用户名: 密码: 验证码:
导电聚合物电极材料研究及其固体钽电解电容器技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机固体电解电容器具有高频大容量、低等效串联电阻、高可靠等特点,可广泛应用于计算机、雷达、导弹、超音速飞机、自动控制装置等电子线路中,并满足当前电子电路日益高频化的要求。该类电容器广阔的应用前景和潜在的巨大商业价值引起了企业和研究者的关注。目前高频低ESR固体电解电容器的研究主要集中于高性能电极材料的制备以及电容器制备工艺两个方面。本论文针对有机固体钽电解电容器开展了从原料到材料到电极到电容器的系统而深入的研究工作,主要有:高得率导电聚合物单体的合成研究、高电导率高稳定性聚合物电极薄膜的制备研究、片式有机固体钽电解电容器被膜工艺及相关机理研究、高频低ESR有机固体钽电解电容器的制备与性能研究、有机固体钽电解电容器失效机理及可靠性研究、有机固体钽电解电容器产业化可行性研究。论文的主要研究内容及创新点归纳如下:
     1.提出采用导电聚合物聚乙烯二氧噻吩作为片式固体电容器的阴极材料,独特的化学原位聚合工艺使电容器的等效串联电阻由300mΩ降低至40mΩ,电容器的频率使用范围由10KHz提高至100KHz。(授权专利03105908.2)。
     2.在乙撑二氧噻吩单体材料合成中,使用比表面积大、催化活性高的复合铜粉为催化剂,使用反应物可溶而产物不溶促使平衡向正方向移动的质子型极性化合物为溶剂,使反应温度降低50℃、反应时间缩短6小时,而产率提高近25%(专利申请号200610055264.X)
     3.鉴于PEDT的的阳离子自由基聚合机理,聚合反应速度快,反应难以控制的难点,在聚合物电极薄膜制备过程中采用独特的氧化剂、溶剂体系和聚合改良剂,使聚合物薄膜的电导率高且可在10~100S/cm间调控(授权专利ZL03105755.1)。
     4.在聚合物阴极电容器制备过程中采用表面活性处理和薄膜吸附技术提高电容器静电容量引出率,使容量引出率由35%提高至95%(授权专利ZL03105907.4)。
     5.首次采用在线掺杂原位沉积的PEDT电极薄膜,可在修补金属氧化层缺陷的同时大幅提高聚合物薄膜的电导率,降低电容器ESR,同时还可简化被膜工艺。(授权专利03105908.2)
     6.首次通过在活化剂处理后的芯子表面沉积有机硅烷类偶联剂,制备硅烷类偶联剂-PEDT界面复合材料作为中间隔离层材料,研究结果表明中间隔离技术可显著提高电容器的耐压能力,在相同容量和外形尺寸的情况下,使用中间隔离技术后的产品工作电压可提高一倍以上。
     7.发现了在平坦与多孔表面沉积聚合物薄膜的电导率变化规律,提出并建立了受限空间内导电聚合物薄膜生长机理及模型,为在多孔阳极表面沉积聚合物薄膜奠定了理论基础(论文:在钽电解电容器多孔阳极体表面化学原位被覆聚乙烯二氧噻吩(PEDT)薄膜研究″)。
     8.研制出的PEDT有机固体钽电解电容器的工作电压为2~16V,容量范围在10~220μF,研制的产品除漏电流外,电容器的工作电压、容量、损耗和频率特性、温度特性等参数均优于MnO_2电容器,并达到美国KEMET公司聚吡咯产品目录公布的性能水平,目前该研究技术成果已在相关企业开始初步实现生产化。
As a novel kind of energy storage component, organic solid electrolyte capacitor (OSEC) has lots of merits such as with high energy density, high power density, long life time and broad temperature range for practical application et al. OSECs have already been applied in fields such as computer, radar, missile, supersonic airplane, automatic control system. Due to the wide application field and huge commercial value, more and more attention is being paid on the research of OSECs. Currently, studies on OSECs are mainly focused on the preparation of high performance electrode materials and device. In this dissertation, we systematically studied on the preparation of high performance device involving in material, electrode, and capacitor, which includes the synthesis of high yield conductive polymer monomer, the preparation high conductive and stable polymer electrode thin films, the processing, fabrication , and mechanism of thin film for slice OSEC, the fabrication and property of high frequency low ESR OSEC, the disable mechanism and reliability of OSEC, and the feasibility of large scale production for OSEC. The main results are as following.
     1. Synthetic method and processing for novel monomer to synthesize conductive poly(3,4-ethylene dioxythiophene) (PEDT) polymer as a cathode material fro sliced solid capacitor was optimized. The results show that using this novel in situ chemical polymerization technique equivalent series-wound resistance decreased from 300 mΩto 40 mΩ. The frequency range increased from 10 KHZ to 100 KHZ. The capacitor and its fabrication method were patented via No. 03105908.2.
     2. During the synthesis of PEDT monomer, using porous copper as a de-carboxylic agent, reaction temperature reduces 50℃, and reaction time decreases 6 hr. On the other hand, final target yield increases from 25% using proton type solvent which is soluble for reactant but insoluble for product, and the product can be easily purified by separation funnel and distillation to attain high grade. Moreover, solvent can be recycled as well as environmental friendly. This result is applied patent through appl. No. 200610055264.X.
     3. As the reaction of PEDT polymerization involves in cationic free polymeric mechanism, which the reaction rate is very fast and uneasily controlled, in this work a novel method for using unique oxidant, solvent system, and polymerization improver was applied. As a result, the conductivity of polymer film can be modified from 10 to 100 S/cm, which was patented via No. ZL03105755.1.
     4. Using surfactant active processing and thin film absorption technique, the eduction yield of capacitance increased from 35% to 95% (Patent No. ZL03105907.4).
     5. Using in situ doping into in situ deposition PEDT electrode, the defect in metal oxide was remedied, and the conductivity of polymer film was greatly improved. At the same time, film processing procedure was simplified. This work was patented through No. 03105908.2.
     6. It is first time to deposit silane coupling agent on surfactant polished the core surface of OSEC and fabricate silane coupling agent-PEDT interfacial material as internal separator. It was found that as internal separation technique is significantly helpful to improve the pressure endurance capability of the OSECs, e.g., in the case of identical volume and exterior size, the working pressure of product using internal separation technique has been doubled.
     7. The variation rule of OSEC conductivity of polymer films deposited on flat and porous surface was found, and thin film formation mechanism and model in limited space was established, which paved base stone for polymer thin film deposition on porous surface.
     8. The working pressure of the obtained PEDT OSEC is 2-16 V, and the capacitance ranges from 10 to 20μF. The parameter of working pressure , capacitance, wasting, frequency and temperature characteristic is much better than those of MnO_2 capacitor, which is comparable to the device performance listed in USA KEMET Co. product catalogue. At the present stage, large scale production is being attempted in relevant enterprise using the result and technique achieved in this work.
     In summary, a novel series of capacitors based on PEDT conductive polymer were systematically studied, and high performance device was achieved. It can be anticipated that more novel kind of capacitors using other different organic electronic materials can be exploited with the pioneering study in this work.
引文
[1]陈国光.电解电容器[M].西安:西安交通大学出版社,1984:43-96
    [2]天津大学无线电元件教研室.电容器[M].北京:技术标准出版社,1989:16-25
    [3]Josef Gerblinger.Tantalum Capacitors- Today and Tomorrow[C].In:International Symposium on Tantalum and Niobium Proceedings.Oct.22nd-25th 2000,San Francisco,Califor- nia.USA:Published by Tantalum - Niobium International Study Center,40rue Washington,1050 Brussels,Belgium:329-336
    [4]崔志武,韦春才,李和太,等.铝电解电容器[M].北京:北京学苑出版社,1991:21-27
    [5]韦春才,董海青.铝电解电容器频率特性研究[J].沈阳工业大学学报,2000,22(6):506.
    [6]陈颖.电子材料与元器件[M].北京:电子工业出版社,2003:27-38
    [7]史宝华,贾新章,张德胜.微电子器件的可靠性[M].西安:西安电子科技大学出版社,1999:85-98
    [8]李哲,张之圣,王文生.电子元器件的可靠性[M].天津:天津大学出版社,1991:53-71
    [9]陈粤初,等.单片机应用系统设计与实践[M].北京:北京航空航天大学出版社,1991.57-64
    [10]ATMEL Databook.ATMEL Corp.,2000.5 ATMEL Application Note.ATMEL Corp.,2000.
    [11]堀仁孝.コンデンサ市场技术动向[J].NEC技报,1996,49(10):68
    [12]刘志亮.无引线片状固体电解质担电容器的研制[J].电子元件与材料.1995,Vol.14.No.1:26-29
    [13]钟景明,李春光,高勇等.片式钽电容器的研究现状与发展趋势[J].稀有金属快报,2003,11:1-3
    [14]C.Edward Mosheim.Tantalum and Niobium:A Review of Worldwide Industry Statistics[C]In:Intemational Symposium on Tantalum and Niobium Proceedings.Oct.22nd-25th 2000,San Francisco,Califormia,USA.Published by 2 Tantalum-Niobium International Study Center,40rue Washington,1050 Brussels,Belgium:6
    [15]#12
    [16]王文生.高频低阻抗片式固体电解电容的进展[J].电子元件与材料,1998,17(2):16
    [17]#12
    [18]#12
    [19]李永舫 导电聚吡咯的研究[J],高分子通报,2005年第4期:51-57
    [20]张庆武,周 啸,姜翠玲等.铝固体电解电容器电解质研究进展 I.TCNQ型铝固体电解电容器[J].电子元件与材料,2002 Vol.21 No.10:25-28
    [21]#12
    [22]Yoshikazu Noguchi,Yujiro Mixusaki,Isayuki Horio,et al.Technical Review of Tantalum High CV Powders for Tantalum Capacitors[C].In:International Symposium on Tantalum and Niobium Proceedings.2000,San Francisco,California,USA:Published by Tantalum-Niobium International Study Center,40rue Wash- ington,1050 Brussels,Belgium.47
    [23]万梅香.高技术有机高分子材料进展[M].北京:化学工业出版社,1994.3-4.
    [24]牛林,陈 晓,魏丰华,王浩,导电聚合物的结构和性能表征方法[J].功能高分子学报,2002 Vol.15 No.1:97-101
    [25]#12
    [26]唐劲松,王宝枕,王佛松等.聚苯胺的合成、结构、性能及应用[J].高分子材料科学与工程,1987,4(1):5-8
    [27]景遐斌,王利祥,王献红.导电聚苯胺的合成、结构、性能和应用[J].高分子学报,2005年,第5期:655-663
    [28]彭佳,王清华,孟大伟等.低阻抗聚苯胺铝电解电容器的研究[J].电子元件与材料2006Vol.25 No.4:14-17
    [29]Cui C Q,Ong L H,Tan T C,et al.Origin of the difference between potentiostatic and cyclic potential sweep depositions of polyaniline[J].J Electroanal Chem,1993,346:477-482.
    [30]Kalaji J M,Nyholm L,Peter L M.A microelectrode study of the influence of pH and solution composition on the electrochemical behaviour of polyaniline films[J].J Electroanal Chem,1991,313:271-289.
    [31]De Albuquerque Maranhao S L,Torresi R M,Anion and solvent exchange as a function of the redox states in polyaniline films[J].J Electrochem Soc,1999,146:4179-4182.
    [32]Dinh H N,Birss V I.Effect of substrate on polyaniline film properties:A cyclic voltammetry and impedance study[J].J Electrochem Soc,2000,147:3775-3784.
    [33]Pruneanu S,Csahok E,Kertesz V,et al.Electrochemical quartz crystal microbalance study of the infuence of the solution composition on the behaviour of poly(aniline) electrodes[J].Electrochim Acta,1998,43:2305-2323.
    [34] Palys B, Kudelski A, Stankiewicz A, et al. Influence of anions on formation and electroactivity of poly-2,5-dimethoxyaniline[J]. Synth Met, 2000, 108:111-119.
    
    [35] Cordova R, del Valle M A, Arratia A, et al. Effect of anions on the nucleation and growth mechanism of polyaniline[J]. J Electroanal Chem, 1994, 377:75-83.
    
    [36] Lippe J, Holze R. The anion-specific effect in the overoxidation of polyaniline and polyindoline[J]. J Electroanal Chem, 1992, 339:411-422.
    
    [37] Pinotti E, Sassella A, Borghesi A, et al. Electrical characterization of organic semiconductors by transient current methods[J]. Synth Met, 2001,122: 169-171.
    
    [38] Popkirov G S, Barsoukov E, Schindler R N. Electrochemical impedance spectroscopy of twin working electrodes bridged with conducting polymer layer[J]. Electrochim Acta, 1996, 40:1857-1862.
    
    [39] Agarwal G, Phadke R S. Correlations between morphology and conductivity properties of films ofpolyaniline[J].Adv Mater Opt Electron. 1999,9: 151-156.
    
    [40] Zeng X R, Ko T M. Structure-conductivity relationships of iodine-doped polyaniline[J]. J Poly Sci: Part B: Polym Phys, 1997, 35:1993-2001.
    
    [41] Sayed W M, Salem T A. Preparation of polyaniline and studying its electrical conductivity[J]. J Appl Poly Sci, 2000, 77: 1658-1665.
    
    [42] Wen L, Kocherginsky N M. Doping-dependent ion selectivity of polyaniline membranes[J].Synth Met, 1999, 106: 19-27.
    
    [43] Palys B, Kudelski A, Stankiewicz A, et al. Influence of anions on formation and electroactivity of poly-2,5-dimethoxyaniline[J]. Synth Met, 2000, 108:111-119.
    
    [44] Lippe J, Holze R. The anion-specific effect in the overoxidation of polyaniline and polyindoline[J]. J Electroanal Chem, 1992, 339:411-422.
    
    [45] Stilwell D E, Park S M. Electrochemical studies of growth and stability of polyaniline[J]. J Electrochem Soc, 1985, 132: C368-C374.
    
    [46] Stilwell D E, Park S M. Electrochemistry of conductive polymers:3, Some physical and electrochemical properties observed from electro-chemically growth polyaniline[J]. J Electrochem Soc, 1988, 135:2491-2496.
    
    [47] Hideo Yamamoto ,Masashi Oshima. Characteristics of aluminium solid electrolytic capacitors using a conducting polymer[J]. J Power Sources, 1996, 60: 173-177.
    
    [48] Jehara H ,Yoshikawa T, Hu Y ,et al Composition for forming electrolyte for solid electrolytic capacitor [P] .US-6042740,2000-08-28.
    [49]Li J,Zhang J Z,Geng Y H,et al.Polyaniline electrolytic capacitor[J].Synthetic Metals,1995,69:245-246.
    [50]Kudoh Y,Nishino A.Recent development in electrolytic capacitors and electric double layer Capacitors[J].Electrochemistry,2001,69(6):397-406.
    [51]Diaz A F,Castillo J I,Logan J A,et al.Electrochemistry of conducting polypyrrole films[J].J Electroanal Chem,1981,129:115-132.
    [52]Zhou M,Heinze J.Electropolymerization of pyrrole and electrochemical study of polypyrrole:1,Evidence for structural diversity of polypyrrole[J].Electrochim Acta,1999,44:1733-1748.
    [53]Inzelt G,Kertesz V,Nyback A S.Electrochemical quartz crystal microbalance study of ion transport accompanying charging-discharging of poly(pyrrole) films[J].J Solid State Electrochem,1999,3:251-257.
    [54]小岛洋一.高分子有机半导体固体电解コンデンサ[J].电子技术,1998,(4):91
    [55]#12
    [56]Yoshiniko Saiki,Kazuo Watanabe,ToshihikoNishiyama,et al.The History of Conductive Polymer Capacitor and Future Trends[C].In:International Symposium on Tantalum and Niobium Proceedings.Oct.22nd- 25th 2000,San Franxisco,California,USA:Published by Tan-talum -Niobium International Study Center,40rue Washington,1050 Brussels,Belgium.355-363
    [57]W.Knabe,H.G.Keck.Processing High-Cap Tantalum Powders for High CV Tantalum capacitors[C].Proceeding of 22nd Capacitor and Resistor Technology Symposium(CARTS),25-29 March 2002,190-193
    [58]Melody B J,Kinard J T,Lessner P M.Doped polyaniline solutions[P]U.S-5853794,1998-12-29.
    [59]张庆武,周啸,姜翠玲,等.铝固体电解电容器电解质研究进展Ⅱ导电聚合物型铝电解电容器[J].电子元件与材料,2002,21(11):24-27
    [60]孟晓荣,胡新婷,邢远清.噻吩类导电高聚物的研究进展.应用化工,2006.Vo.1 35No.7:549-553
    [61]Yokoyama T,Hiraoka K.Synthesis and properties of poly(2,5-thienylene)[J].J Poly Sci Polym Lett Ed,1980,18:2869-2873.
    [62]万梅香.导电高分子[J],高分子通报,1999,(3):47-5
    [63]方惠群,候士峰,陈洪渊.乙撑二氧噻吩在中性水溶液中的电化聚合及行为研究[J].化学学报,1995,53(7):710-715
    [64]Meng H,Perepichka D F,Wudl F.Facil solid-state synthesis highly conducting poly(ethylenedioxythiophene)[J].Ang Chem Int Ed,2003,42(6):658-661.
    [65]Meng H,Perepichka D F,Bendikov M,etal.Solid-state synthe of a conducting polythiophene via an unprecedented heterocyc coupling reaction[J].JAmChemSoc,2003,125(49):1515-15162.
    [66]Yamamoto T,Abla M.Synthesis of non-doped poly(3,4-ethylenedioxythiophene) and its spectroscopic data[J].Synth Met.1999,100(2):237-239.
    [67]KimYH,Kwon S K.Synthesis of an ovelhighly conjugated conducting polymers,JPolymSci PartA,1998;36(6):949-953
    [68]Schlick U,TeichertF,Hanack M,Electrochemical and spectro electrochemical investigations of small-bandage,pi-conjugated polymers and their precursors.Synth Met,1998;92(1):75-85
    [69]Park S M.Handbook of organic conductive molecules and polymers[M].Vol3,Chichester:Wiley,1997.
    [70]Chen X W,Inganas O.Three-step redox in polythiophenes:Evidence from electrochemistry at an ultramicroelectrode[J].J Phys Chem,1996,100:15202-15206.
    [71]Tanguy J.Baudoin J L,Chao F,et al.Study of the redox mechanism of poly-3-methylthiophene by impedance spectroscopy[J].Electrochim Acta,1992,37:1417-1428.
    [72]Ren.X.M,Pickup.P.G.Impedance of polypyrrole perchlorate polypyrrole poly(styrenesulfonate)bilayers[J].J Phys Chem,1993,97(16):3941-3943.
    [73]Corradi R,Armes S P.Chemical synthesis of poly(3,4-ethyleneioxythiophene)[J].Synth Met,1997,84(1-3):453-454.
    [74]YoshinoK,Hayashi S,Sugimoto R.Preparation and prop-erties of conducting heterocyclic polymer films by chemi-calmethod[J].Jpn JApplPhys,1984,23:L899-L903.
    [75]Groenendaal L B,Jonas F,Freitag D,etal.Poly(3,4-ethyleneioxythiophene) and its derivatives:Past,present,and future[J]Advance Materials,2000,12(7):481-493.
    [76]亢孟强,刘俊峰,郭志新等.导电高分子聚噻吩衍生物的研究进展[J].化工新型材料,2004,32(6):9-12
    [77]封伟.新型共轭导电聚合物的合成表征及其电学、光学性能研究[D].两安:西安交通大学.博士论文,2000:74-87
    [78]Tsukamoto J.Recent advances in highly conductive poly-acetylene[J].Adv Phys,1992,41(6):509-546.
    [79]Mc CulloughR D,LoweR D,JayaramanM,eta.l Design,synthesis,and control of conducting polymer architec-tures:Structurally homogeneous poly(3-alkylthiophenes)[J].JOrg Chem,1993,58: 904-912.
    [80]荣华,佟拉噶,蹇锡高,等.两种聚噻吩类新型电致发光材料的合成与性能[J].功能材料,2004,(35):295-299
    [81]陈贴帜,王红山,吴锦屏,等.聚噻吩导电材料的合成[J].化工新型材料,1997,(8):15-18
    [82]Shi Jin,Gi Xue.Preparation of the derivate of polythio-phene[J].Macromolecules,1997,30(19):5753-5757.
    [83]汪帆,石高全,陈凤恩.可溶性聚苯并噻吩的电化学合成[J].高分子学报,2001,4(6):807-810
    [84]张志攀,石高全,吴旭峰.2-苯基噻吩的电化学聚合[J].高分子学报,2004,(1):140-144
    [85]Jinsong Liu,Ekaterina N,Kadnikova,et a.l Polythiophene containing thermally removable solubilizing groups en-hances the interface and the performance of polymer-titania hybrid solar cells[J].J Am Chem Soc,2004,126:9486-9487.
    [86]曹克广,田乃林.噻吩衍生物的结构和性能表征方法[J].精细石油化工,2002,1(6):40一42
    [87]Jan Prokes,IvoKrivka.Control of electricalproperties of polyaniline[J].Poly Inter,1997,43:117-125.
    [88]石家华,杨春和,高青雨,等.聚噻吩在离子液体中的电化学合成研究[J].化学物理学报,2004,17(4):503-507
    [89]姚诽,杨梅,刘平等.导电聚合物常用分析测试技术[J].新技术应用,2003,3(3):17-19
    [90]Pruneanu S,Csahok E,Kertesz V,et a.l Electrochemical composition on the behavior of polyanline electrodes[J].Electrochim Acta,1998,43:2305-2310.
    [91]牛林,陈晓,魏丰华,等.导电聚合物的结构和性能表征方法[J].功能高分子学报,2002,15:91-96
    [92]PopkirovG S,Barsonkov E,SchindlerR N.Electrochemi-cal impedance spectroscopy of twin working electrodes bridged with conducting polymer layer[J].Electrochimica Acta,1996,40:1857-1862.
    [93]Jousseaume V,MorsliM,Bonnet A,et a.l X-ray photo electron spectroscopy of conducting polyaniline and polya-niline-polystyrene blends[J].J Appl Poly Sc,i 1998,67:1209-1214.
    [94]Kudoh Y,Nishino A.Recent development in electrolytic capacitors and electric double layer capacitors[J].Electrochemistry,2001,69(6):397-406.
    [95]王文生.高频低阻抗片式固体电解电容的进展[J].电子元件与材料,1998,17(2):16
    [96]杨红生,周啸,楚红军.导电高分子钽电解电容器的研究进展,电子元件与材料,2003年V ol.22 No.7:33-38
    [97]#12
    [98]吴炜,王绳武,路亦景.有机半导体固体铝电解电容器[J].电子元件与材料,1983,2(5):36-38
    [99]魏立君.60种常用集成电路的应用[M].北京:人民出版社,1994.282
    [100]Kakuma K,Mizutomi K,Niwa S.Solid electrolytic capacitor with organic semiconductor and method of manufacturing the same[P].US-5117333,1992-05-26.
    [101]Suenaga K,Kawakubo T,Niwa S,et al.Process for producing solid electrolyte capacitor[P].US-5766271,1998-06-16.
    [102]陈国光,曹婉真.电解电容器[M].西安:西安交通大学出版社,1994:54-79
    [103]刘霖,朱绪飞,庞志成.电容器贮存电荷的能力与可靠性[J].电子元件与材料,2003,22(4):46-49
    [104]Jonas Friedrich,Heywang Gerhard,Schmidtberg Werner,et al.Polythiophenes,process for their preparation and their use[P],EP:339340,1989-04-08.
    [105]Jonas Friedrich,Krafft Werner,New polythiophene dispersions,their preparation and their use[P],EP:440957,1990-12-20
    [106]V.N.Gogte,L.G.Shah,B.D.Tilak,K.N.Gadekar,M.B.Sahasrabudhe,et al.Tetrahedron,1967,23,2437
    [107]F.Jonas,J.T.Morrison,3,4-polyethylenedioxythiophene(PEDT):Conducting coating technical applicationa and properties,,Synthetic Metals 85(1997) 1397-1398.Bayer AG,Z F,Beb.R79 Rhein Uferstrasse,D47812 Krefeld,Germany Bayer Corp,100 Bayer Road,Pittsburgh,PA 15205-9741,USA,
    [108]M.L.Blohm,J.E.Pickett,P.C.Vandort,et al.US:5111327 1992-05-05.
    [109]C.Wang,J.L.Schindler,C.R..Kannewurf,et al.Chem Mater,1995,7(1),58-68.
    [110]R.Corradi,S.P.Armes,Chemical synthesis of poly(3,4-ethylenedioxythiophene),Synth Met,1997,84(1-3):453-454.
    [111]Krafft Werner,Jonas Friedrich,Muys Bavo,EP:564911,1993-03-24.
    [112]R.Conner,K.Folkers,H.Adkins,the preparation of copper-chromium oxide catalysts for hydrogenation[J],J.Am.Chem.Soc.1931,53(5):2012-2012.
    [113]Shirakawa H,Louis E J,MacDiarmid A G,etal.Synthesis of electrically conducting organic polymers:Halogen derivatives of polyacetylene,(CH)x[J].JChem Commun,1977,(16):578-580.
    [114]蒋亚东.电子聚合物气、湿敏特性及机理研究[D],成都,电子科技大学博士论 文,2001:41-52
    
    [115] Groenendaal.L.B,Zotii.G,Aubert.P.H,etal. Electrochemistry poly(3,4-alkylenedioxythiophene) derivatives [J]. Adv Mate 2003,15(11):855-879.
    
    [116] I.Winter, C.Reesc, J.Hormes, G.Heymes, F.Jonas, et al. The thermal ageing of poly (3,4-ethylenedioxythiophene).An investigation by X-ray absoption and X-ray photoelectron spectroscopy, Chemical Physics 194(1995) 207-213
    
    [117] Yamato H, Ohwa M, Wernet W. Mechanical, electrochemical and optical properties of poly(3,4-ethylenedioxythiophene)/sulfat poly-(a-hydroxyethers)compositefilms[J].ElectrochimAct 1997,42(16):2517-2523.
    
    [118] Yamato H,Kai K,Ohwa M,etal. Synthesis of free-standing p(3,4-ethylenedioxythiophene) conducting polymer films on a pilot scale[J].Synth Metal,1996,83(2):125-130.
    
    [119] T.Yamamoto, M.Abla, Synthesis of non-doped poly(3,4-ethylenedioxythiophene) and its spectroscopic data, Synth Met. 1999, 100, 237
    
    [120] G.Heywang , F..Jonas , L.Schrader, etal.Synth, Met.1991 ,41-43,813 , c[9]BayerAG,Eur.patent 339-340, 1988
    
    [121] Jonas Friedrich,Krafft Werner.New polythiophene dispersion their preparation and their use[P]. EP 440957,1990-12-20.
    
    [122] F.Larmat, J.R.Reynolds, Y.J.Qiu, et al.Polypyrrole as a solid electrolyte for tantalum capacitors, Synth Met, 1996, 79(3), 229-233.
    
    [123] Jonas Friedrich, Lerch Klaus , Guntermann Udo, EP: 825219, 1998-02-25.
    
    [124] H.Yamato, M.Ohwa, W..Wernet, et al.Mechanical electrochemical and optical properties of poly(3,4-ethylenedioxythiophene) composite films, Electrochim Acta, 1997, 42(16), 2517-2523.
    
    [125] Yin W, Ruckenstein E Souble polyaniline co-doping with dodecyl benzene sulfonic acid and hydrochloric acid [J] .Synth Met 2000 ,108: 39-46.
    
    [126] Fan J, Wan M, Zhu D, et al. Synthesis, characterization, and physical properties of carbon nanotubes coated by conducting polypyrrole [J]. J Appl Polym Sci, 1999, 74: 2605-2610.
    
    [127] Sabatani E, Gafni Y, Rubinstein I. Morphology control in electrochemical growth conducting polymer-films 3: A comparative study of polyaniline films on bare gold and on gold pretreated with p-aminothiophenol[J]. J Phys Chem, 1995, 99: 12305-12311.
    
    [128] Dinh H N, Birss V I. Characteristics of the polyaniline anodic pre-peak[J]. Electrochim Acta,1999,44:4763-4771.
    
    [129] Dinh H N, Ding J, Xia S J, et al. Multi-technique study of the anodic degradation of polyaniline films[J]. J Electroanal Chem, 1998,459: 45-56.
    
    [130] Stejskal J, Sapurina I, Prokes J, et al. In-situ polymerized polyaniline films[J]. Synth Met,1999, 105: 195-202.
    
    [131] Acker D S, Hertler WR. Substituted quinodimethans I preparation and chemistry of 7,7,8,8-tetracyanoquinodimethan [J]. J Am Chem Soc,1962, 84: 3370-3374.
    
    [132] Yoshimura S, Ito Y, Murakami M. Thin-film solid electrolytic capacitor and a method of making the same [P]. US-3898539, 1975-08-05.
    
    [133] Kyokane J, Yoshino K. Organic solid capacitor with conducting thin films as electrolyte by ion-beam-assisted depositon[J]. J Power Sour, 1996, 60:151-155.
    
    [134] Poupard D, Bureau J M. Method for the impregnation of electrolytic capacitors with tetracyanoquinodimethane salts [P]. US-4855022,1989-08-08.
    
    [135] Niwa S. Solid electrolyte capacitor [P]. US-4580855, 1986-04-08.
    
    [136] Niwa S, Taketani Y. Development of new series of aluminium solid capacitors with organic semiconductive electrolyte (OS-CON) [J]. J Power Sour, 1996, 60: 165-171.
    
    [137] Tsuchida E, Ohno H, Kobayashi N. Conductivity and thermal properties of N-alkylated-heterocyclic compound-TCNQ complex salts and application to organic capacitor[J].Electrochim Acta, 1987, 32(8): 1197-1201.
    
    [138] Tsuchiya S, Kudoh Y, Kojima T, et al. Solid electrolytic capacitor[P].US-4729844,1988-08-08.
    
    [139] Shindo S, Aoyama T, Yamaguchi Y, et al. Charge transfer complex and solid electrolytic capacitor employing the same [P]. US-4982312,1991 -01-01.
    
    [140] Ito T, Shimada A, Uchiyama K. Organic semiconductor electrolyte capacitor and process for producing the same [P]. US-4656560,1987-04-07.
    
    [141] Theo Konig, Dietmar Fister.Fine-particle metal powders [P].US-5407458, 1995-04-18.
    
    [142] Davis R D, Theodore N, Meyer R L.Methon and apparatus for production of metallic powders [P]. US-3738824, 1973-06-12.
    
    [143] Fife J A.Flaked tantalum powder and method of some flaked tantalum powder[P].US-5580367, 1996-12-03.
    
    [144] Oshorn D H, Basely R J.Production of highly reflective metal flak [P] US-4486225,1984-10-04.
    
    [145] Getz M F.Method for improving handling properties of a flaked tantalum powder composition [P]. US-4555268, 1985-11-26.
    [146]Fife J A.Cylindrical metal fibers made from tantalum columbium,and alloys therefom[P].US-5284531,1994-02-08.
    [147]Chai Liyuan,Zhong Haiyun.Influence of alkali hailide additions on tantaluim powder producton[J].Trans Nonfeerous Met Soc,1996,6(3):36-39.
    [148]钟海云,柴立元.氟钽酸钾钠还原体系特性[J].中南工业大学学报,1998,29(6):542-546
    [149]潘伦桃,李荣德,张巧元.16V-3200μ F·V/g高比容钽粉的研究[A].稀有金属冶金学会1996年年会论文集(钽铌部分)[C].宜昌:稀有金属冶金学会钽铌冶金专业委员会编辑委员会,1996.98-106
    [150]Reinhard Hahn.Method of producing porous metal bodies for use in the electronic industry[P].US-4154609,1979-03-15.
    [147]Schiele K,Manley V,Rerat F.High charge,low leakage tantalum powders[P].US-4544403,1985-10-01.
    [151]Bates T.In situ phosphorus addition to tantalum[P].US-4356028,1982-10-26.
    [152]Tomoo Izumi.Tantalum powder and method of making[P].US-4645533,1987-02-24.
    [153]Tripp B,Hildreth W.Capacitor grade tantalum powder[P].US-4957541,1990-09-18.
    [154]曹寒松.高比容钽粉物理参数对其比电容的影响[J].稀有金属与硬质合金1999年总第139期:6-11
    [155]张声飞.高频固体钽电解电容器电性能与钽粉[J].电子元件与材料,1999Vol.18No.139-43
    [156]王积祥.国内外电容器级祖粉主要性能对比[J].稀有金属与硬质合金,1990年,总期第100期:25-31
    [157]杜杨,陈泳,刘宗才.氧化膜的形成机理与电容器的可靠性[J].电子元件与可靠性,2002(6):13-17
    [158]KERREC,DEVILLIERS D,GROUL H,etal.Dielectric properties of anodic oxide films on tantalum[J].Electrochimica Acta,1995,40(6):719-724.
    [159]陆胜,刘仲娥,梁正书等.Ta2O5介质膜性能对液体钽电容器性能的影响[J].压电与声光[J].2006.Vol.28 No.4:43-46
    [160]高观志,黄维,固体中的电输运[M],北京:科学出版社,1991:170-184
    [161]Ross S D.Organic semiconductor solid capacitor[P].US-3214648,1961-06
    [162]童国平,杨慧,杨建荣等.不同边界条件下导电高分子电子结构的研究[J].高分子学报2003年第3期:374-380
    [163]孙亦宁.中间层对薄膜附着强度的改进[J],真空与低温,第5卷第2期:70-77
    [164]杨育珍,何胜刚.有机硅烷偶联剂及其应用[J].化学工程师,1994,5(43):40-42
    [165]张明宗,管从胜,王威强.有机硅烷偶联剂在金属表面预处理中的应用[J].腐蚀科学与防护技术,2001,3(13):96-99
    [166]何华琴,王霞,吴超一,加聚酰亚胺薄膜阻挡层的聚乙烯中空间电荷分布特性的研究[J].绝缘材料,2005 No.535:35-38
    [167]徐燕莉.表面活性剂的功能[M].北京:化学工业出版社,2000:203-211
    [168]张明宗 管,从胜,王威强.有机硅烷偶联剂在金属表面预处理中的应用[J].腐蚀科学与防护技术,2001,3(13):96-99
    [169]段洪东,李鹏,徐桂云.有机硅烷偶联剂对丙烯酸酯胶黏剂黏接作用的研究[J].中国胶黏剂,2000,9(3):15-17
    [170]丁新更,杨辉,汪铭.不锈钢表面含银有机硅烷偶联剂抗菌耐蚀薄膜制备和性能[J].材料科学与工程学报,2004,10(5):663-665
    [171]沈玺,高雅男,徐政.硅烷偶联剂的研究与应用[J].上海生物医学工程,2006(1):14-16
    [172]马一平.提高水泥石集料界面黏结强度的研究[J].建筑材料学报,1999,3(1):29-32.
    [173]肖庆一,钱春香,解建光.硅烷偶联剂改善沥青混凝土性能及油石界面试验研究[J].东南大学学报:自然科学版,2004,7(4):485-489
    [174]沈淑娟.波谱分析法[M].上海:华东化工学院出版社,1992:73-91
    [175]吴秀梅,吕笑梅,朱劲松.应力对铋系铁电薄膜性能影响的研究进展[J].物理学进展.2006 Vol.26,No.3:4-8
    [176]江磊,沈烈,郑强,聚合物的热膨胀[J].功能材料,2004年,第2期,(35)卷:142-144
    [177]马德柱.聚合物的结构与性能(第二版)[M].北京:科学出版社,1995.465-474
    [178]钱保功.聚合物的转变与松弛(第一版)[M].北京:科学出版社,1986.262-266
    [179]安涛,高勇,李春光,张如亮.片式电容器浪涌及老化测试系统的设计与实现[J].仪器仪表学报.2005年,第26卷,第8期:21-25
    [180]李哲,祖光裕,张之圣等.电子元器件的可靠性[M].天津:天津大学出版社,1991:56-72
    [181]HITACHI A1C公司technical information.正确使用钽电容器[J].电子元件与材料,2002,21(6):32-34.
    [182]GJB 63 B一2001,有可靠性指标的固体电解质钽电容器总规范「S]
    [183]曲喜新.固体担电解电容器的失效机理[J].电子元件与材抖 1988 Vol.7 No,4:1-11
    [184]卢昆祥.电子产品可靠性试验[M].天津:天津科学技术出版社,1987.11-32
    [185]陈炳生.电子可靠性工程[M].北京:国防工业出版社,1987:158

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700