methane/air combustion.62 HegGes.C.I.C1-C4 hydrocarbon oxidation mechanism.2006).
    63 张全.简化燃烧反心机理的研究.工程热物理(中国科学技术大学,合肥,2001).
    64 Kazakov,A.and Frenklach,M.http://www.me.berkeley.edu/drm/.
    65 Sung,C.J.,Law,C.K.and Chert,J.Y.Further validation of an augmented reduced mechanism for methane oxidation:comparison of global parameters and detailed structrue.Combustion Science and Technology,2000,156(1),201.
    66 Sung,C.J.,Law,C.K.and Chert,J.Y.Augmented reduced mechanisms for NO emission in methane oxidation.Combustion and Flame,2001,125,906-919.
    67 Zambon,A.C.and Chelliah,H.K.Explicit reduced reaction models for ignition,flame propagation,and extinction of C2H4/CH4/H2 and air systems.Combustion and Flame,2007,150(1-2),71-91.
    68 董刚,任祝寅and陈义良.CH4/空气含氮燃烧的14步简化机理.燃料化学学报,2003,31(1),39-43.
    69 钱炜祺.用灵敏度法简化化学反应动力模型.空气动力学学报,2004,22(1),88-92.
    70 肖保国.激波管内碳氢燃料点火延迟的数值分析.(中国空气动力研究与发展中心,绵阳,2005).
    71 肖保国,钱炜祺,杨顺华and乐嘉陵.甲烷点火燃烧的简化化学反应动力学模型.推进技术,2006,27(2),101-105.
    72 胡志云,张振荣,刘晶儒,关小伟,黄梅生,叶锡生.用单次脉冲非稳腔空间增强探测CARS 技术测最火焰温度.中国激光,2004,31(5),609-612.
    73 杨仕润.赵建荣,俞刚.同时测最氢氧CARS光谱确定火焰温度和氢氧浓度.中国激光,1999,26(10),883-888.
    74 赵建荣.CARS在超音速燃烧研究中的应用.激光技术,2000,24(4),207-212.
    75 俞鸿儒.氢氧燃烧及爆轰驱动激波管.力学学报,1999,31(4),389-396.
    76 侯华,韩肇元.无膜激波管的研制和调试.气功实验与测量控制,1996,10(2),47-51.
    77 韩肇元.王震球,尹协振,姚久成,徐立功,王奎.用于研究双波迎面相互作用的电控双驱动.1982.
    78 Gray,J.A shock tube with tunable,pulsed laser-based diagnostics.Rev.Sci.instrum.,1990,61(7),1825-1831.
    79 Atmel-datasheet.8-bit AVR microcontroller with 8K Bytes in-system programmable flash,Rev.2545M-AVR-09/07.2007).
    80 张平.燃烧诊断学,(兵器工业出版社,1988).
    81 杨仕润,赵建荣.俞刚,张新宇.超声速燃烧氢氧基平面激光诱导荧光测量.激光技术,2004,28(1),20-22.
    82 关小伟,刘晶儒,黄梅生,胡志云,张振荣,叶锡生.PLIF法定量测量中烷-空气火焰 维温度场分布.强激光与粒子束,2005,17(2),173-176.
    83 张江波,王仕康,史绍熙.激光诱导荧光光谱燃烧测温技术研究.7工程热物理学报,1992,13(1),81-85.
    84 耿辉,翟振辰.周松柏等.欠膨胀自由射流密度场的丙酮平面激光诱导荧光显示与测量.实验流体力学,2006,20(3),85-90.
    85 Thurber,M.C.Acetone laser-Induced fluorescence for temperature and multiparameter imaging in gaseous flows.Thermosciences Division,Department of Mechanical Engineering(Stanford University,Stanford,California,1999).
    86 Sharpe,G.J.and Short,M.Ignition of thermally sensitive explosives between a contact surface and a shock.Physics of Fluids,2007,19(12).
    87 Ornn,E.S.,Young,T.R.,Boris,J.P.and Cohen,A.Weak and strong ignition.!.numerical simulations of shock tube experiments.Combustion and Flame,1982,48,135-148.
    88 王昌建,徐胜利·费立森.气相爆轰波反应区结构的平面激光诱导荧光测最.力学学所,2007,39(5),661-667.
    89 Seta,T.,Nakajima,M.and Miyoshi,A.Development of a technique for high-temperature chemical kinetics:shock tube/pulsed laser-induced fluorescence imaging method.Rev.Sci.instrum.,2005,76.
    90 Memillin,B.K.,Lee,M.P.,Paul,P.H.and Hanson,R.K.Planar laser-induced fluorescence imaging of shock-induced ignition.Proceedings of the Combustion Institute,1990,23,1909-1914.
    91 Liang,Z.,Browne,S.,Deiterding,R.and Shepherd,J.E.Detonation front structure and the competition for radicals.Proceedines of the Combustion Institute.2007.31(2).2445-2453.
    92 宗南.非定常同向激波边界层相互作用的实验和数值研究.(中国科学技术大学 近代力学系,合肥,2000).
    93 Ligong,X.,M,G.C.and J,S.R.Reduction of driver gas contamination in a reflected shock tube by boundary layer suction.Proc.16th Int.Syrup.Shock Tubes and Waves,pp.637-643Aache,Germany,1987).
    94 Nishida,M.and Lee,M.G.Reflected-Shock/Side Boundary Layer Interaction in a Shock Tube.Proceedings of the 20th InternationalSymposium on S hock WavesPasadena,California,U.S.A,1995).
    95 刘仙名and符松.预处理算法在非定常流动计算中的应用.清华大学学报,(自然科学版),2004,44(2),240-243.
    96 肖天航,昂海松,余少志,王旭刚and段文博.预处理法求解定常非定常混合网合格的全速流场.空气动力学学报,2007,25(4),426-430.
    97 傅德薰 and马延文.计算流体力学,(高等教育出版社,北京,2002).
    98 岳朋涛.超燃冲压发动机燃烧室若干问题的研究.(中国科学技术大学,2002).
    99 曲延鹏,陈颂英,王小鹏and滕书格.不同湍流模型对圆射流数值模拟的讨论.工程热物理学报,2008,29(6),957-959.
    100 夏刚,程文科and秦子增.Spalart-Allmaras 湍流模型在高超声速气动加热计算中的应用.国防科技大学学报,2002,24(6),15-18.
    101 汪根来.火箭发动机化学非平衡流动的数值研究.航空宇航推进理论与工程(哈尔滨工程大学,哈尔滨,2006).
    102 陈义良.湍流燃烧(中国科学技术大学出版社,合肥,2003).
    103 黄典贵.基于Roe格式的可压与不可压流的统一计算方法.应用数学和力学,2006,27(6),669-674.
    104 Asouti,V.G.,Papadimitriou,D.I.,Koubogiannis,D.G.and Giannakoglou,K.C.LOW Mach number preconditioning for 2D and 3D upwind flow solution schemes on unstructured grids.5th GRACM lnterational Congress on Computational MechanicsLimassol,2005).
    105 Morrison,J.H.ISAAC V4.2 User Guide,http://isaac-cfd.sourceforge.net/.2001).
    106 Petersen,E.L.,Davidson,D.E and Hanson,R.K.Kinetics modeling of shock-induced ignition in low-dilution CH4/O2 mixtures at high pressures and intermediate temperatures.Combustion and Flame,1999,117(1-2),272-290.
    107 Kee,R.J.,Rupley,EM.,Meeks,E.and Miller,J.A.CHEMKIN-Ⅲ:A Fortran chemical kinetics package for the analysis of gasphase chemical and plasma kinetics.1996).
    108 董刚,蒋勇,陈义良 and 王清安.大型气相化学动力学软件包Chemkin及其在燃烧中的应用.火灾科学,2000,9(1),27-33.
    109 Chert,,J.-Y.A General Procedure for Constructing Reduced Reaction Mechanisms with Given Independent Relations.Combustion Science and Technology,1988,57(1),89-94.
    110 Toshimitu,K.,Matsuo,A.,Kamel,M.R.,Morris,C.I.and Hanson,R.K.Numerical simulations and planar laser-induced fluorescence imaging results of hypersonic reactive flows.Journal of Propulsion and Power,2000,16(1 ),16-21.
    111 张全.简化燃烧化学反心机理的研究.(中国科学技术大学,合肥,2001).
    112 Turanyi,T.Applications of sensitivity analysis to combustion chemistry.Reliability Engineering and system safety,1997,57,41-48.
    113 Turanyi,T.Sensitivity analysis of complex kinetic systems,tools and applications.Journal of Mathematical Chemistry,1990,5,203-248.
    114 Takahashi,E and Katta,V.R.A reaction kernel hypothesis for the stability limit of methane jet diffusion flames.Symposium(International) on Combustion,2000,28(2),2071-2078.
    115 李卓毅 and 张会强.甲烷一维层流预混火焰的详细和单步反心机理模拟.清华大学学报(自然科学版),2005,45(11),1510-1512.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700