用户名: 密码: 验证码:
Zn-Fe-Ti三元体系相关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热浸镀锌是一种经济有效而广泛应用于钢铁材料防腐的工艺。但含硅钢的热浸镀锌由于圣德林效应导致镀层质量变差,一直是个工艺技术的难题。目前常用的方法是在锌池中加入合金元素,其中Ti是一种有效的元素。此外,随着汽车工业的发展,高强钢热浸镀锌发展迅速。但IF钢中的Ti对Fe-Zn反应影响的作用机理有待进一步研究。
     相图信息对优化材料加工工艺,指导合金设计具有重要作用。Zn-Fe-Ti-Si和Zn-Fe-Ti-Al四元体系的相关系研究对于理解Ti对硅反应性控制的机理,理解IF钢热浸镀过程,设计相应的浸渡合金和工艺具有重要的作用。作为系统研究的基础,在工作中实验测定了Zn-Fe-Ti三元系的相关系。
     本研究工作采用平衡合金法,辅以扩散偶法,利用扫描电子显微镜和能谱仪(SEM-EDS)以及X-射线衍射(XRD)等分析手段,实验测定了Zn-Fe-Ti三元系600℃和750℃的等温截面。实验结果表明:在这两个等温截面中,都只发现了3个钛锌化合物,分别是TiZn_3、TiZn_和Ti_2Zn,并且都存在三元相T相。在600℃的等温截面中,T相与除α-Fe、Ti_2Zn、α-Ti和β-Ti以外的所有相都平衡。在富锌角实验发现了7个三相区:T+TiZn_3+η-Zn,T+TiZn+TiZn_3,T+δ+η-Zn,T+δ+Γ,T+TiZn+TiFe,T+TiFe_2+TiFe和T+TiFe_2+Γ。根据Vassilev等提出的Ti-Zn二元相图,TiZn_7的转变温度为609℃,但是实验中并未发现TiZn_7,故推断TiZn_7的转变温度低于600℃。T相的成分范围较小较窄,但其铁含量和钛含量,特别是铁含量都较450℃时高。Ti在η-Zn中的溶解度很小,几乎为零,而其在δ和Γ中有少量的溶解度。Fe在TiZn_3和TiZn_中有较大的溶解度,最大溶解度分别达到了3.8 at.%和8.2 at.%。Zn在TiFe和TiFe_2中有一定溶解度,且在TiFe_2中的溶解度较TiFe中的大。在750℃的等温截面的富锌角,实验发现了6个三相区:T+Ti Zn3+η-Zn,T+TiFe_2+η-Zn,T+TiZn_3+TiFe,TiZn+TiFe+TiZn_3,T+TiFe_2+TiFe和TiFe_2+Γ+α-Fe。Massalski的研究表明,TiZn_3的转变温度为650℃,在本工作中发现750℃时仍存在TiZn_3。Ti在η-Zn中的溶解度很小,几乎为零。Fe在TiZn_3中的溶解度很小,但在TiZn_中仍有较大的溶解度。Zn在α-Fe、TiFe和TiFe_2中都有较大溶解度,其在TiFe中的溶解度较在TiFe_2中的大。
Hot-dip galvanizing is an economical and effective method widely used for protecting steel and iron substrates from corrosion. Galvanizing Si-containing steels is a technical challenge because of the Sandlin effect which will result in bad quality of the coating. The addition of alloy elements can inhibite the Si reactivity, Ti is a candidate element. In addition, with the development of the auto industry, galvanizing high-strength steel has developed quickly. However, the effects of Ti in IF steel on Fe-Zn reaction remains to be further studied.
     The information of phase diagram is of great importance for material processing and alloy designing. The research on the phase equilibria of Zn-Fe-Ti-Si and Zn-Fe-Ti-Al quaternary system is helpful for understanding of the mechanism how Ti control the Si reactivity and the process of galvanizing IF steel, and designing appropriate dip alloy and technology. As the basis of system study, the phase equilibria of Zn-Fe-Ti ternary system has been experimentally determined in this paper.
     In present work, the isothermal sections of Zn-Fe-Ti ternary phase diagram at 600°C and 750°C are experimentally constructed by equilibrated alloys and diffuse couple, using scanning electron microscopy coupled with energy dispersive x-ray spectroscopy (SEM-EDS) and x-ray diffraction (XRD). The results show that: In these two isothermal sections, three Ti-Zn compounds named TiZn_3、TiZn_ and Ti_2Zn and a ternary T phase are found. In the isothermal section at 600°C, the T phase equilibriums with all the phases around it exceptα-Fe、Ti_2Zn、α-Ti andβ-Ti. There are seven three-phase regions were determined experimentally in the zinc-rich corner of the isothermal section, namely T+TiZn_3+η-Zn, T+TiZn+TiZn_3, T+δ+η-Zn, T+δ+Γ, T+TiZn+TiFe, T+TiFe_2+TiFe and T+TiFe_2+Γ. According to the Ti-Zn binary phase diagram put forward by Vassilev, the transition temperature of TiZn_7 is 609°C, but it was not found in the experiment. Thus, it is inferred that the transition temperature of TiZn_7 is lower than 600°C. The range of T phase composition is narrow, but the amount of iron and titanium, especially the iron conternt of T phase is higher than these at 450°C. The solubility of Ti inη-Zn phase is small, or almost zero, while it has a small amount of solubility inδphase andΓphase. Fe has a greater solubility in TiZn_3 and TiZn_, the largest solubility is separately the 3.8 at.% and 8.2 at.%. Zn has a certain solubility in TiFe and TiFe_2, and it’s solubility in TiFe_2 is larger than TiFe. There are seven three-phase regions were determined experimentally in the zinc-rich corner of the isothermal section at 750°C, T+TiZn3+η-Zn , T+TiFe_2+η-Zn, T+TiZn3+TiFe, TiZn+TiFe+TiZn3, T+TiFe_2+TiFe and TiFe_2+Γ+α-Fe. Massalski’s studies have shown that the transition temperature of TiZn3 is 650°C, but we still find TiZn3 at the experimental temperature 750°C. The solubility of Ti inη-Zn phase is small, or almost zero. Fe has a low solubility in TiZn3, while it still has a high solubility in TiZn. Zn has a large solubility both in TiFe and TiFe_2, especially in TiFe.
引文
[1]陈菡.镀锌防腐工艺[J].钢铁,2007,43(7).
    [2]袁训华,何明弈,王胜民,等.热镀锌渣的形成原因及回收工艺[J].云南冶金,2007,36(1):32-35.
    [3]顾国成,刘邦津.热浸镀[M].北京:化学工业出版社,1988.1-6.
    [4] Sandelin R W. Galvanizing characteristics of different types of steel[J]. Wire and Wire Products, 1940, 15(11-12): 655-676.
    [5]李九岭.带钢连续热镀锌[M].北京:冶金工业出版社,1995:21-47.
    [6] Marder A R. Metallurgy of zinc-coated steel[J]. Progress in Materials Science, 2000, 45(3): 191-271.
    [7]史良权.热镀铝锌合金钢板[J] .世界钢铁,2003,3(3):4-11.
    [8] Willis D J. Developments in hot dipped metallic coated steel processing[J]. Materials Forum, 2005, 29(1): 9-16.
    [9]柯伟.中国腐蚀调查报告[M].北京:化学工业出版社,2003.2-10.
    [10]钱苗根.材料表面技术及其应用手册[M].北京:机械工业出版社,1998.25-29.
    [11]李鑫,杜鸿雁,魏绪钧,等.热海水中热浸镀用锌及锌铝合金的电化学性能[J].东北大学学报,2005,26(11):1102-1109.
    [12]中国腐蚀与防护学会《金属防腐蚀手册》编写组,金属防腐蚀手册[M].上海:上海科技出版社,1989:78.
    [13]李九龄.带钢连续热镀锌[M].北京:冶金工业出版社,1980.1-48
    [14]魏世丞,朱晓飞.热镀锌钢丝助镀剂的研究[J].有色矿冶,2002,18(3):33-36.
    [15] X. Su, N.-Y. Tang, J.M. Toguri. Thermodynamic evaluation of the Fe-Zn system[J]. J. Alloys and Compounds, 2001, 325 (1): 129-136.
    [16] Jordan C E, Marder A R. Fe-Zn phase formation in interstitial-free steels hot-dip galvanized at 450°C. Part II. 0.20 wt% Al-Zn baths[J]. J Mater Sci, 1997, 32: 5603-5610.
    [17] Massalski T B. Phase Diagrams[M]. Ohio: ASM Metals Handbook, 1992. 206-207.
    [18] Mackowiak J, Short N R. Metallurgy of Galvanized Coatings[J]. International Metals Reviews, 1979, 24(1): 1-19.
    [19] Jordan C E, Marder A R. Fe-Zn phase formation in interstitial-free steels hot-dip galvanized at 450°C. Part II. 0.20 wt% Al-Zn baths[J]. J Mater Sci, 1997, 32: 5603-5610.
    [20] J. Mackwiak, N.R. Short. Metallurgy of galvanized coatings [J]. International Metal Reviews.1979.24(1):1-19.
    [21]车淳山,卢锦堂,陈锦红,等.热镀锌中圣德林效应微观机理的解释模型[J].材料保护,2004,37(8):26-28.
    [22] J. H. Selverian, A. R. Marder, and M. R. Notis. The Effects of Silicon on the Reaction between Solid Iron and Liquid 55 Wt Pct Al-Zn Baths [J]. Metallurgical Transactions A 1989 20A: 543-555.
    [23]史良权.热镀铝锌合金钢板[J] .世界钢铁,2003,3(3):4-11.
    [24] Chen R Y, Willis D J. The behavior of Silicon in the solidification of Zn-55%Al-1.6%Si Coating on steel[J]. Metallurgical and Materials Transactions A, 2005, 35A: 117-128.
    [25]吴海江,卢锦堂,孔纲.热镀锌钢表面铈盐与硅烷处理后的额耐蚀性能[J].腐蚀与防护,2007,28(7):353-356.
    [26] LU Jin-tang, Wu Hai-jiang, Kong Gang. Growth and corrosion behavior of rare earth film on hot-dip galvanized steel[J]. Transactions of Nonferrous Metals Society of China,2006,16:1397-1401.
    [27] Allegra Louis K, et al. United State Patent: 4287009,1981.
    [28] Shah S R, et al. The Structure and Deformation Behavior of Zinc-rich Coatings on Steel Sheet [J]. Journal of Materials Engineering and Performance, 1996, 5 (5): 601~608).
    [29]陈秀芳,等.汽车用热镀锌板镀层结构[J].东北大学学报,1996,16 (3): 333~336.
    [30] Valdermar Furdanowicz, Ramadeva Shastry C. Distribution of Aluminum in Hot-dip Galvanized Coatings [J]. Metallurgical and Materials Transactions, 1999,30A(Dec): 3031~3043.
    [31] Toussaint P, et al. Intermetallic Particles in Continuous Hot Dip Galvanising Baths at Aluminum Concentrations between 0.1 and 4.5% [J]. Ironmaking and Steelmaking, 1995, 22(6):498~501.
    [32] Jordan C E, Marder A R. Alloy. Layer Growth During Hot-dip Galvanizing at 450°C [A]. Galvatech’95 Conference Proceeding [Proc. Conf.], Chicago Illinois, USA. 319~325.
    [33] Jordan C E, Marder A R. Effect of Substrate Grain Size on Iron zinc Reaction Kinetics during Hot-dip Galvanizing Steel Sheets [J]. Metallurgical and Materials Transaction A. 1997, 28A(Dec): 2683~2694.
    [34] Hiroyuki Ohtsubo, et al. Crystallography of Intermetallic Interface Layers in Hot-dip Galvanizing Steel Sheets [J]. ISIJ, International, 1996, 36(3):317~323.
    [35] Farid Hanna, Nabil Nassif, Factors Affecting the Quality of Hot-dip-galvanized Steel Sheet [J]. Surface Technology, 1984, (21):27~37.
    [36]魏绪钧,等.稀土在热镀锌中的应用[J].稀土,1992, 13(2):46~50.
    [37] Verdun H Farnsworth, et al. United State Patent:5096666,1992.
    [38]刘武明.热镀锌生产问题解答[J].材料保护. 1991, 24(7): 43~45.
    [39] Thomas H Cook, Timothly A Storbeck. Aluminum Control in Galvanizing Kettle Zinc [J]. Metal finishing, 1986 (March), 61~63.
    [40]魏世承,朱晓飞,魏绪钧.添加铝和钛对热镀锌层的影响[J].材料保护,2003,36(9):28.
    [41]杜艳,夏才俊,李小曼.添加Ti元素对热浸镀锌钢板的影响
    [42]闫瑞华,张克,孙虎元,孙立娟,刘增文.添加钛元素对热浸镀锌层性能的影响.研究报告.
    [43]吴俊琳,余仲兴,朱永达.微量添加元素对热镀锌层性能的影响[J].上海有色金属,2001,22(2):54-58.
    [44]王利,袁明生,刘建民,赵子苏,毛卫民.钛对高强度Nb+Ti-IF冷轧罩式炉退火钢板性能的影响[J].钢铁,1998,33(9):42-44.
    [45] Culcasia J D, Sere P R, Elsner C I, et al. Control of the growth of zinc-iron phases in the hot-dip galvanizing process [J]. Surf Coat Techn,1999,122:21.
    [46]赵显欧.稀土改善锌基合金抗蚀性的实验研究[J].中国稀土学报,1992,10(3):243.
    [47]周玉,武高辉.材料分析测试技术[M].哈尔滨工业大学出版社,2007. 80-88.
    [48]周玉.材料分析方法[M].北京:机械工业出版社,2004.59-78,238-246.
    [49] Sundman B, Jansson B, Andersson J O. Thermo-Calc Databank System[J]. Calphad. 1985, 9(2): 153-190.
    [50] Andersson J O, Jansson B, Sundman B. Thermo-Calc: A Data Bank for Equilibria and Phase Diagram Calculations[J]. CODATA Bulletin, 1985, 58: 31-35.
    [51] Bale C W, Pelton A D, Thomposon W T. FACT(Facility for the Analysis of Chemical Thermodynamics)[M]. Montreal: Royal Military College, 1996. 1-500.
    [52] J.Z. Schramm. Metallkde, 1938, 30: 122.
    [53] Ortrud Kubaschewski. Iron-Zinc[M]. Iron-Binary phase diagram, Springer -Verlag, Berlin, 1982: 172-175.
    [54] A.R. Marder. The metallurgy of zinc-coated steel[J]. Progress in Materials Science 45 (2000):191~271
    [55] G.P. Vassilev, X.J. Liu, K.Ishida. Reaction kinetics and phase diagram studies in the Ti-Zn system[J]. Journal of Alloys and Compounds, 2004, 375: 162-170.
    [56] S.H. Jeon, Han’guk Pyomyon Konghak Hoechi, 1997, 30: 320(in Korean).
    [57] T. Gloriant, G. Reumont, P. Perrot. Z. Metallkd. 1997, 88: 539.
    [58] G. Reumont, T. Gloriant, P. Perrot. J. Mater. Sci. Lett., 1997, 16: 62.
    [59] G.P. Vassilev, E.S. Dobrev, J.-C. Tedenac, T. Czeppe. In: Proceedings of the VIIIth Seminar on Diffusion and Thermodynamics of Solids, 4-6 September 2002, Brno, Czech Republic.
    [60] J. Murray. Bull. Alloy Phase Diagram. 1984, 5(1): 52.
    [61] Thaddeus B. Massalski. Zn-Ti phase diagram[M]. Binary alloy phase diagrams, 1990(3): 3501.
    [62] M. Saillard, G. Develey, C. Becle, J.M. Moreau, D. Paccard, Acta Crystallogr. B37(1981)224.
    [63] X-A. Chen, W. Jeitschko, M. Danebrock, Ch. Evers, K. Wagner, J. Solid State Chem. 118 (1995) 219.
    [64] T. Massalski, CD ROM: Binary Alloy Phase Diagrams, ASM International, OH, USA, 1996.
    [65] W. Heine, U. Zwicker, Z. Metallkd. 53 (1962) 380.
    [66] G.P. Vassilev, X.J. Liu, K. Ishida. Reaction kinetics and phase diagram studies in the Ti-Zn system[J]. J. Alloys and Compounds, 2004, 375: 162.
    [67] G.P. Vassilev. Contribution to the zinc-rich side of the Ti-Zn system[J]. Z. Metallkd., 2004, 95 (9): 813.
    [68] Thaddeus B. Massalski. Fe-Ti phase diagram[M]. Binary alloy phase diagrams, 1990(1): 1785.
    [69] T. Gloriant, G. Reumont and P. Perrot. The Fe-Zn-Ti system at 450°C[J]. Z. Metallkd., 1997, 88 (7): 539.
    [70] Xianhui Tang, Fucheng Yin, Xinming Wang, Jianhua wang, Xuping Su and Nai-yong Tang. The 450°C Isothermak Section of the Zn-Fe-Ti system [J]. JPEDAV(2007)28:355-361.
    [71] R. Swalin, Thermodynamics of solids, Wiley, London, 1961, p.316.
    [72] I. Barin, Thermochemical Data of Pure Substances, PartⅡ, VCH Verlags, Weinheim, 1993, p. 1739.
    [73]朱中喜,吴煜,苏旭平. Zn-Fe-Ti体系中三元新相T的晶体结构研究[J].湘潭大学自然科学学报Vol. 32 No. 2 Jun.2010: 44-47.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700