用户名: 密码: 验证码:
Sm金属富勒烯的合成、分离、结构和衍生
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文通过电弧放电法合成配合二氯苯超声提取,并进一步利用HPLC分离得到了一系列异构体纯的含Sm金属富勒烯,其中包括分子式为Sm@C_(2n)(n=40-42,44-47)的单金属富勒烯和分子式为Sm_2@C_(2n)(2n=88,92,104)的双金属富勒烯。对分离得到的金属富勒烯进行了LDI-TOF-MS和UV-Vis-NIR表征。利用扩散方法培养出Sm_2@C_(104)(Ⅰ)与Ni(OEP)的共晶,通过单晶X-射线衍射确定了Sm_2@C_(104)(Ⅰ)的结构。对Sm_2@C_(104)(Ⅰ)的分子轨道能级进行了理论计算。研究了部分Sm金属富勒烯的反应活性。
     分离得到的单金属富勒烯中有8种新的Sm金属富勒烯,即Sm@C_(82)(Ⅰ)、Sm@C_(88)、Sm@C_(90)(Ⅰ-Ⅳ)、Sm@C_(92)、Sm@C_(94)。其中Sm@C_(90)(Ⅲ)的UV-Vis-NIR吸收光谱与文献报道的含Ca、Eu、Yb的+2价金属富勒烯都不相同,可能是一种不同的碳笼。另外七种Sm单金属富勒烯的UV-Vis-NIR吸收光谱分别与某种已经报道的Ca、Eu、Yb单金属富勒烯相似。
     对比分离得到的Sm_2C_(88)、Sm_2C_(92)和Sm_2C_(104)(Ⅰ-Ⅲ)与文献报道的双金属富勒烯、碳化物型金属富勒烯、TNT型金属富勒烯的UV-Vis-NIR吸收光谱,发现Sm_2C_(88)、Sm_2C_(92)和Sm_2C_(104)(Ⅱ)的吸收与文献报道的M_2C_(90)(Ⅱ)(M=Dy,Er)、M_2C_(94)(Ⅰ)(M=Dy,Er,Gd)、Gd_2C_(106)相似,其结构应为双金属富勒烯而非碳化物型金属富勒烯,碳笼内的Sm以+2价存在。
     Sm_2@C_(104)(Ⅰ)·2Ni(OEP)单晶X-射线晶体学研究结果显示,碳笼为符合IPR规则的D_(3d)(822)-C_(104)。该碳笼为扁平形,两个Sm原子分别处在碳笼的两端,靠近C_3轴,相距5.8322(7)(?)。D_(3d)(822)-C_(104)可以由I_h-C_(80)沿垂直于C_3轴的方向分开后插入24个碳原子得到,具有纳米胶囊特征。
     通过B3LYP密度泛函计算研究了D_(3d)(822)-C_(104)及其负4价离子的电子结构,发现D_(3d)(822)-C_(104)的HOMO和LUMO能级的差值比较小,不利于空心富勒烯生成,但其负四价离子的HOMO和LUMO能级差值显著增大,有利于生成金属富勒烯Sm_2@D_(3d)(822)-C_(104)。
     研究了Sm@C_(84)、Sm@C_(88)、Sm@C_(90)(Ⅳ)和Sm@C_(94)四种金属富勒烯与三苯基膦、丁炔二酸二甲脂的反应,通过HPLC分离得到四种金属富勒烯衍生的主产物,并进行了LDI-TOF-MS和UV-Vis-NIR表征。四个主产物都是单加成产物,其中Sm@C_(84)和Sm@C_(88)的主产物的UV-Vis-NIR吸收与原始的金属富勒烯不同,具有环丙烷结构;Sm@C_(90)(Ⅳ)和Sm@C_(94)的主产物的UV-Vis-NIR吸收与原始的金属富勒烯类似,具有开环桥式结构。
Arc discharging synthesis, o-dichlorobenzene extraction aided withultrasonication, and multi-step HPLC isolation were implied to Sm endohedralfullerenes. Complete Sm containing metallofullerene series Sm@C_(2n) (n = 40-42, 44-47) and Sm_2@C_(2n) (2n = 88, 92, 104) were obtained, and each individual product hasbeen characterized by LDI-TOF-MS and UV-Vis-NIR spectroscopy. Sm_2@C_(104)(Ⅰ)was successfully grown cocrystalizing with Ni(OEP), and X-ray diffraction studieswere performed on Sm_2@C_(104)(Ⅰ)·Ni(OEP) single crystal. Density functional theorycalculations have been carried out on the neutral and tetraanion forms of the D_(3d)(822)-C_(104) iosmer. Reactivities of some Sm endohedral fullerenes were also studied.
     There are 8 new mono-metallofullerenes among the endohedral fullerenessynthesized, which are Sm@C_(82)(Ⅰ), Sm@C_(88), Sm@C_(90)(Ⅰ-Ⅳ), Sm@C_(92), Sm@C_(94). It isinteresting that the UV-Vis-NIR spectrum of Sm@C_(90)(Ⅲ) are different from those ofall the divalent mono- metallofullerenes encapsulated Ca, Eu, Yb reported, indicatingits unique carbon cage. UV-Vis-NIR spectra of other new metallofullerenes resembleto M@C_(2n) (M = Ca, Eu, Yb) respectively.
     Di-metallofullerenes Sm_2@C_(88), Sm_2@C_(92) and Sm_2@C_(104)(Ⅰ-Ⅲ) were obtained。All UV-Vis-NIR spectra of Sm_2C_(2n) were also made careful comparison withcorresponding dimetallofullerenes, carbide and TNT metallofullerenes reported.Those of Sm_2C_(2n) (2n=88, 92, 104) resemble the relevant ones of M_2C_(2n+2) (M=Er, Dy,Gd). The comparability indicate that these Sm_2C_(2n) are Sm_2@C_(2n) but not Sm_2C_2@C_(2n),and Sm is divalent.
     Crystallographical studies of Sm_2C_(104)(Ⅰ)·2Ni(OEP) single crystal revealed thatSm_2@C_(104)(Ⅰ) utilized a D_(3d)(822)-C_(104) isomer. In this flat carbon cage, the two primarysamarium atoms are located near the threefold axis of the cage and are separated by5.8322(7) (?). D_(3d)(822)-C_(104) will be produced by cutting perpendicular to the C_3 axesof I_h-C_(80) the molecule, addition of 24 carbon atoms. Sm_2@C_(104)(Ⅰ) is a nanocaosule.
     DFT B3LYP level calculation was successively adopted to find out HOMO-LUMO band gaps of D_(3d)(822)-C_(104) and D_(3d)(822)-C_(104)~(4-). Band gap of D_(3d)(822)-C_(104) istoo small to form the neutral fullerene, but band gap D_(3d)(822)-C_(104)~(4-) is big enough toform Sm_2@D_(3d)(822)-C_(104)
     Reactivity of Sm@C_(84), Sm@C_(88), Sm@C_(90)(Ⅳ), Sm@C_(94) were studied throughreaction of endohedral fullerenes with dimethyl acetylenedicarboxylate andtriphenylphosphine. Four major products have been separated by HPLC andcharacterized by LDI-TOF-MS and UV-Vis-NIR spectra. The major products aremonoadducts. Difference between derivative of Sm@C_(84) and Sm@C_(88) with motherendohedral fullerenes suggest that these adducts possess a "closed" cyclopropylstructure, whereas similarity between derivative of Sm@C_(90)(Ⅳ) and Sm@C_(94) withmother metallofullerenes indicate these adducts have ring-opened type structure.
引文
[1]. H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, R. E. Smalley. C_(60):Buckminsterfullerene. Nature, 1985, 318, 162.
    [2]. J. R. Heath, S. C. O'Brien, Q. Zhang, Y. Liu, R. F. Curl, H. W. Kroto, F. K. Tittel, R. E.Smalley. Lanthanum complexes of spheroidal carbon shells. J. Am. Chem. Soc., 1985, 107,7779.
    [3]. H. W. Kroto. The stability of the fullerenes C_n, with n = 24, 28, 32, 36, 50, 60 and 70.Nature, 1987, 329, 529.
    [4]. W. Kr(?)tschmer, L. D. Lamb, K. Fostiropoulos, D. R. Hulfman. Solid C_(60): a new form of carbon. Nature, 1990, 347, 354.
    [5]. M. M. Alvarez, E. G. Gillan, K. Holczer, R. B. Kaner, K. S. Min, R. L. Whetten. La_2@C_(80):a soluble dimetallofullerene. J. Phys. Chem., 1991, 95, 10561.
    [6]. S. Stevenson, G. Rice, T. Glass, K. Harich, F. Cromer, M. R. Jordan, J. Craft, E. Hadju, R.Bible, M. M. Olmstead, K. Maitra, A. J. Fisher, A. L. Balch, H. C. Dorn. Small-bandgap endohedral metallofullerenes in high yield and purity. Nature, 1999,401, 55.
    [7]. M. Krause, F. Ziegs, A. A. Popov, L. Dunsch. Entrapped bonded hydrogen in a fullerene:the five-atom cluster Sc_3CH in C_(80). ChemPhysChem, 2007, 8, 537.
    [8]. T. Takikawa, M. Imamura, M. Kouchi, T. Sakakibara. Decrease in fullerene productivity due to air leakage in carbon arc method. Fuller. Sci. Tech., 1998, 6, 339.
    [9]. S. Stevenson, M. A. Mackey, M. A. Stuart, J. P. Phillips, M. L. Easterling, C. J.Chancellor, M. M. Olmstead, A. L. Balch. A distorted tetrahedral metal oxide cluster inside an icosahedral carbon cage, synthesis, isolation, and structural characterization of Sc_4(μ_3-O)_2@I_h-C_(80). J. Am. Chem. Soc., 2008, 130, 11844.
    [10]. Z. M. Wan, J. F. Christian, Y. Basir, S. L. Anderson. Collision of alkali ions with C_(60)/C_(70):Insertion, thermionic emission, and fragmentation. J. Chem. Phys., 1993, 99, 5858.
    [11]. T. Ohtsuki, K. Masumoto, K. Ohno, Y. Maruyma, Y. Kawazoe, K. Sueki, K. Kikuchi.Insertion of Be atoms in C_(60) fullerene cages: Be@C_(60). Phys. Rev. Lett., 1996, 77, 3522.
    [12]. H. J. Huang, M. Ata, Y. Yoshimoto. Cu@C_(60) formation in rf-plasma and ring-current induced magnetism of C_(60). Chem. Commun., 2004, 1206.
    [13]. D. Y. Sun, Z. Y. Liu, X. H. Guo, W. G. Xu, S. Y. Liu. High-yield extraction of endohedral rare-earth fullerenes. J. Phys. Chem. B, 1997, 101, 3927.
    [14]. J. Q. Ding, S. H. Yang. Efficient N, N-dimethylformamide extraction of endohedral metallofullerenes for HPLC purification. Chem. Mater., 1996, 8, 2824.
    [15]. B. Y. Sun, T. Inoue, T. Shimada, T. Okazaki, T. Sugai, K. Suenaga, H. Shinohara.Synthesis and characterization of Eu-metallofullerenes from Eu@C_(74) to Eu@C_(90) and their nanopeapods. J. Phys. Chem. B, 2004, 108, 9011.
    [16]. B. Y. Sun, L. Feng, Z. J. Shi, Z. N. Gu. Improved extraction of metallofullerenes with DMF at high temperature. Carbon, 2002,40, 1591.
    [17]. H. J. Huang, S. H. Yang. Toward efficient synthesis of endohedral metallofullerenes by arc discharge of carbon rods containing encapsulated rare earth carbides and ultrasonic soxhlet extraction. Chem. Mater., 2000,12, 2715.
    [18]. L. Mora, R. S. Ruoff, C. H. Becker, D. C. Lorents, R. Malhotra. Studies of metallofullerene primary soots by laser and thermal desorption mass spectrometry. J. Phys.Chem., 1993,97,6801.
    
    [19]. H. J. Huang, S. H. Yang. Relative yields of endohedral lanthanide metallofuUerenes by arc synthesis and their correlation with the elution behavior. J. Phys. Chem. B, 1998, 102,10196.
    
    [20]. S. F. Yang, L. Dunsch. Di- and tridysprosium endohedral metallofuUerenes with cages from C_(94) to C_(100). Angew. Chem. Int. Ed, 2006,45, 1299.
    
    [21]. N. Tagmatarchis, E. Aslanis, K. Prassides, H. Shinohara. Mono-, di- and trierbium endohedral metallofuUerenes: production, separation, isolation, and spectroscopic study.Chem. Mater., 2001, 13, 2374.
    
    [22]. S. Iida, Y. Kubozono, Y. Slovokhotov, Y. Takabayashi, T. Kanbara, T. Fukunaga, S.Fujiki, S. Emura, S. Kashino. Structure and electronic properties of Dy@C_(82) studied by UV-VIS absorption, X-ray powder diffraction and XAFS. Chem. Phys. Lett., 2001, 338,21.
    
    [23]. J. Q. Ding, S. H. Yang. Isolation and characterization of Pr@C_(82) and Pr_2@C_(80). J. Am.Chem.Soc., 1996, 118, 11254.
    
    [24]. a) H. J. Huang, S. H. Yang. Preparation and characterization of the endohedral metallofullerene Lu@C_(82). J. Phys. Chem. Sol., 2000, 61, 1105; b) H. Shinohara, H. Sato,Y. Saito, M. Ohkohchi, Y. Ando. Mass spectroscopic and ESR characterization of soluble yttrium-containing metallofuUerenes YC_(82) and Y_2C_(82). J. Phys. Chem., 1992, 96, 3571; c) K. Suenaga, S. Iijima, H. Kato, H. Shinohara. Fine-structure analysis of Gd M_(45) near-edge EELS on the valence state of Gd@C_(82) microcrystals. Phys. Rev. B, 2000, 62, 1627; d) K.Iwasaki, N. Wanita, S. Hino, D. Yoshimura, T. Okazaki, H. Shinohara. Ultraviolet photoelectron spectra of Tb@C_(82). Chem. Phys. Lett., 2004, 398, 389; e) H. J. Huang, S. H.Yang, X. X. Zhang, Magnetic properties of heavy rare-earth metallofullerenes M@C_(82) (M= Gd, Tb, Dy, Ho, and Er). J. Phys. Chem. B, 2000, 104, 1473; f) S. Hino, H. Takahashi,K. Iwasaki, K. Matsumoto, T. Miyazaki, S. Hasegawa, K. Kikuchi, Y. Achiba. Electronic structure of metallofullerene LaC_(82): electron transfer from lanthanum to C_(82). Phys. Rev.Lett., 1993, 71, 4261; g) R. D. Johnson, M. S. de Vries, J. Salem, D. S. Bethune, C. S.Yannoni. Electron-paramagnetic resonance studies of lanthanum-containing C_(82). Nature,1992, 355, 239; h) J. H. Weaver, Y. Chai, G. H. Kroll, C. Jin, T. R. Ohno, R. E. Haufler,T. Guo, J. M. Alford, J. Conceicao, L. P. F. Chibante, A. Jain, G. Palmer, R. E. Smalley.XPS probes of carbon-caged metals. Chem. Phys. Lett., 1992, 190, 460; i) J. Q. Ding, L. T.Weng, S. H. Yang. Electronic structure of Ce@C_(82): an experimental study. J. Phys. Chem.,1996,100,11120.
    
    [25]. C. S. Yannoni, M. Hoinkis, M. S. de Vries, D. S. Bethune, J. R. Salem, M. S. Crowder, R.D. Johnson. Scandium clusters in fullerene cages. Science, 1992, 256, 1191.
    
    [26]. M. Inakuma, H. Shinohara. Temperature-dependent EPR studies on isolated scandium metallofuUerenes: Sc@C_(82)(I, II) and Sc@C_(84). J. Phys. Chem. B, 2000, 104, 7595.
    
    [27]. E. Nishibori, M. Takata, M. Sakata, M. Inakuma, H. Shinohara. Determination of the cage structure of Sc@C_(82) by synchrotron powder diffraction. Chem. Phys. Lett., 1998, 298, 79.
    [28]. Y. Chai, T. Cuo, C. M. Jin, R. E. Haufler, L. P. F. Chibante, J. Fure, L. H. Wang, J. M.Alford, R. E. Smalley. Fullerenes with metals inside. J. Phys. Chem., 1991, 95, 7564.
    [29]. S. Okubo, T. Kato, M Inakuma, H Shinohara. Separation and characterization of ESR-active lanthanum endohedral fullerenes. New Diamond Front. Carbon Tech., 2001, 11,285.
    [30]. L. Feng, B. Y. Sun, X. R. He, Z. N. Gu. Isolation and spectroscopic study of a series of monoterbium endohedral metallofullerenes fullerenes, nanotubes and carbon nanostructures. Fuller. Nanotub. Carbon Nanostruct., 2002, 10, 353.
    [31]. N. Tagmatarchis, E. Aslanis, H. Shinohara, K. Prassides. Isolation and spectroscopic study of a series of mono- and dierbium endohedral C_(82) and C_(84) metallofullerenes. J. Phys.Chem. B, 2000, 104, 11010.
    
    [32]. Z. J. Shi, T. Okazaki, T. Shimada, T. Sugai, K. Suenaga, H. Shinohara. selective high-yield catalytic synthesis of terbium metallofullerenes and single-wall carbon nanotubes. J.Phys. Chem. B, 2003,107, 2485.
    [33]. a) D. W. Cagle, T. P. Thrash, M. Alford, L. P. F. Chibante, G. J. Ehrhardt, L. J. Wilson.Synthesis, characterization, and neutron activation of holmium metallofullerenes. J. Am.Chem. Soc., 1996, 118, 8043; b) H. J. Huang, S. H. Yang. Preparation and characterization of the endohedral metallofullerene Lu@C_(82). J. Phys. Chem. Sol., 2000,61, 1105.
    [34]. M. Takata, B. Umeda, E. Nishibori, M. Sakata, Y. Saito, M. Ohno, H. Shinohara. Confirmation by X-ray-diffracition of the endohedral nature of the metallofullerene Y@C_(82). Nature, 1995, 377, 46.
    [35]. K. Shibata, Y. Rikiishi, T. Hosokawa, Y. Haruyama, Y. Kubozono, S. Kashino, T. Uruga,A. Fujiwara, H. Kitagawa, T. Takano, Y. Iwasa. Structural and electronic properties of Ce@C_(82). Phys. Rev. B, 2003, 68, 094104.
    [36]. Y. Rikiishi, Y. Kubozono, T. Hosokawa, K. Shibata, Y. Haruyama, Y. Takabayashi, A.Fujiwara, S. Kobayashi, S. Mori, Y. Iwasa. Structural and electronic characterizations of two isomers of Ce@C_(82). J. Phys. Chem. B, 2004, 108, 7580.
    [37]. Y. Takabayashi, Y. Kubozono, T. Kanbara, S. Fujiki, K. Shibata, Y. Haruyama, T.Hosokawa, Y. Rikiishi, S. Kashin. Pressure and temperature dependences of the structural properties of Dy@C_(82) isomer I. Phys. Rev. B, 2002, 65, 073405.
    [38]. E. Nishibori, K. Iwata, M. Sakata, M. Takata, H. Tanaka, H. Kato, H. Shinohara.Anomalous endohedral structure of Gd@C_(82) metallofullerenes. Phys. Rev. B, 2004, 69,113412.
    [39]. T. Akasaka, T. Wakahara, S. Nagase, K. Kobayashi, M. Waelchli, K. Yamamoto, M.Kondo, S. Shirakura, S. Okubo, Y. Maeda, T. Kato, M. Kako, Y. Nakadaira, R. Nagahata,X. Gao, E. Van Caemelbecke, K. M. Kadish. La@C_(82) anion: an unusually stable metallofullerene. J. Am. Chem. Soc., 2000, 122, 9316.
    [40]. T. Wakahara, S. Okubo, M. Kondo, Y. Maeda, T. Akasaka, M. Waelchli, M. Kako, K.Kobayashi,S. Nagase, T. Kato, K. Yamamoto, X. Gao, E. Van Caemelbecke, K. M.Kadish. Ionization and structural determination of the major isomer of Pr@C_(82). Chem.Phys. Lett., 2002, 360, 235.
    [41]. T. Wakahara, J. Kobayashi, M. Yamada, Y. Maeda, T. Tsuchiya, M. Okamura, T.Akasaka, M. Waelchli, K. Kobayashi, S. Nagase, T. Kato, M. Kako, K. Yamamoto, K. M.Kadish. characterization of Ce@C_(82) and its anion. J. Am. Chem. Soc., 2004, 126,4883.
    [42]. L. Feng, T. Wakahara, T. Tsuchiya, Y. Maeda, Y. F. Lian, T. Akasaka, N. Mizorogi, K.Kobayashi, S. Nagase, K. M. Kadish. Structural characterization of Y@C_(82). Chem. Phys.Lett., 2005,405, 274
    [43]. Y. Maeda, Y. Matsunaga, T. Wakahara, S. Takahashi, T. Tsuchiya, M. O. Ishitsuka, T.Hasegawa, T. Akasaka, M. T. H. Liu, K. Kokura, E. Horn, K. Yoza, T. Kato, S. Okubo, K.Kobayashi, S. Nagase, K. Yamamoto. Isolation and characterization of a carbene derivative of La@C_(82). J. Am. Chem. Soc., 2004, 126, 6858.
    [44]. Y. Kubozono, Y. Takabayashi, K. Shibata, T. Kanbara, S. Fujiki, S. Kashino, A. Fujiwara,S. Emura. Crystal structure and electronic transport of Dy@C_(82). Phys. Rev. B, 2003, 67,115410
    [45]. H. Giefers, F. Nessel, S. I. Gyory, M. Strecker, G. Wortmann, Y. S. Grushko, E. G.Alekseev, V. S. Kozlov. Gd-L_Ⅲ EXAFS study of structural and dynamic properties of Gd@C_(82) between 10 and 300 K. Carbon, 1999, 37, 721.
    [46]. L. Liu, B. Gao, W. S. Chu, D. L. Chen, T. D. Hu, C. R. Wang, L. Dunsch, A. Marcelli, Y.Luo, Z. Y. Wu. The structural determination of endohedral metallofullerene Gd@C_(82) by XANES. Chem. Commun., 2008,474.
    [47]. T. Akasaka, T. Wakahara, S. Nagase, K. Kobayashi, M. Waelchli, K. Yamamoto,. M.Kondo, S. Shirakura, Y. Maeda, T. Kato, M. Kako, Y. Nakadaira, X. Y. Gao, E. Van Caemelbecke, K. M. Kadish. Structural determination of the La@C_(82) isomer. J. Phys.Chem. B, 2001, 105,2971.
    [48]. Y. Takabayashi, Y. Haruyama, Y. Rikiishi, T. Hosokawa, K. Shibata, Y. Kubozono.Preferred location of the Dy ion in the minor isomer of Dy@C_(82) determined by Dy L_Ⅲ-edge EXAFS. Chem. Phys. Lett., 2004, 388, 23.
    [49]. J. Q Ding, S. H Yang. Isolation and characterization of the dimetallofullerene Ce_2@C_(80).Angew. Chem. Int. Ed. Engl., 1996, 35, 2234.
    [50]. S. Hino, N. Wanita, K. Iwasaki, D. Yoshimura, T. Akachi, T. Inoue, Y. Ito, T. Sugai, H.Shinohara. Ultraviolet photoelectron spectra of (YC)_2@C_(82) and Y_2@C_(82). Phys. Rev. B,2005,72,195424.
    [51]. Y. Kubozono , Y. Takabayashi, S. Kashino, M. Kondo, T. Wakahara, T. Akasaka, K.Kobayashi, S. Nagase, S. Emura, K. Yamamoto. Structure of La_2@C_(80) studied by La K-edge XAFS. Chem. Phys. Lett., 2001, 335, 163.
    [52]. H. Yang, C. X. Lu, Z. Y. Liu, H. X. Jin, Y. L. Che, M. M. Olmstead, A. L. Balch.Detection of a family of gadolinium-containing endohedral fullerenes and the isolation and crystallographic characterization of one member as a metal-carbide encapsulated inside a large fullerene cage. J. Am. Chem. Soc., 2008, 130, 17296.
    [53]. C. R. Wang, M. Inakuma, H. Shinohara. Metallofullerenes Sc_2@C_(82)(I, II) and Sc_2@C86(I,II): isolation and spectroscopic studies. Chem. Phys. Lett., 1999, 300, 379.
    [54]. T. Inoue, T. Tomiyama, T. Sugai, H. Shinohara. Spectroscopic and structural study of Y_2C_2 carbide encapsulating endohedral metallofullerene: (Y_2C_2)@C_(82). Chem. Phys. Lett.,2003,382, 226.
    [55]. N. Tagmatarchis, H. Shinohara. Production, separation, isolation, and spectroscopic study of dysprosium endohedral metallofullerenes. Chem. Mater., 2000, 12, 3222.
    [56]. D. W. Cagle, T. P. Thrash, M. Alford, L. P. F. Chibante, G. J. Ehrhardt, L. J. Wilson.Synthesis, characterization, and neutron activation of holmium metallofullerenes. J. Am.Chem.Soc., 1996,118,8043.
    [57]. C. R. Wang, T. Kai, T. Tomiyama, T. Yoshida, Y. Kobayashi, E. Nishibori, M. Takata, M.Sakata, H. Shinohara. C_(66) fullerene encaging a scandium dimmer. Nature, 2000,408, 426.
    [58]. H. Kato, A. Taninaka, T. Sugai, H. Shinohara. Structure of a missing-caged metallofullerene: La_2@C_(72). J. Am. Chem. Soc., 2003, 125, 7782.
    [59]. M. Yamada, T. Wakahara, T. Tsuchiya, Y. Maeda, T. Akasaka, N. Mizorogi, S. Nagase.Spectroscopic and theoretical study of endohedral dimetallofullerene having a non-IPR fullerene cage: Ce_2@C_(72). J. Phys. Chem. A, 2008,112, 7627.
    [60]. X. Lu, H. Nikawa, T. Nakahodo, T. Tsuchiya, M. O. Ishitsuka, Y. Maeda, T. Akasaka, M.Toki, H. Sawa, Z. Slanina, N. Mizorogi, S. Nagase. Chemical understanding of a non-IPR metallofullerene: stabilization of encaged metals on fused-pentagon bonds in La_2@C_(72). J.Am. Chem. Soc., 2008, 130, 9129.
    [61]. C. R. Wang, P. Georgi, L. Dunsch, T. Kai, T. Tomiyama, H. Shinohara. Sc_2@C_(76)(C_2): a new isomerism in fullerene structure. Curr. Appl. Phys., 2002, 2, 141.
    [62]. B. P. Cao, T. Wakahara, T. Tsuchiya, M. Kondo, Y. Maeda, G. M. A. Rahman, T.Akasaka, K. Kobayashi, S. Nagase, K. Yamamoto. Isolation, characterization, and theoretical study of La_2@C_(78). J. Am. Chem. Soc., 2004, 126, 9164.
    [63]. M. Yamada, T. Wakahara, T. Tsuchiya, Y. Maeda, M. Kako, T. Akasaka, K. Yoza, E.Horn, N. Mizorogi, S. Nagase. Location of the metal atoms in Ce_2@C_(78) and its bis-silylated derivative. Chem. Commun., 2008, 558.
    [64]. B. P. Cao, H. Nikawa, T. Nakahodo, T. Tsuchiya, Y. Maeda, T. Akasaka, H. Sawa, Z.Slanina, N. Mizorogi, S. Nagase. Addition of adamantylidene to La_2@C_(78): isolation and single-crystal X-ray structural determination of the monoadducts. J. Am. Chem. Soc., 2008,130, 983.
    [65]. T. Akasaka, S. Nagase, K. Kobayashi, M. Walchli, K. Yamamoto, H. Funasaka, M. Kako,T. Hoshino, T. Erata. ~(13)C and ~(139)La NMR studies of La_2@C_(80): first evidence for circular motion of metal atoms in endohedral dimetallofullerenes. Angew. Chem. Int. Ed. Eng.1997,36,1643.
    [66]. M. Yamada, T. Nakahodo, T. Wakahara, T. Tsuchiya, Y. Maeda, T. Akasaka, M. Kako, K.Yoza, E. Horn, N. Mizorogi, K. Kobayashi, S. Nagase. Positional control of encapsulated atoms inside a fullerene cage by exohedral addition. J. Am. Chem. Soc., 2005, 127, 14570.
    [67]. M. Yamada, T. Wakahara, T. Nakahodo, T. Tsuchiya, Y. Maeda, T. Akasaka, K. Yoza, E.Horn, N. Mizorogi, S. Nagase. Synthesis and structural characterization of endohedral pyrrolidinodimetallofullerene: La_2@C_(80)(CH_2)_2NTrt. J. Am. Chem. Soc., 2006, 128, 1402.
    [68]. E. Nishibori, M. Takata, M. Sakata, A. Taninaka, H. Shinohara. Pentagonal-dodecahedral La_2 charge density in [80-I_h]fullerene: La_2@C_(80). Angew. Chem. Int. Ed., 2001,40, 2998.
    [69]. M. Yamada, N. Mizorogi, T. Tsuchiya, T. Akasaka, S. Nagase. Synthesis and characterization of the D_(5h) isomer of the endohedral dimetallofullerene Ce_2@C_(80): two- dimensional circulation of encapsulated metal atoms inside a fullerene cage. Chem. Eur. J., 2009,15, 9486.
    [70]. S. R. Plant, T. C. Ng, J. H. Warner, G. Dantelle, A. Ardavan, G. A. D. Briggsa, K. Porfyrakis. A bimetallic endohedral fiillerene: PrSc@C_(80). Chem. Commun., 2009,4082.
    [71]. M. M. Olmstead, A. de Bettencourt-Dias, S. Stevenson, H. C. Dorn, A. L. Balch. Crystallographic characterization of the structure of the endohedral fullerene {Er_2@C_(82) Isomer I} with C_s cage symmetry and multiple sites for erbium along a band of ten contiguous hexagons. J. Am. Chem. Soc., 2002, 124, 4172.
    [72]. M. M. Olmstead, H. M. Lee, S. Stevenson, H. C. Dorn, A. L. Balch. Crystallographic characterization of isomer 2 of Er_2@C_(82) and comparison with Isomer 1 of Er_2@C_(82). Chem. Commun., 2002, 2688.
    [73]. a) T. Pichler, M. S. Golden, M. Knupfer, J. Fink, U. Kirbach, P. Kuran, L. Dunsch. Monometallofullerene Tm@C_(82): proof of an encapsulated divalent Tm ion by high-energy spectroscopy. Phys. Rev. Lett., 1997, 79, 3026; b) T. Okazaki, K. Suenaga, Y. F. Lian, Z. N. Gu, H. Shinohara. Direct EELS observation of the oxidation states of Sm atoms in Sm@C_(2n) metallofullerenes (74≤2n≤84). J. Chem. Phys., 2000, 113, 9593.
    [74]. a) T. S. M. Wan, H. W. Zhang, T. Nakane, Z. D. Xu, M. Inakuma, H. Shinohara, K. Kobayashi, S. Nagase. Production, isolation, and electronic properties of missing fullerenes: Ca@C_(72) and Ca@C_(74). J. Am. Chem. Soc., 1998, 120, 6806; b) T. Ichikawa, T. Kodama, S. Suzuki, R. Fujii, H. Nishikawa, I. Ikemoto, K. Kikuchi, Y. Achiba. Isolation and characterization of a new isomer of Ca@C_(72). Chem. Lett., 2004, 33, 1008.
    [75]. K. Bucher, L. Epple, J. Mende, M. Mehring, M. Jansen. Synthesis, isolation and characterization of new endohedral fullerenes M@C_(72) (M = Eu, Sr, Yb). Phys. Stat. Sol. (b), 2006, 243, 3025.
    [76]. K. Bucher, J. Mende, M. Mehring, M. Jansen. Isolation and spectroscopic characterization of Eu@C_(72). Fuller. Nanotub. Carbon Nanostruct, 2007, 15, 29.
    [77]. 车宇樑,大笼富勒烯和内嵌含Ca大笼金属富勒烯的合成分离与结构表征,博士学位论文,杭州,浙江大学,2009,P85.
    [78]. T. Kodama, R. Fujii, Y. Miyake, S. Suzuki, H. Nishikawa, I. Ikemoto, K. Kikuchi, Y. Achiba. ~(13)C NMR study of Ca@C_(74): the cage structure and the site-hopping motion of a Ca atom inside the cage. Chem. Phys. Lett., 2004, 399, 94.
    [79]. A. Reich, M. Panth(?)fer, H. Modrow, U. Wedig, M. Jansen. The structure of Ba@C_(74). J. Am. Chem. Soc., 2004, 126, 14428.
    [80]. J. X. Xu, T. Tsuchiya, C. Hao, Z. J. Shi, T. Wakahara, W. H. Mi, Z. N. Gu, T. Akasaka. Structure determination of a missing-caged metallofullerene: Yb@C_(74)(Ⅱ) and the dynamic motion of the encaged ytterbium ion. Chem. Phys. Lett., 2006,419, 44.
    [81]. T. Kodama, N. Ozawa, Y. Miyake, K. Sakaguchi, H. Nishikawa, I. Ikemoto, K. Kikuchi, Y. Achiba. Structural study of three isomers of Tm@C_(82) by ~(13)C NMR spectroscopy. J. Am. Chem. Soc., 2002, 124, 1452.
    [82]. T. Kodama, R. Fujii, Y. Miyake, K. Sakaguchi, H. Nishikawa, I. Ikemoto, K. Kikuchi, Y. Achiba. Structural study of four Ca@C_(82) isomers by ~(13)C NMR spectroscopy. Chem. Phys. Lett., 2003, 377, 197.
    [83]. S. Hino, K. Umishita, K. Iwasaki, M. Aoki, K. Kobayashi, S. Nagase, T. J. S. Dennis, T.Nakane, H. Shinohara. Ultraviolet photoelectron spectra of metallofullerenes, two Ca@C_(82) isomers. Chem. Phys. Lett., 2001, 337, 65.
    [84]. S. Hino, N. Wanita, K. Iwasaki, D. Yoshimura, N. Ozawa, T. Kodama, K. Sakaguchi, H.Nishikawa, I. Ikemoto, K. Kikuchi. Ultraviolet photoelectron spectra of three Tm@C_(82) isomers. Chem. Phys. Lett., 2005,402, 217.
    [85]. B. Y. Sun, T. Sugai, E. Nishibori, K. Iwata, M. Sakata, M. Takata, H. Shinohara. An anomalous endohedral structure of Eu@C_(82) metallofullerenes. Angew. Chem. Int. Ed.,2005, 44,4568.
    [86]. Y. L. Che, H. Yang, Z. M. Wang, H. X. Jin, Z. Y. Liu, C. X. Lu, T. M. Zuo, H. C. Dom,C. M. Beavers, M. M. Olmstead, A. L. Balch. Isolation and structural characterization of two very large, and largely empty, endohedral fullerenes: Tm@C_(3v)-C_(94) and Ca@C_(3v)-C_(94).Inorg. Chem., 2009,48, 6004.
    [87]. K. Kikuchi, K. Akiyama, K. Sakaguchi, T. Kodama, H. Nishikawa, I. Ikemoto, T. Ishigaki,Y. Achiba, K. Sueki, H. Nakahara. Production and isolation of the isomers of dimetallofullerenes, HoTm@C_(82) and Tm_2@C_(82). Chem. Phys. Lett., 2000, 319,472.
    [88]. a) M. N. Chaur, R. Valencia, A. Rodriguez-Fortea, J. M. Poblet, L. Echegoyen.Trimetallic nitride endohedral fullerenes: experimental and theoretical evidence for the M_3N~(6+)@C_(2n)~(6-) model. Angew. Chem. Int. Ed, 2009, 48, 1425; b) M. Krause, X. J. Liu, J.Wong, T. Pichler, M. Knupfer, L. Dunsch. The electronic and vibrational structure of endohedral Tm_3N@C_(80)(I) fullerene-proof of an encaged Tm~(3+). J. Phys. Chem. A, 2005,109, 7088.
    [89]. M. M. Olmstead, A. de Bettencourt-Dias, J. C. Duchamp, S. Stevenson, D. Marciu, H. C.Dorn, A. L. Balch. Isolation and structural characterization of the endohedral fullerene Sc_3N@C_(78). Angew. Chem. Int. Ed, 2001,40, 1223.
    [90]. T. Cai, L. S. Xu, M. R. Anderson, Z. X. Ge, T. M. Zuo, X. L. Wang, M. M. Olmstead, A. L. Balch, H. W. Gibson, H. C. Dorn. Structure and enhanced reactivity rates of the D_(5h) Sc_3N@C_(80) and Lu_3N@C_(80) metallofullerene isomers: the importance of the pyracylene motif. J. Am. Chem. Soc., 2006, 128, 8581.
    [91]. T. M. Zuo, C. M. Beavers, J. C. Duchamp, A. Campbell, H. C. Dorn, M. M. Olmstead, A.L. Balch. Isolation and structural characterization of a family of endohedral fullerenes including the large, chiral cage fullerenes Tb_3N@C_(88) and Tb_3N@C_(86) as well as the I_h and D_(5h) isomers of Tb_3N@C_(80). J. Am. Chem. Soc., 2007, 129, 2035.
    [92]. M. M. Olmstead, H. M. Lee, J. C. Duchamp, S. Stevenson, D. Marciu, H. C. Dorn, A. L.Balch. Sc_3N@C_(68): folded pentalene coordination in an endohedral fullerene that does not obey the isolated pentagon rule. Angew. Chem. Int. Ed., 2003,42, 900.
    [93]. C. M. Beavers, M. N. Chaur, M. M. Olmstead, L. Echegoyen, A. L. Balch. Large metal ions in a relatively small fullerene cage: the structure of Gd_3N@C_2(22010)-C_(78) departs from the isolated pentagon rule. J. Am. Chem. Soc., 2009,131,11519.
    [94]. B. Q. Mercado, C. M. Beavers, M. M. Olmstead, M. N. Chaur, K. Walker, B. C.Holloway, L. Echegoyen, A. L. Balch. Is the isolated pentagon rule merely a suggestion for endohedral fullerenes? the structure of a second egg-shaped endohedral fullerenes Gd_3N@C_s(39663)-C_(82). J. Am. Chem. Soc., 2008, 130, 7854.
    [95]. C. M. Beavers, T. M. Zuo, J. C. Duchamp, K. Harich, H. C. Dorn, M. M. Olmstead, A. L.Balch. Tb_3N@C_(84): an improbable, egg-shaped endohedral fullerene that violates the isolated pentagon rule. J. Am. Chem. Soc., 2006, 128, 11352.
    
    [96]. S. Stevenson, H. M. Lee, M. M. Olmstead, C. Kozikowski, P. Stevenson, A. L. Balch.Preparation and crystallographic characterization of a new endohedral, Lu_3N@C_80)·5(o-xylene), and comparison with Sc_3N@C_(80)·5(o-xylene). Chem. Eur. J., 2002,8, 4528.
    
    [97]. S. Stevenson, J. P. Phillips, J. E. Reid, M. M. Olmstead, S. P. Rath, A. L. Balch.Pyramidalization of Gd_3N inside a C_(80) cage. The synthesis and structure of Gd_3N@C_(80).Chem. Commun., 2004,2814.
    
    [98]. S. F. Yang, S. I. Troyanov, A. A. Popov, M. Krause, L. Dunsch. Deviation from the planaritysa large Dy_3N cluster encapsulated in an I_h-C_(80) cage: an X-ray crystallographic and vibrational spectroscopic study. J. Am. Chem. Soc., 2006, 128, 16733.
    
    [99]. T. M. Zuo, M. M. Olmstead, C. M. Beavers, A. L. Balch, G. B. Wang, G. T. Yee, C. Y.Shu, L. S. Xu, B. Elliott, L. Echegoyen, J. C. Duchamp, H. C. Dorn. Preparation and structural characterization of the I_h, and the D_(5h) isomers of the endohedral fullerenes Tm_3N@C_(80): icosahedral C_(80) cage encapsulation of a trimetallic nitride magnetic cluster with three uncoupled Tm~(3+) ions. Inorg. Chem., 2008,47, 5234.
    
    [100]. M. M. Olmstead, A. de Bettencourt-Dias, J. C. Duchamp, S. Stevenson, H. C. Dorn, A. L.Balch. Isolation and crystallographic characterization of ErSc_2N@C_(80): an endohedral fullerene which crystallizes with remarkable internal order. J. Am. Chem. Soc., 2000, 122,12220.
    
    [101]. X. L. Wang, T. M. Zuo, M. M. Olmstead, J. C. Duchamp, T. E. Glass, F. Cromer, A. L.Balch, H. C. Dorn. Preparation and structure of CeSc_2N@C_(80): an icosahedral carbon cage enclosing an acentric CeSc_2N unit with buried/electron spin. J. Am. Chem. Soc., 2006,128, 8884.
    
    [102]. S. Stevenson, C. J. Chancellor, H. M. Lee, M. M. Olmstead, A. L. Balch. Internal and external factors in the structural organization in cocrystals of the mixed-metal endohedrals (GdSc_2N@I_h-C_(80), Gd_2ScN@/I_h-C_(80), and TbSc_2N@I_h-C_(80)) and nickel(II) octaethylporphyrin. Inorg. Chem., 2008,47, 1420.
    
    [103]. J. Lu, R. F. Sabirianov, W. N. Mei, Y. Gao, C. G. Duan, X. C. Zeng. Structural and magnetic properties of Gd_3N@C_(80). J. Phys. Chem. B, 2006, 110, 23637.
    
    [104]. T. M. Zuo, K. Walker, M. M. Olmstead, F. Melin, B. C. Holloway, L. Echegoyen, H. C.Dorn, M. N. Chaur, C. J. Chancellor, C. M. Beavers, A. L. Balch, A. J. Athans. New egg-shaped fullerenes: non-isolated pentagon structures of Tm_3N@C_(s(51365)-C_(84) and Gd_3N@C_s(51365)-C_(84). Chem. Commun., 2008, 1067.
    
    [105]. C. R. Wang, T. Kai, T. Tomiyama, T. Yoshida, Y. Kobayashi, E. Nishibori, M. Takata, M.Sakata, H. Shinohara. A scandium carbide endohedral metallofullerene: (Sc_2C_2)@C_(84).Angew. Chem. Int. Ed., 2001,40, 397.
    
    [106]. a) M. Takata, E. Nishibori, B. Umeda, M. Sakata, E. Yamamoto, H. Shinohara. Structure of endohedral dimetallofullerene Sc_2@C_(84). Phys. Rev. Lett., 1997, 78, 3330; b) E.Yamamoto, M. Tansho, T. Tomiyama, H. Shinohara, H. Kawahara, Y. Kobayashi. ~(13)C-NMR study on the structure of isolated Sc_2@C_(84) metallofullerene. J. Am. Chem. Soc.,1996, 118, 2293; c) M. Inakuma, E. Yamamoto, T. Kai, C. R. Wang, T. Tomiyama, H.
    Shinohara, T. J. S. Dennis, M. Hulman, M. Krause, H. Kuzmany. Structural and electronic properties of isomers of Sc_2@C_(84)(I, II, III): ~(13)C NMR and IR/Raman spectroscopic studies.J. Phys. Chem. B, 2000,104, 5072.
    
    [107]. T. Inoue, T. Tomiyama, T. Sugai, T. Okazaki, T. Suematsu, N. Fujii, H. Utsumi, K.Nojima, H. Shinohara. Trapping a C_2 radical in endohedral metallofullerenes: synthesis and structures of (Y_2C_2)@C_(82) (isomers I, II and III). J. Phys. Chem. B, 2004, 108, 7573.
    
    [108]. a) E. Nishibori, M. Ishihara, M. Takata, M. Sakata, Y. Ito, T. Inoue, H. Shinohara. Bent (metal)_2C_2 clusters encapsulated in (Sc_2C_2)@C_(82)(III) and (Y_2C_2)@C_(82)(III) metallofullerenes. Chem. Phys. Lett., 2006, 433, 120; b) E. Nishibori, S. Narioka, M.Takata, M. Sakata, T. Inoue, H. Shinohara. A C_2 molecule entrapped in the pentagonal-dodecahedral Y_2 cage in Y_2C_2@C_(82)(III). ChemPhysChem, 2006, 7, 345.
    
    [109]. H. Shinohara, H. Sato, M. Ohkohchi, Y. Ando, T. Komada, T. Shida, T. Kato, Y. Saito.Encapsulation of a scandium trimer in C_(82). Nature, 1992,357, 52.
    
    [110]. a) P. H. M. van Loosdrecht, R. D. Johnson, M. S. de Vries, C. H. Kiang, D. S. Bethune.Orientational dynamics of the Sc_3 trimer in C_(82): an EPR study. Phys. Rev. Lett., 1994, 73,3415; b) H. Shinohara, M. Inakuma, N. Hayashi, H. Sato, Y. Saito, T. Kato, S. Bandow.Spectroscopic properties of isolated Sc_3@C_(82) metallofullerene. J. Phys. Chem., 1994, 98,8597; c) M. R. Anderson, H. C. Dorn, S. Stevenson, P. M. Burbank, J. R. Gibson. The voltammetry of Sc_3@C_(82). J. Am. Chem. Soc., 1997, 119, 437; d) M. Takata, E. Nishibori,M. Sakata, M. Inakuma, E. Yamamoto, H. Shinohara. Triangle scandium cluster imprisoned in a fullerene cage. Phys. Rev. Lett., 1999, 83, 2214.
    
    [111]. Y. Iiduka, T. Wakahara, T. Nakahodo, T. Tsuchiya, A. Sakuraba, Y. Maeda, T. Akasaka,K. Yoza, E. Horn, T. Kato, M. T. H. Liu, N. Mizorogi, K. Kobayashi, S. Nagase.Structural determination of metallofullerene Sc_3C_(82) revisited: a surprising finding. J. Am.Chem. Soc., 2005,127, 12500.
    
    [112]. E. Nishibori, I. Terauchi, M. Sakata, M. Takata, Y. Ito, T. Sugai, H. Shinohara. High-resolution analysis of (Sc_3C_2)@C_(80) metallofullerene by third generation synchrotron radiation X-ray powder diffraction. J. Phys. Chem. B, 2006,110, 19215.
    
    [113]. T. S. Wang, N. Chen, J. F. Xiang, B. Li, J. Y. Wu, W. Xu, L. Jiang, K. Tan, C. Y. Shu, X.Lu, C. R. Wang. Russian-doll-type metal carbide endofullerene: Ssynthesis, isolation, and characterization of Sc_4C-2@C_(80). J. Am. Chem. Soc., 2009, 131, 16646.
    
    [114]. A. Gromov, W. Kr(?)tschmer, N. Krawez, R. Tellgmann, E. E. B. Campbell. Extraction and HPLC purification of Li@C_(60/70)- Chem. Commun., 1997, 2003.
    
    [115]. A. Gromov, D. Ostrovskii, A. Lassesson, M. Jonsson, E. E. B. Campbell. Fourier transform infrared and Raman spectroscopic study of chromatographically isolated Li@C_(60) and Li@C_(70). J. Phys. Chem. B, 2003,107, 11290.
    
    [116]. K. Akiyama, K. Sueki, T. Kodama, K. Kikuchi, Y. Takigawa, H. Nakahara, I. Ikemoto, M.Katada. New fullerenes of a group IV element: Hf metallofullerenes. Chem. Phys. Lett.,2000,317,490.
    
    [117]. B. P. Cao, M. Hasegawa, K. Okada, T. Tomiyama, T. Okazaki, K. Suenaga, H. Shinohara.EELS and ~(13)C NMR characterization of pure Ti_2@C_(80) metallofullerene. J. Am. Chem.Soc., 2001, 123, 9679.
    [118]. B. P. Cao, K. Suenaga, T. Okazaki, H. Shinohara. Production, isolation, and EELS characterization of Ti_2@C_(84) dititanium metallofullerenes. J. Phys. Chem. B, 2002, 106,9295.
    [119]. K. Akiyama, Y. L. Zhao, K. Sueki, K. Tsukada, H. Haba, Y. Nagame, T. Kodama, S.Suzuki, T. Ohtsuki, M. Sakaguchi, K. Kikuchi, M. Katada, H. Nakahara. Isolation and characterization of light actinide metallofullerenes. J. Am. Chem. Soc., 2001, 123, 181.
    [120]. J. Lu, X. Zhang, X. Zhao. Relativistic electronic structure calculations on endohedral Gd@C_(60), La@C_(60), Gd@C_(74), and La@C_(74). Appl. Phys. A, 2000, 70, 461.
    [121]. J. Lu, L. X. Ge, X. W. Zhang, X. G. Zhao. Electronic structures of endohedral Sr@C_(60),Ba@C_(60), Fe@C_(60) and Mn@C_(60). Mod. Phys. Lett. B, 1999, 13, 97.
    [122]. E. Broclawik, A. Eilmes. Density functional study of endohedral complexes M@C_(60) (M =Li, Na, K, Be, Mg, Ca, La, B, Al): electronic properties, ionization potentials, and electron affinities. J. Chem. Phys., 1998, 108, 3498.
    [123]. Z. Slanina, S. L. Lee, L. Adamowicz, F. Uhlik, S. Nagase. Computed structure and energetics of La@C_(60). Inter. J. Quart. Chem., 2005,104, 272.
    [124]. J. Lu, W. N. Mei, Y. Gao, X. C. Zeng, M. W. Jing, G. P. Li, R. Sabirianov, Z. X. Gao, L.P. You, J. Xu, D. P. Yu, H. Q. Ye. Structural and electronic properties of Gd@C_(60): all-electron relativistic total-energy study. Chem. Phys. Lett., 2006, 425, 82.
    [125]. C. M. Tang, K. M. Deng, J. L. Yang, X. Wang. Geometric and electronic properties of metallofullerene Fe@C_(60). Chin. J. Chem., 2006, 24, 1133.
    [126]. G. P. L, R. F. Sabirianov, J. Lu, X. C. Zeng, W. N. Mei, Electronic and magnetic properties of endohedrally doped fullerene Mn@C_(60): A total energy study. J. Chem. Phys.,2008, 128, 074304.
    [127]. W. Andreoni, A. Curioni. Ab initio approach to the structure and dynamics of metallofullerenes. Appl. Phys. A, 1998, 66, 299.
    [128]. M. Chi, P. D. Han, X. H. Fang, W. Jia, X. G. Liu, B. S. Xu. Density functional theory of polonium-doped endohedral fullerenes Po@C_(60). J. Mol. Struct.: Theochem, 2007, 807,121.
    [129]. J. Lu, Y. S. Zhou, X. W. Zhang, X. G. Zhao. Density functional theory studies of beryllium-doped endohedral fullerene Be@C_(60): on center displacement of beryllium inside the C_(60) cage. Chem. Phys. Lett., 2002, 352, 8.
    [130]. B. I. Dunlap, J. L. Ballester, P. P. Schmidt. Interactions between C_(60) and endohedral alkali atoms. J. Phys. Chem., 1992, 96, 9781.
    [131]. J. Cioslowski, E. D. Fleischmann. Endohedral complexes: atoms and ions inside the C_(60) cage. J. Chem. Phys., 1991, 94, 3730.
    [132]. M. Pavanello, A. F. Jalbout, B. Trzaskowski, L. Adamowicz. Fullerene as an electron buffer: charge transfer in Li@C_(60). Chem. Phys. Lett., 2007,442, 339.
    [133]. K. Kobayashi, S. Nagase, M. Yoshida, E. Osawa. Endohedral metallofullerenes. Are the isolated pentagon rule and fullerene structures always satisfied? J. Am. Chem. Soc., 1997,119,12693.
    [134]. M. Chi, Z. X. Zhang, P. D. Han, X. H. Fang, W. Jia, H. B. Dong, B. S. Xu. Geometric and electronic structures of new endohedral fullerenes: Eu@C_(72). J. Mol. Model., 2008, 14, 465.
    [135]. Z. Slanina, X. Zhao, X. Grabuleda, M. Ozawa, F. Uhlik, P. Ivanov, K. Kobayashi, S.Nagasc. Mg@C_(72) MNDO/d evaluation of the isomeric composition. J. Mol. Graph. Mod.,2001, 19,252.
    [136]. T. Wakahara, H. Nikawa, T. Kikuchi, T. Nakahodo, G. M. A. Rahman, T. Tsuchiya, Y.Maeda, T. Akasaka, K. Yoza, E. Horn, K. Yamamoto, N. Mizorogi, Z. Slanina, S. Nagase.La@C_(72) having a non-IPR carbon cage. J. Am. Chem. Soc., 2006, 128, 14228.
    [137]. X. G. Liu, M. Chi, P. D. Han, Z. X. Zhang, X. H. Fang, W. Jia, B. S. Xu. Geometric and electronic structures of non-IPR metallofullerene La@C_(72). J. Mol. Struct.: Theochem,2007,818,71.
    [138]. S. Nagase, K. Kobayashi, T. Akasaka. Unconventional cage structures of endohedral metallofullerenes. J. Mol. Struct: Theochem, 1999,461-462, 97.
    [139]. C. M. Tang, S. Y. Fu, K. M. Deng, Y. B. Yuan, W. S. Tan, D. C. Huang, X. Wang. The density functional calculations on the structural stability, electronic properties, and static linear polarizability of the endohedral metallofullerene Ba@C_(74). J. Mol. Struct:Theochem., 2008, 867, 111.
    [140]. D. Rappoport, F. Furche. Structure of endohedral fullerene Eu@C_(74). Phys. Chem. Chem.Phys., 2009, 11,6353.
    [141]. Z. Slanina, F. Uhlik, S. Nagase. Computed structures of two known Yb@C_(74) isomers. J. Phys. Chem. A, 2006, 110, 12860.
    [142]. F. Uhlik, Z. Slanina, S. Nagase. Mg@C_(74) isomers: calculated relative concentrationsand comparison with Ca@C_(74). Phys. stat. sol(a), 2007, 204, 1905.
    [143]. Z. Slanina, F. Uhlik, S. L. Lee, L. Adamowicz, S. Nagase. Computed structures and relative stabilities of Be@C_(74). Inter.J. Quan. Chem., 2007,107, 2494.
    [144]. Z. Slanina, F. Uhlik, S. L. Lee, L. Adamowicz, S. Nagase. Computations on three isomers of La@C_(74). Inter. J. Quan. Chem., 2008, 108, 2636.
    [145]. K. Kobayashi, S. Nagase. Structures of the Ca@C_(82) isomers: a theoretical prediction. Chem. Phys. Lett., 1997,274, 226.
    [146]. K. Kobayashi, S. Nagase. Structures and electronic states of M@C_(82) (M = Sc, Y, La and lanthanides). Chem. Phys. Lett., 1998, 282, 325.
    [147]. N. Mizorogi, S. Nagase. Do Eu@C_(82) and Gd@C_(82) have an anomalous endohedral structure? Chem. Phys. Lett, 2006,431, 110.
    [148]. L. Senapati, J. Schrier, K. B. Whaley. Electronic transport, structure, and energetics of endohedral Gd@C_(82) metallofullerenes. Nano Lett., 2004,4, 2073.
    [149]. L. Wang, D. R. Yang. Comment on "electronic transport, structure, and energetics of endohedral Gd@C_(82) metallofullerenes"Nano Lett., 2005, 5, 2340.
    [150]. L. Senapati, J. Schrier, K. B. Whaley. Reply to comment on "electronic transport,structure, and energetics of endohedral Gd@C_(82) metallofullerenes". Nano Lett., 2005, 5,2341.
    [151]. K. Muthukumar, J. A. Larsson. A density functional study of Ce@C_(82): explanation of the Ce preferential bonding site. J. Phys. Chem. A, 2008, 112, 1071.
    [152]. a) S. Nagase, K. Kobayashi. Theoretical study of the lanthanide fullerene CeC_(82).Comparison with ScC_(82), YC_(82) and LaC_(82). Chem. Phys. Lett., 1994, 228, 106; b) J. Lu, X. W. Zhang, X. G. Zhao, S. Nagase, K. Kobayashi. Strong metal-cage hybridization in endohedral La@C_(82), Y@C_(82) and Sc@C_(82). Chem. Phys. Lett., 2000, 332, 219.
    [153]. X. Wu, X. Lu. Dimetalloendofullerene U_2@C_(60) has a U-U multiple bond consisting of sixfold one-electron-two-center bonds J. Am. Chem. Soc., 2007, 129, 2171.
    [154]. I. Infante, L. Gagliardi, G. E. Scuseria. Is fullerene C_(60) large enough to host a multiply bonded dimetal?J. Am. Chem. Soc., 2008, 130, 7459.
    [155]. K. Kobayashi, S. Nagase. A stable unconventional structure of Sc_2@C_(66) found by density functional calculations. Chem. Phys. Lett., 2002, 362, 373.
    [156]. Z. Slanina, Z. F. Chen, P. v. R. Schleyer, F. Uhlik, X. Lu, S. Nagase. La_2@C_(72) and Sc_2@C_(72): computational characterizations. J. Phys. Chem. A, 2006,110, 2231.
    [157]. A. A. Popov, L. Dunsch. Structure, stability, and cluster-cage interactions in nitride clusterfullerenes M_3N@C_(2n) (M = Sc, Y; 2n = 68-98): a density functional theory study. J.Am. Chem. Soc., 2007, 129, 11835.
    [158]. K. Kobayashi, S. Nagase, T. Akasaka. A theoretical study of C_(80) and La_2@C_(80). Chem.Phys. Lett., 1995,245, 230.
    [159]. J. F. Zhang, C. Hao, S. M. Li, W. H. Mi, P. Jin. Which configuration is more stable for La_2@C_(80), D_(3d) or D_(2h)? recomputation with ZORA methods within ADF. J. Phys. Chem. C,2007,111,7862.
    [160]. H. Shimotani, T. Ito, Y. Iwasa, A. Taninaka, H. Shinohara, E. Nishibori, M. Takata, M.Sakata. Quantum chemical study on the configurations of encapsulated metal ions and the molecular vibration modes in endohedral dimetallofullerene La_2@C_(80). J. Am. Chem. Soc.,2004,126,364.
    [161]. K. Muthukumar, J. A. Larsson. Explanation of the different preferential binding sites for Ce and La in M_2@C_(80) (M = Ce, La)-a density functional theory prediction. J. Mater.Chem., 2008, 18,3347.
    [162]. J. M. Campanera, C. Bo, J. M. Poblet. General rule for the stabilization of fullerene cages encapsulating trimetallic nitride templates. Angew. Chem. Int. Ed., 2005,44, 7230.
    [163]. R. Valencia, A. Rodriguez-Fortea, J. M. Poblet. Large fullerenes stabilized by encapsulation of metallic clusters. Chem. Commun., 2007,4161.
    [164]. S. F. Yang, A. A. Popov, L. Dunsch. Violating the isolated pentagon rule (IPR): the endohedral non-IPR C_(70) cage of Sc_3N@C_(70). Angew. Chem. Int. Ed., 2007,46, 1256.
    [165]. S. F. Yang, A. A. Popov, L. Dunsch. The role of an symmetric nitride cluster on a fullerene cage: the non-IPR endohedral DySc_2N@C_(76). J. Phys. Chem. B, 2007,49, 13659.
    [166]. A. A. Popov, M. Krause, S. F. Yang, J. Wong, L. Dunsch. C_(78) cage isomerism defined by trimetallic nitride cluster size: a computational and vibrational spectroscopic study. J.Phys. Chem. B, 2007, 111, 3363.
    [167]. K. Kobayashi, Y. Sano, S. Nagase. Theoretical study of endohedral metallofullerenes: Sc_(3-n)La_nN@C_(80) (n = 0-3). J. Comput. Chem., 2001,22,1353.
    [168]. J. M. Campanera, C. Bo, M. M. Olmstead, A. L. Balch, J. M. Poblet. Bonding within the Endohedral Fullerenes Sc_3N@C_(78) and Sc_3N@C_(80) as determined by density functional calculations and reexamination of the crystal structure of {Sc_3N@C_(78)·Co(OEP)}·1.5(C_6H_6)·0.3(CHCl_3). J. Phys. Chem. A, 2002,106, 12356.
    [169]. J. M. Campanera, C. Bo, J. M. Poblet. Exohedral reactivity of trimetallic nitride template (TNT) endohedral metallofullerenes. J. Org. Chem., 2006, 71, 46.
    [170]. A. A. Popov, L. Dunsch. Hindered cluster rotation and 45Sc hyperfine splitting constant in distonoid anion radical Sc_3N@C_(80)~-, and spatial spin-charge separation as a general principle for anions of endohedral fullerenes with metal-localized lowest unoccupied molecular orbitals. J. Am. Chem. Soc., 2008, 130, 17726.
    [171]. D. Liu, F. Hagelberg, S. S. Park. Charge transfer and electron backdonation in metallofullerenes encapsulating NSc_3. Chem. Phys., 2006, 330, 380.
    [172]. R. Valencia, A. Rodriguez-Fortea, J. M. Poblet. Understanding the stabilization of metal carbide endohedral fullerenes M_2C_2@C_(82) and related systems. J. Phys. Chem. A, 2008,112,4550.
    [173]. Z. Q. Shi, X. Wu, C. R. Wang, X. Lu, H. Shinohara. Isolation and characterization of Sc_2C_2@C_(68): a metal-carbide endofullerene with a non-IPR carbon cage. Angew. Chem. Int.Ed, 2006,45,2107.
    [174]. K. Tan, X. Lu. Electronic structure and redox properties of the open-shell metal-carbide endofullerene Sc_3C_2@C_(80): a density functional theory investigation. J. Phys. Chem. A,2006,110,1171.
    [175]. K. Tan, X. Lu, C. R. Wang. Unprecedented μ_4-C_2~(6-) Anion in Sc_4C_2@C_(80). J. Phys. Chem.5,2006,110,11098.
    [176]. A. N. Enyashin, Y. N. Makurin, A. L. Ivanovskii, Ab initio study of dititanium endofullerenes: D_(5d)- and D_(5h)-Ti_2@C_(80). Comput. Mat. Sci., 2006, 36, 26.
    [177]. T. Yumura, Y. Sato, K. Suenaga, S. Iijima. Which do endohedral Ti_2C_(80) metallofullerenes prefer energetically: Ti_2@C_(80) or Ti_2C_2@C_(78)? a theoretical study. J. Phys. Chem. B, 2005,109,20251.
    [178]. T. Suzuki, K. Kikuchi, F. Oguri, Y. Nakao, S. Suzuki, Y. Achiba, K. Yamamoto, H.Funasaka, T. Takahashi. Electrochemical properties of fullerenolanthanides. Tetrahedron,1996, 52, 4973.
    
    [179]. H. Shinohara. Endohedral metallofullerenes. Rep. Prog. Phys., 2000, 63, 843.
    [180]. a) M. Mikawa, H. Kato, M. Okumura, M. Narazaki, Y. Kanazawa, N. Miwa, H. Shinohara.Paramagnetic water-soluble metallofullerenes having the highest relaxivity for MRI contrast agents. Bioconjugate Chem., 2001, 12, 510; b) B. Sitharaman, R. D. Bolskar, I.Rusakova, L. J. Wilson. Gd@C_(60)[C(COOH)_2]_(10) and Gd@C_(60)(OH)_x: nanoscale aggregation studies of two metallofullerene MRI contrast agents in aqueous solution.Nano Lett., 2004, 4, 2373; c) (?). Toth, R. D. Bolskar, A. Borel, G. Gonzalez, L. Helm, A.E. Merbach, B. Sitharaman, L. J. Wilson. Water-soluble gadofullerenes: toward high-relaxivity, pH-responsive MRI contrast agents. J. Am. Chem. Soc., 2005, 127, 799.
    [181]. T. Akasaka, T. Kato, K. Kobayashi, S. Nagase, K. Yamamoto, H. Funasaka, T. Takahashi.Exohedral adducts of La@C_(82). Nature,1995, 374, 6523.
    [182]. a) T. Akasaka, W. Ando, K. Kobayashi, S. Nagase. Photochemical [2 + 3] cycloaddition of C_(60) with disiliranes. J. Am. Chem. Soc., 1993, 115, 10366; b) T. Akasaka, E. Mitsuhida,W. Ando, K. Kobayashi, S. Nagase. Adduct of C_(70) at the equatorial belt: photochemical cycloaddition with disiliranel. J. Am. Chem. Soc., 1994, 116, 2627.
    [183]. M. Yamada, L. Feng, T. Wakahara, T. Tsuchiya, Y. Maeda, Y. F. Lian, M. Kako, T.Akasaka, T. Kato, K. Kobayashi, S. Nagase. Synthesis and characterization of exohedrally silylated M@C_(82) (M = Y and La). J. Phys. Chem. B, 2005, 109, 6049.
    [184]. T. Akasaka, S. Okubo, M. Kondo, Y. Maeda, T. Wakahara, T. Kato, T. Suzuki, K.Yamamoto, K. Kobayashi, S. Nagase. Isolation and characterization of two Pr@C_(82) isomers. Chem. Phys. Lett., 2000,319, 153.
    [185]. T. Akasaka, S. Nagase, K. Kobayashi, T. Suzuki, T. Kato, K. Yamamoto, H. Funasakae, T.Takahashie. Exohedral derivatization of an endohedral metallofullerene Gd@C_(82). J. Chem.Soc., Chem. Commun., 1995, 1343.
    [186]. Y. Maeda, J. Miyashita, T. Hasegawa, T. Wakahara, T. Tsuchiya, L. Feng, Y. F. Lian, T.Akasaka, K. Kobayashi, S. Nagase, M. Kako, K. Yamamoto, K. M. Kadish. Chemical reactivities of the cation and anion of M@C_(82) (M = Y, La, and Ce). J. Am. Chem. Soc.,2005,127,2143.
    [187]. T. Akasaka, S. Nagase, K. Kobayashi, T. Suzuki, T. Kato, K. Kikuchi, Y. Achiba, K.Yamamoto, H. Funasaka, T. Takahashi. Synthesis of the first adducts of the dimetallofullerenes La_2@C_(80) and Sc_2@C_(84) by addition of a disilirane. Angew. Chem. Int.Ed, 1995,34, 2139.
    [188]. Y. Iiduka, O. Ikenaga, A. Sakuraba, T. Wakahara, T. Tsuchiya, Y. Maeda, T. Nakahodo,T. Akasaka, M. Kako, N. Mizorogi, S. Nagase. Chemical reactivity of Sc_3N@C_(80) and La_2@C_(80). J. Am. Chem. Soc., 2005, 127, 9956.
    [189]. T. Wakahara, M. Yamada, S. Takahashi, T. Nakahodo, T. Tsuchiya, Y. Maeda, T.Akasaka, M. Kako, K. Yoza, E. Horn, N. Mizorogi, S. Nagase. Two-dimensional hopping motion of encapsulated La atoms in silylated La_2@C_(80). Chem. Commun., 2007,2680.
    [190]. T. Wakahara, Y. Iiduka, O. Ikenaga, T. Nakahodo, A. Sakuraba, T. Tsuchiya, Y. Maeda,M. Kako, T. Akasaka, K. Yoza, E. Horn, N. Mizorogi, S. Nagase. Characterization of the bis-silylated endofullerene Sc_3N@C_(80). J. Am. Chem. Soc., 2006, 128, 9919.
    [191]. M. Maggini, G. Scorrano, M. Prato. Addition of azomethine ylides to C_(60): synthesis,characterization, and functionalization of fullerene pyrrolidines. J. Am. Chem. Soc., 1993,115,9798.
    [192]. B. P. Cao, T. Wakahara, Y. Maeda, A. H. Han, T. Akasaka, T. Kato, K. Kobayashi, S.Nagase. Lanthanum endohedral metallofulleropyrrolidines: synthesis, isolation, and EPR characterization. Chem. Eur. J., 2004, 10, 716.
    [193]. a) X. Lu, X. R. He, L. Feng, Z. J. Shi, Z. N. Gu. Synthesis of pyrrolidine ring-fused metallofullerene derivatives. Tetrahedron, 2004, 60, 3713; b) L. Feng, X. Lu, X. R. He, Z.J. Shi, Z. N. Gu. Reactions of endohedral metallofullerenes with azomethine ylides: an effcient route toward metallofullerene-pyrrolidines. Inorg. Chem. Commun., 2004, 7,1010.
    [194]. C. M. Cardona, A. Kitaygorodskiy, A. Ortiz, M. A. Herranz, L. Echegoyen. The first fulleropyrrolidine derivative of Sc_3N@C_(80): pronounced chemical shift differences of the geminal protons on the pyrrolidine ring. J. Org. Chem., 2005, 70, 5092.
    [195]. T. Cai, Z. X. Ge, E. B. Iezzi, T. E. Glass, K. Harich, H. W. Gibson, H. C. Dorn. Synthesis and characterization of the first trimetallic nitride templated pyrrolidino endohedral metallofullerenes. Chem. Commun., 2005, 3594.
    [196]. C. M. Cardona, B. Elliott, L. Echegoyen. Unexpected chemical and electrochemical properties of M_3N@C_(80) (M = Sc, Y, Er). J. Am. Chem. Soc., 2006, 128, 6480.
    
    [197]. C. M. Cardona, A. Kitaygorodskiy, L. Echegoyen. Trimetallic nitride endohedral metallofullerenes: reactivity dictated by the encapsulated metal cluster. J. Am. Chem. Soc.,2005, 127, 10448.
    
    [198]. N. Chen, E. Y. Zhang, K. Tan, C. R. Wang, X. Lu. Size effect of encaged clusters on the exohedral chemistry of endohedral fullerenes: a case study on the pyrrolidino reaction of Sc_xGd_(3-x)N@C_(80) (x = 0-3). Org. Lett., 2007, 9, 2011.
    
    [199]. A. Rodriguez-Fortea, J. M. Campanera, C. M. Cardona, L. Echegoyen, J. M. Poblet.Dancing on a fullerene surface: isomerization of Y_3N@(N-ethylpyrrolidino-C_(80)) from the 6, 6 to the 5, 6 regioisomer. Angew. Chem. Int. Ed, 2006,45, 8176.
    
    [200]. N. Chen, L. Z. Fan, K. Tan, Y. Q. Wu, C. Y. Shu, X. Lu, C. R. Wang. Comparative spectroscopic and reactivity studies of Sc_(3-x)Y_xN@C_(80) (x = 0-3). J. Phys. Chem. C, 2007,111,11823.
    
    [201]. T. Cai, C. Slebodnick, L. S. Xu, K. Harich, T. E. Glass, C. Chancellor, J. C. Fettinger, M.M. Olmstead, A. L. Balch, H. W. Gibson, H. C. Dom. A pirouette on a metallofullerene sphere: interconversion of isomers of N-tritylpyrrolidino I_h-Sc_3N@C_(80). J. Am. Chem. Soc.,2006, 128, 6486.
    
    [202]. T. Cai, L. Xu, H. W. Gibson, H. C. Dom, C. J. Chancellor, M. M. Olmstead, A. L. Balch.Sc_3N@C_(78): encapsulated cluster regiocontrol of adduct docking on an ellipsoidal metallofullerene sphere. J. Am. Chem. Soc., 2007,129, 10795.
    [203]. C. Bingel. Cyclopropylation of fullerenes. Chem. Ber., 1993, 126, 1957.
    [204]. A. Hirsch, I. Lamparth, H. R. Karfunkel. Fullerene chemistry in 3 dimensions-isolation of 7 regioisomeric bisadducts and chiral trisadducts of C_(60) and di(ethoxycarbonyl)methylene.Angew. Chem. Int. Ed, 1994, 33,437.
    [205]. R. D. Bolskar, A. F. Benedetto, L. O. Husebo, R. E. Price, E. F. Jackson, S. Wallace, L. J.Wilson, J. M. Alford. First soluble M@C_(60) derivatives provide enhanced access to metallofullerenes and permit in vivo evaluation of Gd@C_(60)[C(COOH)_2]_(10) as a MRI contrast agent. J. Am. Chem. Soc., 2003, 125, 5471.
    [206]. L. Feng, T. Nakahodo, T. Wakahara, T. Tsuchiya, Y. Maeda, T. Akasaka, T. Kato, E.Horn, K. Yoza, N. Mizorogi, S. Nagase. A singly bonded derivative of endohedral metallofullerene: La@C_(82)CBr(COOC_2H_5)_2. J. Am. Chem. Soc., 2005, 127, 17136.
    [207]. L. Feng, T. Wakahara, T. Nakahodo, T. Tsuchiya, Q. Y. Piao, Y. Maeda, Y. F. Lian, T.Akasaka, E. Horn, K. Yoza, T. Kato, N. Mizorogi, S. Nagase. The bingel monoadducts of La@C_(82): synthesis, characterization, and electrochemistry. Chem. Eur. J., 2006, 12, 5578.
    [208]. L. Feng, T. Tsuchiya, T. Wakahara, T. Nakahodo, Q. Y. Piao, Y. Maeda, T. Akasaka, T.Kato, K. Yoza, E. Horn, N. Mizorogi, S. Nagase. Synthesis and characterization of a bisadduct of La@C_(82). J. Am. Chem. Soc., 2006, 128, 5990.
    [209]. O. Lukoyanova, C. M. Cardona, J. Rivera, L. Z. Lugo-Morales, C. J. Chancellor, M. M.Olmstead, A. Rodriguez-Fortea, J. M. Poblet, A. L. Balch, L. Echegoyen. "Open rather than closed" malonate methano-fullerene derivatives. the formation of methanofulleroid adducts of Y_3N@C_(80). J. Am. Chem. Soc., 2007, 129, 10423.
    [210]. M. N. Chaur, F. Melin, A. J. Athans, B. Elliott, K. Walker, B. C. Holloway, L. Echegoyen.The influence of cage size on the reactivity of trimetallic nitride metallofullerenes: a mono- and bis-methanoadduct of Gd_3N@C_(80) and a monoadduct of Gd_3N@C_(84). Chem.Commun., 2008, 2665.
    [211]. T. Cai, L. S. Xu, C. Y. Shu, J. E. Reid, H. W. Gibson, H. C. Dorn. Synthesis and Characterization of a Non-IPR Fullerene Derivative: Sc_3N@C_(68)[C(COOC_2H_5)_2]. J. Phys.Chem. C, 2008,112,19203.
    [212]. T. Cai, L. S. Xu, C. Y. Shu, H. A. Champion, J. E. Reid, C. Anklin, M. R. Anderson, H.W. Gibson, H. C. Dorn. Selective formation of a symmetric Sc_3N@C_(78) bisadduct: adduct docking controlled by an internal trimetallic nitride cluster. J. Am. Chem. Soc., 2008, 130,2136.
    [213]. T. Suzuki, Y. Maruyama, T. Kato, T. Akasaka, K. Kobayashi, S. Nagase, K. Yamamoto, H. Funasaka, T. Takahashi. Chemical reactivity of a metallofullerene: EPR study of diphenylmethano-La@C_(82) radicals. J. Am. Chem. Soc., 1995, 117, 9606.
    [214]. L. Feng, X. M. Zhang, Z. P. Yu, J. B. Wang, Z. N. Gu. Chemical modification of Tb@C_(82) by copper(I)-catalyzed cycloadditions. Chem. Mater., 2002,14, 4021.
    [215]. T. Akasaka, T. Kono, Y. Takematsu, H. Nikawa, T. Nakahodo, T. Wakahara, M. O.Ishitsuka, T. Tsuchiya, Y. Maeda, M. T. H. Liu, K. Yoza, T. Kato, K. Yamamoto, N.Mizorogi, Z. Slanina, S. Nagase. Does Gd@C_(82) have an anomalous endohedral structure?synthesis and single crystal X-ray structure of the carbene adduct. J. Am. Chem. Soc.,2008, 130, 12840.
    [216]. Y. Takano, M. Aoyagi, M. Yamada, H. Nikawa, Z. Slanina, N. Mizorogi, M. O. Ishitsuka,T. Tsuchiya, Y. Maeda, T. Akasaka, T. Kato, S. Nagase. Anisotropic magnetic behavior of anionic Ce@C_(82) carbene adducts. J. Am. Chem. Soc., 2009, 131, 9340.
    [217]. X. Lu, H. Nikawa, L. Feng, T. Tsuchiya, Y. Maeda, T. Akasaka, N. Mizorogi, Z. Slanina, S. Nagase. Location of the yttrium atom in Y@C_(82) and its influence on the reactivity of cage carbons. J. Am. Chem. Soc., 2009, 131, 12066.
    [218]. Y. Iiduka, T. Wakahara, K. Nakajima, T. Nakahodo, T. Tsuchiya, Y. Maeda, T. Akasaka,K. Yoza, M. T. H. Liu, N. Mizorogi, S. Nagase. Experimental and theoretical studies of the scandium carbide endohedral metallofullerene Sc_2C_2@C_(82) and its carbene derivative. Angew. Chem. Int. Ed., 2007,46, 5562.
    [219]. T. Akasaka, T. Kono, Y. Matsunaga, T. Wakahara, T. Nakahodo, M. O. Ishitsuka, Y.Maeda, T. Tsuchiya, T. Kato, M. T. H. Liu, N. Mizorogi, Z. Slanina, S. Nagase. Isolation and characterization of carbene derivatives of La@C_(82)(C_s). J. Phys. Chem. A, 2008, 112,1294.
    [220]. M. Yamada, C. Someya, T. Wakahara, T. Tsuchiya, Y. Maeda, T. Akasaka, K. Yoza, E.Horn, M. T. H. Liu, N. Mizorogi, S. Nagase. Metal atoms collinear with the spiro carbon of 6, 6-open adducts, M_2@C_(80)(ad) (M = La and Ce, ad = adamantylidene). J. Am. Chem.Soc., 2008, 130, 1171.
    [221]. X. Lu, H. Nikawa, T. Tsuchiya, Y. Maeda, M. O. Ishitsuka, T. Akasaka, M. Toki, H.Sawa, Z. Slanina, N. Mizorogi, S. Nagase. Bis-carbene adducts of non-IPR La_2@C_(72):localization of high reactivity around fused pentagons and electrochemical properties.Angew. Chem. Int. Ed., 2008,47, 8642.
    [222]. E. B. Iezzi, J. C. Duchamp, K. Harich, T. E. Glass, H. M. Lee, M. M. Olmstead, A. L.Balch, H. C. Dorn. A symmetric derivative of the trimetallic nitride endohedral metallofullerene, Sc_3N@C_(80).J. Am. Chem. Soc., 2002, 124, 524.
    [223]. H. M. Lee, M. M. Olmstead, E. Iezzi, James C. Duchamp, H. C. Dorn, A. L. Balch.Crystallographic characterization and structural analysis of the first organic functionalization product of the endohedral fullerene Sc_3N@C_(80). J. Am. Chem. Soc., 2002,124, 3494.
    [224]. S. Stevenson, R. R. Stephen, T. M. Amos, V. R. Cadorette, J. E. Reid, J. P. Phillips.Synthesis and purification of a metallic nitride fullerene bisAdduct: exploring the reactivity of Gd_3N@C_(80). J. Am. Chem. Soc., 2005, 127, 12776.
    [225]. Y. Maeda, J. Miyashita, T. Hasegawa, T. Wakahara, T. Tsuchiya, T. Nakahodo, T.Akasaka, N. Mizorogi, K. Kobayashi, S. Nagase, T. Kato, N. Ban, H. Nakajima, Y.Watanabe. Reversible and regioselective reaction of La@C_(82) with cyclopentadiene. J. Am.Chem. Soc., 2005, 127, 12190.
    [226]. Z. X. Ge, J. C. Duchamp, T. Cai, H. W. Gibson, H. C. Dorn. Purification of endohedral trimetallic nitride fullerenes in a single, facile step. J. Am. Chem. Soc., 2005, 127, 16292.
    [227]. C. D. Angeli, T. Cai, J. C. Duchamp, J. E. Reid, E. S. Singer, H. W. Gibson, H. C. Dorn.Purification of trimetallic nitride templated endohedral metallofullerenes by a chemical reaction of congeners with eutectic 9-methylanthracene. Chem. Mater., 2008, 20,4993.
    [228]. H. Nikawa, T. Kikuchi, T. Wakahara, T. Nakahodo, T. Tsuchiya, G. M. A. Rahman, T.Akasaka, Y. Maeda, K. Yoza, E. Horn, K. Yamamoto, N. Mizorogi, S. Nagase. Missing metallofullerene La@C_(74). J. Am. Chem. Soc., 2005, 127, 9684.
    [229]. H. Nikawa, T. Yamada, B. P. Cao, N. Mizorogi, Z. Slanina, T. Tsuchiya, T. Akasaka, K.Yoza, S. Nagase. Missing metallofullerene with C_(80) cage. J. Am. Chem. Soc., 2009, 131,10950.
    [230]. Y. Takano, A. Yomogida, H. Nikawa, M. Yamada, T. Wakahara, T. Tsuchiya, M. O.Ishitsuka, Y. Maeda, T. Akasaka, T. Kato, Z. Slanina, N. Mizorogi, S. Nagase. Radical coupling reaction of paramagnetic endohedral metallofullerene La@C_(82). J. Am. Chem.Soc., 2008, 130, 16224.
    [231]. C. Y. Shu, C. Slebodnick, L. S. Xu, H. Champion, T. Fuhrer, T. Cai, J. E. Reid, W. J. Fu,K. Harich, H. C. Dorn, H. W. Gibson. Highly regioselective derivatization of trimetallic nitride templated endohedral metallofullerenes via a facile photochemical reaction. J. Am.Chem. Soc., 2008, 130, 17755.
    [232]. N. Tagmatarchis, A. Taninaka, H. Shinohara. Production and EPR characterization of exohedrally perfluoroalkylated paramagnetic lanthanum metallofullerenes: (La@C_(82))-(C_8F_(17))_2. Chem. Phys. Lett., 2002, 355, 226.
    [233]. I. E. Kareev, S. F. Lebedkin, V. P. Bubnov, E. B. Yagubskii, I. N. Ioffe, P. A. Khavrel, I.V. Kuvychko, S. H. Strauss, O. V. Boltalina. Trifluoromethylated endohedral metallofullerenes: synthesis and characterization of Y@C_(82)(CF_3)_5. Angew. Chem. Int. Ed.,2005,44,1846.
    [234]. N. B. Shustova, A. A. Popov, M. A. Mackey, C. E. Coumbe, J. P. Phillips, S. Stevenson,S. H. Strauss, O. V. Boltalina. Radical trifluoromethylation of Sc_3N@C_(80). J. Am. Chem.Soc., 2007, 129, 11676.
    [235]. C. Y. Shu, T. Cai, L. S. Xu, T. M. Zuo, J. Reid, K. Harich, H. C. Dorn, H. W. Gibson.Manganese(III)-catalyzed free radical reactions on trimetallic nitride endohedral metallofullerenes. J. Am. Chem. Soc., 2007, 129, 15710.
    [236]. S. R. Zhang, D. Y. Sun, X. Y. Li, F. K. Pei, S. Y. Liu. Synthesis and solvent enhanced relaxation property of water-soluble endohedral metallofullerenols. Fuller. Sci. Tech.,1997,5, 1635.
    [237]. L. J. Wilson, D. W. Cagle, T. P. Thrash, S. J. Kennel, S. Mirzadeh, J. M. Alford, G. J.Ehrhardt. Metallofullerene drug design. Coord Chem. Rev., 1999, 190-192, 199.
    [238]. D. Y. Sun, H. J. Huang, S. H. Yang, Z. Y. Liu, S. Y. Liu. Synthesis and characterization of a water-soluble endohedral metallofullerol. Chem. Mater., 1999,11, 1003.
    [239]. H. Kato, K. Suenaga, M. Mikawa, M. Okumura, N. Miwa, A. Yashiro, H. Fujimura, A.Mizuno, Y. Nishida, K. Kobayashi, H. Shinohara. Syntheses and EELS characterization of water-soluble multi-hydroxyl Gd@C_(82) fullerenols. Chem. Phys. Lett., 2000, 324, 255.
    [240]. H. Kato, Y. Kanazawa, M. Okumura, A. Taninaka, T. Yokawa, H. Shinohara. Lanthanoid endohedral metallofullerenols for MRI contrast agents. J. Am. Chem. Soc., 2003, 125,4391.
    [241]. X. Lu, X. H. Zhou, Z. J. Shi, Z. N. Gu. Nucleophilic addition of glycine esters to Gd@C_(82) Inorg. Chim. Acta, 2004, 357, 2397.
    [242]. C. Y. Shu, L. H. Gan, C. R. Wang, X. L. Pei, H. B. Han. Synthesis and characterization of a new water-soluble endohedral metallofullerene for MRI contrast agents. Carbon, 2006,44, 496.
    [243]. E. B. Iezzi, F. Cromer, P. Stevenson, H. C. Dorn. Synthesis of the first water-soluble trimetallic nitride endohedral metallofullerols. Syn. Metal, 2002, 128, 289.
    [244]. P. P. Fatouros, F. D. Corwin, Z. J. Chen, W. C. Broaddus, J. L. Tatum, B. Kettenmann, Z.X. Ge, H. W. Gibson, J. L. Russ, A. P. Leonard, J. C. Duchamp, H. C. Dorn. In vitro and in vivo imaging studies of a new endohedral metallofullerene nanoparticle. Radiology,2006,240, 756.
    [245]. E. Y. Zhang, C. Y. Shu, L. Feng, C. R. Wang. Preparation and characterization of two new water-soluble endohedral metallofullerenes as magnetic resonance imaging contrast agents. J. Phys. Chem. B, 2007, 111, 14223.
    [246]. X. Lu, J. X. Xu, X. R. He, Z. J. Shi, Z. N. Gu. Addition of benzyne to Gd@C_(82). Chem.Mater., 2004,16, 953.
    [247]. X. F. Li, L. Z. Fan, D. F. Liu, H. H. Y. Sung, I. D. Williams, S. H. Yang, K. Tan, X. Lu.Synthesis of a Dy@C_(82) derivative bearing a single phosphorus substituent via a zwitterion approach. J. Am. Chem. Soc., 2007, 129, 10636.
    [248]. C. Y. Shu, W. Xu, C. Slebodnick, H. Champion, W. J. Fu, J. E. Reid, H. Azurmendi, C. R.Wang, K. Harich, H.'C. Dorn, H. W. Gibson. Syntheses and structures of phenyl-C_(81)-butyric acid methyl esters (PCBMs) from M_3N@C_(80). Org. Lett., 2009, 11, 1753.
    [1]. B. P. Cao, Z. J. Shi, X. H. Zhou, Z. N. Gu, H. Zh. Xiao, J. Z. Wang. Synthesis and characterization of calcium endohedral fullerenes. Chem. Lett. 1997, 937.
    [2]. C. M(?)schel, M. Jansen. A novel approach to the synthesis of endohedral fullerenes as demonstrated by endohedral barium fullerenes. Chem. Ber.-Recueil, 1997,130, 1761.
    [3]. K. Kikuchi, K. Akiyama, K. Sakaguchi, T. Kodama, H. Nishikawa, I. Ikemoto, T. Ishigaki, Y.Achiba, K. Sueki, H. Nakahara. Production and isolation of the isomers of dimetallofullerenes, HoTm@C_(82) and Tm_2@C_(82). Chem. Phys. Lett., 2000, 319,472.
    [4]. H. J. Huang, S. H. Yang Relative yields of endohedral lanthanide metallofullerenes by arc synthesis and their correlation with the elution behavior. J. Phys. Chem. B, 1998, 102,10196.
    [5]. E. G. Gillan, C. Yeretzian, K. S. Min, M. M. Alvarez, R. L. Whetten, R. B. Kaner.Endohedral Rare-Earth Fullerene Complexes. J. Phys. Chem., 1992, 96, 6869.
    [6]. L. Mora, R. S. Ruoff, C. H. Becker, D. C. Lorents, R. Malhotra. Studies of Metallofullerene Primary Soots by Laser and Thermal Desorption Mass Spectrometry. J. Phys. Chem., 1993,97, 6801.
    [7]. Y. F. Lian, Z. J. Shi, X. H. Zhou, X. R. He, Z. N. Gu. High-yield preparation of endohedral metallofullerenes by an improved DC arc-discharge method. Carbon, 2000, 38, 2117.
    [8]. T. Okazaki, Y. F. Lian, Z. N. Gu, K. Suenaga, H. Shinohara. Isolation and spectroscopic characterization of Sm-containing metallofullerenes. Chem. Phys. Lett., 2000, 320, 435.
    [9]. T. Okazaki, K. Suenaga, Y. F. Lian, Z. N. Gu, H. Shinohara. Direct EELS observation of the oxidation states of Sm atoms in Sm@C_(2n) metallofullerenes(74 ≤ 2n ≤ 84). J. Chem. Phys.,2000,113,9593.
    [10].Y. F. Lian, Z. J. Shi, X. H. Zhou, X. R. He, Z. N. Gu. Preparation and Enrichment of Samarium Endohedral Fullerenes. Chem. Mater., 2001,13, 39.
    [11].B. Y. Sun, M. X. Li, H. X. Luo, Z. J. Shi, Z. N. Gu. Electrochemical properties of metallofullerenes and their anions. Electrochi. Acta, 2002,47, 3545.
    [12].T. Okazaki, K. Suenaga, Y. F. Lian, Z. N. Gu, H. Shinohara. Intrafullerene electron transfers in Sm-containing metallofullerenes: Sm@C_(2n)(74 ≤ 2n ≤ 84). J. Mol. Graph. Mod., 2001, 19,244.
    [13].T. J. S. Dennis, H. Shinohara. Production and isolation of the C80-based group 2 incar-fullerenes: iCaC_(80), /SrC_(80) and iBaC_(80) Chem. Commun., 1998, 883.
    [14].Z. D. Xu, T. Nakane, H. Shinohara. Production and Isolation of Ca@C_(82)(I-IV) and Ca@C_(84)(I,II) Metallofullerenes.J. Am. Chem. Soc., 1996, 118, 11309.
    [15].T. Kodama, R. Fujii, Y. Miyake, K. Sakaguchi, H. Nishikawa, I. Ikemoto, K. Kikuchi, Y.Achiba. Structural study of four Ca@C_(82) isomers by ~(13)C NMR spectroscopy. Chem. Phys.Lett., 2003, 377, 197.
    [16].B. Y. Sun, T. Inoue, T. Shimada, T. Okazaki, T. Sugai, K. Suenaga, H. Shinohara. Synthesis and Characterization of Eu-Metallofullerenes from Eu@C_(74) to Eu@C_(90) and Their Nanopeapods. J. Phys. Chem. B, 2004, 108, 9011.
    [17].U. Kirbach, L. Dunsch. The Existence of Stable Tm@C_(82) Isomers. Angew. Chem. Int. Ed. Engl.,1996,35,2380.
    [18].J. X. Xu, X. Lu, X. H. Zhou, X. R. He, Z. J. Shi, Z. N. Gu. Synthesis, Isolation, and Spectroscopic Characterization of Ytterbium-Containing Metallofullerenes. Chem. Mater., 2004, 16, 2959.
    [19].T. J. S. Dennis, H. Shinohara. Production and isolation of endohedral strontium- and barium-based mono-metallofullerenes: Sr/Ba@C_(82) and Sr/Ba@C_(84). Chem. Phys. Lett., 1997, 278, 107.
    [20].Y. Zhang, J. X. Xu, C. Hao, Z. J. Shi, Z. N. Gu. Synthesis, isolation, spectroscopic and electrochemical characterization of some calcium-containing metallofullerenes. Carbon, 2006,44, 475.
    [21].J. X. Xu, Z. Y. Wang, Z. J. Shi, Z. N. Gu. Synthesis, isolation and spectroscopic characterization of Yb-containing high metallofullerenes. Chem. Phys. Lett., 2005,409, 192.
    [22].车宇樑,大笼富勒烯和内嵌含Ca大笼金属富勒烯的合成分离与结构表征,博士学位论文,杭州,浙江大学,2009,P85.
    [23].N. Tagmatarchis, H. Shinohara. Production, Separation, Isolation, and Spectroscopic Study of Dysprosium Endohedral Metallofullerenes. Chem. Mater., 2000, 12, 3222.
    [24].N. Tagmatarchis, E. Aslanis, K. Prassides, H. Shinohara. Mono-, Di- and Trierbium Endohedral Metallofullerenes: Production, Separation, Isolation, and Spectroscopic Study. Chem. Mater., 2001, 13, 2374.
    [25].T. M. Zuo, C. M. Beavers, J. C. Duchamp, A. Campbell, H. C. Dorn, M. M. Olmstead, A. L. Balch. Isolation and Structural Characterization of a Family of Endohedral Fullerenes Including the Large, Chiral Cage Fullerenes Tb_3N@C_(88) and Tb_3N@C_(86) as well as the I_h and D_(5h) Isomers of Tb_3N@C_(80). J. Am. Chem. Soc., 2007, 129, 2035.
    [26].杨华,钆碳化物型金属富勒烯Gd_2C_2@C_(92)和小碳纳米管C_(90),博士学位论文,杭州,浙江大学,2009,P141.
    [27].M. N. Chaur, F. Melin, J. Ashby, B. Elliott, A. Kumbhar, A. M. Rao, L. Echegoyen. Lanthanum Nitride Endohedral Fullerenes La_3N@C_(2n) (43≤n≤55): Preferential Formation of La_3N@C_(96). Chem. Eur. J., 2008, 14, 8213.
    [28].H. Yang, C. X. Lu, Z. Y. Liu, H. X. Jin, Y. L. Che, M. M. Olmstead, A. L. Balch. Detection of a Family of Gadolinium-Containing Endohedral Fullerenes and the Isolation and Crystallographic Characterization of One Member as a Metal-Carbide Encapsulated inside a Large Fullerene Cage. J. Am. Chem. Soc., 2008, 130, 17296.
    [29].Y. L. Che, H. Yang, Z. M. Wang, H. X. Jin, Z. Y. Liu, C. X. Lu, T. M. Zuo, H. C. Dorn, C. M. Beavers, M. M. Olmstead, A. L. Balch. Isolation and Structural Characterization of Two Very Large, and Largely Empty, Endohedral Fullerenes: Tm@C_(3v)-C_(94) and Ca@C_(3v)-C_(94). Inorg. Chem., 2009,48, 6004.
    [30].S. F. Yang, L. Dunsch. Di- and Tridysprosium Endohedral Metallofullerenes with Cages from C_(94) to C_(100). Angew. Chem. Int. Ed., 2006,45, 1299.
    [1]. B. C. Wang, L. Chen, H. W. Wang; Y. M. Chou. Spherical shape of the goldberg type giant fullerenes. Syn. Met., 1999, 103, 2448.
    [2]. G. E. Scuseria The equilibrium structures of giant fullerenes: faceted or spherical shape? An ab initio Hartree-Fock study of icosahedral C_(240) and C_(540). Chem. Phys. Lett, 1995, 243, 193.
    [3]. R. R. Zope, T. Baruah, M. R. Pederson, B. I. Dunlap. Static dielectric response of icosahedral fullerenes from C_(60) to C_(2160) characterized by an all-electron density functional theory. Phys.Rev. 5,2008,77, 115452.
    [4]. C. H. Xu, G. E. Scuseria. An O(N) tight-binding study of carbon clusters up to C_(8640): the geometrical shape of the giant icosahedral fullerenes. Chem. Phys. Lett., 1996, 262, 219.
    [5]. C. Yeretzian,. J. B. Wiley, K. Holczer, T. Su, S. Nguyen, R. B. Kaner, R. L. Whetten. Partial separation of fullerenes by gradient sublimation. J. Phys. Chem., 1993, 97, 10097.
    [6]. C. Moschel, M. Jansen. A novel approach to the synthesis of endohedral fullerenes as demonstrated by endohedral barium fullerenes. Chem. Ber.-Recueil, 1997,130, 1761.
    [7]. Y. F. Lian, Z. J. Shi, X. H. Zhou, X. R. He, Z. N. Gu. High-yield preparation of endohedral metallofullerenes by an improved DC arc-discharge method. Carbon, 2000, 38, 2117.
    [8]. Y. F. Lian, Z. J. Shi, X. H. Zhou, Z. N. Gu, H. Z. Xiao, J. Z. Wang. High-yield preparation of dimetallofullerenes by the improved DC arc discharge method. J. Phys. Chem. Sol., 2000, 61,1037.
    [9]. Y. F. Lian, Z. J. Shi, X. H. Zhou, Z. N. Gu. Different Extraction Behaviors between Divalent and Trivalent Endohedral Metallofullerenes. Chem. Mater., 2004,16, 1704.
    [10].M. N. Chaur, F. Melin, B. Elliott, A. Kumbhar, A. J. Athans, L. Echegoyen. New M_3N@C_(2n) endohedral metallofullerene families (M = Nd, Pr, Ce; n= 40-53): expanding the preferential templating of the C_(88) cage and approaching the C_(96) cage. Chem. Eur. J., 2008, 14, 4594.
    [11].M. N. Chaur, F. Melin, J. Ashby, B. Elliott, A. Kumbhar, A. M. Rao, L. Echegoyen. Lanthanum nitride endohedral fullerenes La_3N@C_(2n) (43 ≤ n ≤ 55): preferential formation of La_3N@C_(96). Chem. Eur. J. 2008,14, 8213.
    [12].N. Tagmatarchis, H. Shinohara. Production, Separation, Isolation, and Spectroscopic Study of Dysprosium Endohedral Metallofullerenes. Chem. Mater., 2000, 12, 3222.
    [13].N. Tagmatarchis, E. Aslanis, K. Prassides, H. Shinohara. Mono-, di- and trierbium endohedral metallofullerenes: production, separation, isolation, and spectroscopic study.Chem. Mater., 2001, 13, 2374.
    [14]. S. F. Yang, L. Dunsch. Di- and tridysprosium endohedral metallofullerenes with cages from C_(94) to C_(100). Angew. Chem. Int. Ed., 2006,45, 1299.
    [15].H. Yang, C. X. Lu, Z. Y. Liu, H. X. Jin, Y. L. Che, M. M. Olmstead, A. L. Balch. Detection of a family of gadolinium-containing endohedral fullerenes and the isolation and crystallographic characterization of one member as a metal-carbide encapsulated inside a large fullerene cage. J. Am. Chem. Soc., 2008, 130, 17296.
    [16].M. N. Chaur, F. Melin, B. Elliott, A. Kumbhar, A. J. Athans, L. Echegoyen. New M_3N@C_(2n) endohedral metallofullerene families (M = Nd, Pr, Ce; n = 40-53): expanding the preferential templating of the C_(88) cage and approaching the C_(96) cage. Chem. Eur. J., 2008, 14, 4594.
    [17].B. Y. Sun, T. Inoue, T. Shimada, T. Okazaki, T. Sugai, K. Suenaga, H. Shinohara. Synthesis and characterization of Eu-metallofullerenes from Eu@C_(74) to Eu@C_(90) and their nanopeapods. J. Phys. Chem. B, 2004,108, 9011.
    [18].张娅,施祖进,郝策,徐建勋,贺晓然,顾镇南Ca@C_(88)和Ca@C_(90)的合成、分离和表征物理化学学报,2004,20(6):573.
    [19].J. X. Xu, Z. Y. Wang, Z. J. Shi, Z. N. Gu. Synthesis, isolation and spectroscopic characterization of Yb-containing high metallofullerenes. Chem. Phys. Lett., 2005, 409, 192.
    [20].车宇樑,大笼富勒烯和内嵌含Ca大笼金属富勒烯的合成分离与结构表征,博士学位论文,杭州,浙江大学,2009,P95.
    [21].Y. L. Che, H. Yang, Z. M. Wang, H. X. Jin, Z. Y. Liu, C. X. Lu, T. M. Zuo, H. C. Dorn, C. M. Beavers, M. M. Olmstead, A. L. Balch Isolation and structural characterization of two very large, and largely empty, endohedral fullerenes: Tm@C_(3v)-C_(94) and Ca@C_(3v)-C_(94). Inorg. Chem., 2009,48, 6004.
    [22].K. Suenaga, R. Taniguchi, T. Shimada, T. Okazaki, H. Shinohara, S. Iijima. Evidence for the Intramolecular Motion of Gd Atoms in a Gd_2@C_(92) Nanopeapod Nano Lett., 2003, 3, 1395.
    [23].E. Xenogiannopoulou, S. Courts, E. Koudoumas, N. Tagmatarchis, T. Inoue, H. Shinohara. Nonlinear optical response of some isomerically pure higher fullerenes and their corresponding endohedral metallofullerene derivatives: C_(82)-C_(2v), Dy@C_(82) (Ⅰ), Dy_2@C_(82) (Ⅰ), C_(92)-C_2 and Er_2@C_(92) (Ⅳ). Chem. Phys. Lett., 2004, 394, 14.
    [24].M. N. Chaur, R. Valencia, A. Rodriguez-Fortea, J. M. Poblet, L. Echegoyen. Trimetallic nitride endohedral fullerenes: experimental and theoretical evidence for the M_3N~(6+)@C_(2n)~(6-) model. Angew. Chem. Int. Ed., 2009,48, 1425.
    [25].A. A. Popov, L. Dunsch. Structure, stability, and cluster-cage interactions in nitride clusterfullerenes M_3N@C_(2n) (M = Sc, Y; 2n = 68-98): a density functional theory study. J. Am. Chem. Soc., 2007, 129, 11835.
    [26].J. M. Campanera, C. Bo, J. M. Poblet. General rule for the stabilization of fullerene cages encapsulating trimetallic nitride templates. Angew. Chem. Int. Ed., 2005,44, 7230.
    [27].R. Valencia, A. Rodriguez-Fortea, J. M. Poblet Understanding the stabilization of metal carbide endohedral fullerenes M_2C_2@C_(82) and related systems J. Phys. Chem. A, 2008, 112, 4550.
    [28].P. Hohenberg,and W. Kohn. Inhomogeneous Electron. Gas. Phys. Rev., 1964, 136, B864.
    [29].W. Kohn, L. J. Sham. Self-consistent equations including exchange and correlation effects. Phys. Rev., 1965, 140, A1133.
    [30].S. H. Vosko, L. Wilk, M. Nusair. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys., 1980, 58, 1200.
    [31].J. C. Slater. Quantum theory of molecular and solid. McGraw-Hill, New York, 1974.
    [32].E. Smargiassi, P. A. Madden. Orbital-free kinetic-energy functionals for first-principles molecular dynamics. Phys. Rev. B, 1994,49, 5220.
    [33].A. D. Becke. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A., 1988, 38, 3098.
    [34].K. Burke, J. P. Perdew, Y.Wang. Electronic Density Functional Theory: Recent Progress and New Directions, Ed. J. F. Dobson, G. Vignale, M. P. Das, Plenum, 1998.
    [35].C. Adamo, V. Barone. Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPWIPW models. J. Chem. Phys. 1998,108, 664.
    
    [36]. J. P. Perdew, K. Burke and M. Ernzerhof. Generalized Gradient Approximation Made Simple.Phys. Rev. Lett., 1996, 77, 3865.
    
    [37].J. P. Perdew, Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B., 1986, 33, 8822.
    
    [38]. C. Lee, W. Yang, R. G. Parr. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B., 1988, 37, 785.
    
    [39]. C. Filippi, C. J. Umrigar, M. Taut. Comparison of exact and approximate density functionals for an exactly soluble model. J. Chem. Phys., 1994, 100, 1290.
    
    [40]. A. D. Becke. Density-functional thermochemistry. III. The role of exact exchange. J. Chem.Phys., 1993, 98, 5648.
    
    [41].W. Koch, M. C. Holthausen. A Chemist's Guide to Density Functional Theory. Second Edition, Wiley-VCH, 2001.
    
    [42].M. Ernzerhof, G. E. Scuseria. Assessment of the Perdew-Burke-Ernzerhof exchange-correlation functional. J. Chem. Phys., 1999, 110, 5029.
    
    [43].C. M. Beavers, M. N. Chaur, M. M. Olmstead, L. Echegoyen, A. L. Balch. Large metal ions in a relatively small fullerene cage: the structure of Gd_3N@C_2(22010)-C_(78) departs from the isolated pentagon rule. J. Am. Chem. Soc., 2009,131,11519.
    
    [44].M. M. Olmstead, A. de Bettencourt-Dias, J. C. Duchamp, S. Stevenson, D. Marciu, H. C.Dorn, A. L. Balch. Isolation and structural characterization of the endohedral fullerene Sc_3N@C_(78). Angew. Chem. Int. Ed, 2001,40, 1223.
    
    [45].a) M. Yamada, T. Nakahodo, T. Wakahara, T. Tsuchiya, Y. Maeda, T. Akasaka, M. Kako, K.Yoza, E. Horn, N. Mizorogi, K. Kobayashi, S. Nagase. Positional control of encapsulated atoms inside a fullerene cage by exohedral addition. J. Am. Chem. Soc., 2005, 127, 14570; b) M. Yamada, N. Mizorogi, T. Tsuchiya, T. Akasaka, S. Nagase. Synthesis and characterization of the D_(5h) isomer of the endohedral dimetallofullerene Ce_2@C_(80): two- dimensional circulation of encapsulated metal atoms inside a fullerene cage. Chem. Eur. J., 2009, 15, 9486.
    
    [46]. S. R. Plant, T. C. Ng, J. H. Warner, G. Dantelle, A. Ardavan, G. A. D. Briggsa, K. Porfyrakis. A bimetallic endohedral fullerene: PrSc@C_(80). Chem. Commun., 2009,4082.
    
    [47].a) T. M. Zuo, C. M. Beavers, J. C. Duchamp, A. Campbell, H. C. Dorn, M. M. Olmstead, A.L. Balch. Isolation and structural characterization of a family of endohedral fullerenes including the large, chiral cage fullerenes Tb_3N@C_(88) and Tb_3N@C_(86) as well as the I_h and D_(5h) isomers of Tb_3N@C_(80). J. Am. Chem. Soc., 2007, 129, 2035; b) T. M. Zuo, M. M. Olmstead, C.M. Beavers, A. L. Balch, G. B. Wang, G. T. Yee, C. Y. Shu, L. S. Xu, B. Elliott, L.Echegoyen, J. C. Duchamp, H. C. Dorn. Preparation and structural characterization of the I_h and the D_(5h) isomers of the endohedral fullerenes Tm_3N@C_(80): icosahedral C_(80) cage encapsulation of a trimetallic nitride magnetic cluster with three uncoupled Tm~(3+) ions. Inorg.Chem., 2008,47, 5234.
    
    [48].a) H. Kato, A. Taninaka, T. Sugai, H. Shinohara. Structure of a missing-caged metallofullerene: La_2@C_(72). J. Am. Chem. Soc., 2003, 125, 7782; b) M. Yamada, T. Wakahara,T. Tsuchiya, Y. Maeda, T. Akasaka, N. Mizorogi, S. Nagase. Spectroscopic and theoretical study of endohedral dimetallofullerene having a non-IPR fullerene cage: Ce_2@C_(72). J. Phys. Chem.A, 2008, 112, 7627.
    
    [49].a) B. P. Cao, T. Wakahara, T. Tsuchiya, M. Kondo, Y. Maeda, G. M. A. Rahman, T. Akasaka,K. Kobayashi, S. Nagase, K. Yamamoto. Isolation, Characterization, and Theoretical Study of La_2@C_(78). J. Am. Chem. Soc., 2004, 126, 9164; b) M. Yamada, T. Wakahara, T. Tsuchiya,Y. Maeda, M. Kako, T. Akasaka, K. Yoza, E. Horn, N. Mizorogi, S. Nagase. Location of the metal atoms in Ce_2@C_(78) and its bis-silylated derivative. Chem. Commun., 2008, 558.
    
    [50]. S. F. Yang, A. A. Popov, L. Dunsch. The role of an symmetric nitride cluster on a fullerene cage: the non-IPR endohedral DySc_2N@C_(76). J. Phys. Chem. B, 2007,49, 13659.
    
    [51].C. R. Wang, P. Georgi, L. Dunsch, T. Kai, T. Tomiyama, H. Shinohara. Sc_2@C_(76)(C_2): a new isomerism in fullerene structure. Curr. Appl. Phys., 2002, 2, 141.
    
    [52].a) M. M. Olmstead, A. de Bettencourt-Dias, S. Stevenson, H. C. Dorn, A. L. Balch.Crystallographic characterization of the structure of the endohedral fullerene {Er_2@C_(82) Isomer I} with C_s cage symmetry and multiple sites for erbium along a band of ten contiguous hexagons. J. Am. Chem. Soc., 2002, 124, 4172; b) M. M. Olmstead, H. M. Lee, S.Stevenson, H. C. Dorn, A. L. Balch. Crystallographic characterization of isomer 2 of Er_2@C_(82) and comparison with Isomer 1 of Er_2@C_(82). Chem. Commun., 2002, 2688.
    
    [53].a) W. J. Fu, L. S. Xu, H. Azurmendi, J. C. Ge, T. Fuhrer, T. M. Zuo, J. Reid, C. Y. Shu, K.Harich, H. C. Dorn. ~(89)Y and ~(13)C NMR cluster and carbon cage studies of an yttrium metallofullerene family, Y_3N@C_(2n) (n = 40-43). J. Am. Chem. Soc. 2009, 131, 11762; b) B. Q.Mercado, C. M. Beavers, M. M. Olmstead, M. N. Chaur, K. Walker, B. C. Holloway, L.Echegoyen, A. L. Balch. Is the isolated pentagon rule merely a suggestion for endohedral fullerenes? the structure of a second egg-shaped endohedral fullerenes Gd_3N@C_s(39663)-C_(82).J. Am. Chem. Soc., 2008, 130, 7854; c) S. F. Yang, L. Dunsch. A large family of dysprosium-based trimetallic nitride endohedral fullerenes: Dy_3N@C_(2n) (39 ≤ n≤ 44). J. Phys. Chem. B,2005, 109, 12320.
    
    [54].a) T. Akasaka, S. Nagase, K. Kobayashi, T. Suzuki, T. Kato, K. Kikuchi, Y. Achiba, K.Yamamoto, H. Funasaka, T. Takahashi. Synthesis of the first adducts of the dimetallofullerenes La_2@C_(80) and Sc_2@C_(84) by addition of a disilirane. Angew. Chem. Int. Ed.,1995, 34, 2139; b) Y. Iiduka, O. Ikenaga, A. Sakuraba, T. Wakahara, T. Tsuchiya, Y. Maeda,T. Nakahodo, T. Akasaka, M. Kako, N. Mizorogi, S. Nagase. Chemical reactivity of Sc_3N@C_(80) and La_2@C_(80). J. Am. Chem. Soc., 2005, 127, 9956.
    
    [55].W. J. Evans, N. T. Allen, J. W. Ziller. Expanding divalent organolanthanide chemistry: the first organothulium(II) complex and the in situ organodysprosium(II) reduction of dinitrogen.Angew. Chem. Int. Ed, 2002, 41, 359.
    
    [56].G. M. Sheldrick. A short history of SHELX. Acta Crystallogr. Sect. A, 2008, 64, 112.
    
    [57]. W. S. Cai, L. Xu, N. Shao, X. G. Shao, Q. X. Guo. An efficient approach for theoretical study on the low-energy isomers of large fullerenes C_(90)-C_(140). J. Chem. Phys., 2005,122, 184318.
    
    [58]. P. W. Fowler, D. E. Manolopoulos. An Atlas of Fullerenes. Oxford, Clarendon Press. 1995.
    
    [59]. S. Iijima. Helical microtubeles of graphitic carbon. Nature, 1991, 354, 56.
    
    [60]. S. Iijima, T. Ichihashi. Single-shell carbon nanotubes of 1-nm diameter. Nature, 1993, 363,603.
    
    [61].a) T. Yumura, S. Bandow, K. Yoshizawa, S. Iijima. The role of fullerene hemispheres in determining structural features of finite-length carbon nanotubes. J. Phys. Chem. B, 2004, 108, 11426; b) T. Yumura, K. Hirahara, S. Bandow, K. Yoshizawa, S. Iijima. A theoretical study on the geometrical features of finite-length carbon nanotubes capped with fullerene hemisphere. Chem. Phys. Lett. 2004, 386, 38.
    [62].a) T. Yumura, D. Nozaki, S. Bandow, K. Yoshizawa, S. Iijima. End-cap effects on vibraitonal structures of finite-length carbon nanotubes J. Am. Chem. Soc., 2005, 127, 11769; b) P.Politzer, P. Lane, M. C. Concha, J. S. Murray. Effects of different caps on model nanotube surface properties. Microelectron. Eng., 2005, 81, 485.
    [63]. T. W. Ebbesen, P. M. Ajayan. Large-scale synthesis of carbon nanotube. Nature, 1992, 359,220.
    [64]. J. Kong, A. M. Cassell, H. J. Dai. Chemical vapor deposition of methane for single-walled carbon nanotubes. Chem. Phys. Lett., 1998, 292, 567.
    [65]. A. T. Matveev, D. Golberg, V. P. Novikov, L. L. Klimkovich, Y. Bando. Synthesis of carbon nanotubes below room temperature. Carbon, 2001, 39, 155.
    
    [66].T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley. Catalytic growth of single-walled nanotubes by laser vaporization. Chem. Phys. Lett., 1995,243,49.
    [67]. R. L. Vander Wal, Flame synthesis of substrate-supported metal-catalyzed carbon nanotubes.Chem. Phys. Lett., 2000, 324, 217.
    [68].M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, Jr.,J. A. Montgomery, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J.Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H.Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima,Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V.Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R.Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J.Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K.Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S.Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L.Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe,P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople. Gaussian 03,Revision C.02.Gaussian, Inc., Wallingford CT, 2004.
    [1]. a) A. L. Balch, M. M. Olmstead. Reactions of transition metal complexes with fullerenes(C_(60), C_(70), etc.) and related materials. Chem. Rev., 1998, 98, 2123; b) C. Thilgen. F. Diederich. Structural aspects of fullerene chemistrys-a journey through fullerene Chirality. Chem. Rev., 2006, 106, 5049; c) Y. Matsuo, E. Nakamura. Selective multiaddition of organocopper reagents to fullerenes. Chem. Rev., 2008, 108, 3016.
    [2]. S. H. Friedman, D. L. Decamp, R. P. Sijbesma, G. Srdanov, F. Wudl, G. L. Kenyon. Inhibition of the HIV-1 protease by fullerene derivatives: model building studies and experimental verification. J. Am. Chem. Soc., 1993,115, 6506.
    [3]. Y. Yamakoshi, S. Sueyoshi, K. Fukuhara, N. Miyata, T. Masumizu, M. Kohno. ·OH and O_2~(·-) generation in aqueous C_(60) and C_(70) solutions by photoirradiation: an EPR study. J. Am. Chem. Soc., 1998, 120, 12363.
    [4]. H. Tokuyama, S. Yamago, E. Nakamura, T. Shiraki, Y. Sugiura. Photoinduced biochemical activity of fullerene carboxylic acid. J. Am. Chem. Soc., 1993,115, 7918.
    [5]. a)单鹄声,水溶性富勒烯衍生物合成及其辐射生物学效应研究,硕士学位论文,上海,第二军医大学,2006:b)江贵长,水溶性富勒烯衍生物合成及抗肿瘤活性研究,博士学位论文,武汉,华中科技大学,2005;c)许铭飞,水溶性多羟基富勒烯及其衍生物的合成与性能研究,硕士学位论文,武汉,华中科技大学,2004
    [6]. a) R. D. Bolskar, A. F. Benedetto, L. O. Husebo, R. E. Price, E. F. Jackson, S. Wallace, L. J. Wilson, J. M. Alford. First soluble M@C_(60) derivatives provide enhanced access to metallofullerenes and permit in vivo evaluation of Gd@C_(60)[C(COOH)_2]_(10) as a MRI contrast agent. J. Am. Chem. Soc., 2003, 125, 5471; b) C. Y. Shu, L. H. Gan, C. R. Wang, X. L. Pei, H. B. Han. Synthesis and characterization of a new water-soluble endohedral metallofullerene for MRI contrast agents. Carbon, 2006,44, 496.
    [7]. X. Lu, H. Nikawa, T. Nakahodo, T. Tsuchiya, M. O. Ishitsuka, Y. Maeda, T. Akasaka, M. Toki, H. Sawa, Z. Slanina, N. Mizorogi, S. Nagase. Chemical understanding of a non-IPR metallofullerene: stabilization of encaged metals on fused-pentagon bonds in La_2@C_(72). J. Am. Chem. Soc., 2008, 130, 9129.
    [8]. B. P. Cao, H. Nikawa, T. Nakahodo, T. Tsuchiya, Y. Maeda, T. Akasaka, H. Sawa, Z. Slanina, N. Mizorogi, S. Nagase. Addition of adamantylidene to La_2@C_(78): isolation and single-crystal X-ray structural determination of the monoadducts. J. Am. Chem. Soc., 2008, 130, 983.
    [9]. M. Yamada, T. Wakahara, T. Tsuchiya, Y. Maeda, M. Kako, T. Akasaka, K. Yoza, E. Horn, N. Mizorogi, S. Nagase. Location of the metal atoms in Ce_2@C_(78) and its bis-silylated derivative. Chem. Commun., 2008, 558.
    [10]. M. Yamada, T. Wakahara, T. Nakahodo, T. Tsuchiya, Y. Maeda, T. Akasaka, K. Yoza, E. Horn, N. Mizorogi, S. Nagase. Synthesis and structural characterization of endohedral pyrrolidinodimetallofullerene: La_2@C_(80)(CH_2)_2NTrt. J. Am. Chem. Soc., 2006, 128, 1402.
    [11]. Y. Iiduka, T. Wakahara, T. Nakahodo, T. Tsuchiya, A. Sakuraba, Y. Maeda, T. Akasaka, K. Yoza, E. Horn, T. Kato, M. T. H. Liu, N. Mizorogi, K. Kobayashi, S. Nagase. Structural determination of metallofullerene Sc_3C_(82) revisited: a surprising finding. J. Am. Chem. Soc., 2005,127, 12500.
    [12]. L. Feng, T. Nakahodo, T. Wakahara, T. Tsuchiya, Y. Maeda, T. Akasaka, T. Kato, E. Horn, K. Yoza, N. Mizorogi, S. Nagase. A singly bonded derivative of endohedral metallofullerene: La@C_(82)CBr(COOC_2H_5)_2. J. Am. Chem. Soc., 2005, 127, 17136.
    [13]. a)宋宝安,蒋木庚,吴扬兰,何湘琼,杨松,金林红,刘刚,胡德禹,N-对三氟甲基苯基-α-氨基烷基膦酸酯的合成、晶体结构及生物活性,有机化学,2003,23(9),967;b)曹蕾,汪焱钢,宋新建,刘国华,α-(1,3,4-噻二唑-5-基)氨基烃基膦酸酯的合成及生物活性,有机化学,2005,25(8),1007;c)孙凤梅,石德清,2-氧代-2-[(2-氯-5-吡啶甲氨基)(芳基)甲基]-4-芳基-5,5-二甲基-1,3,2-二氧膦杂环己烷的合成及其生物活性研究,有机化学,2006,26(10),1398.
    [14]. S. C. Chuang, K. C. Santhosh, C. H. Lin, S. L. Wang, C. H. Cheng. Synthesis and chemistry of fullerene derivatives bearing phosphorus substituents. Unusual reaction of phosphines with electron-deficient acetylenes and C_(60).J. Org. Chem. 1999, 64, 6664.
    [15].S. C. Chuang, D. D. Lee, K. C. Santhosh, C. H. Cheng. Fullerene derivatives bearing a phosphite ylide, phosphonate, phosphine oxide, and phosphonic acid: synthesis and reactivities. J. Org. Chem., 1999, 64, 8868.
    [16].S. Y. Chen, R. L. Cheng, C. K. Tseng, Y. S. Lin, L. H. Lai, R. K. Venkatachalam, Y. C. Chen,C. H. Cheng, S. C. Chuang. Fullerene derivatives incorporating phosphoramidous ylide and phosphoramidate: synthesis and property. J. Org. Chem., 2009, 74,4866.
    [17].X. F. Li, L. Z. Fan, D. F. Liu, H. H. Y. Sung, I. D. Williams, S. H. Yang, K. Tan, X. Lu.Synthesis of a Dy@C_(82) derivative bearing a single phosphorus substituent via a zwitterion approach.J. Am. Chem. Soc., 2007, 129, 10636.
    
    [18].C. Bingel. Cyclopropylation of fullerenes. Chem. Ber., 1993, 126, 1957.
    [19].F. Diederich, L. Isaacs, D. Philp. Syntheses, structures, and properties of methanofullerenes.Chem. Soc. Rev., 1994, 243.
    [20]. A. L. Mirakyan, L. J. Wilson. Functionalization of C60 with diphosphonate groups: a route to bone-vectored fullerenes. J. Chem. Soc., Perkin Trans. 2, 2002, 1173.
    [21].F. Y. Cheng, X. L. Yang, H. S. Zhu, Y. L. Song. Synthesis and optical properties of tetraethyl methano[60]fullerenediphosphonate Tetrahedron Lett., 2000,41, 3947.
    [22]. C. Y. Shu, C. R. Wang, J. F. Zhang, H. W. Gibson, H. C. Dorn, F. D. Corwin, P. P. Fatouros,T. J. S. Dennis. Organophosphonate functionalized Gd@C_(82) as a magnetic resonance imaging contrast agent Chem. Mater., 2008,20, 2106.
    [23]. a) F. Y. Cheng, X. L. Yang, C. H. Fan, H. S. Zhu. Organophosphorus chemistry of fullerene:synthesis and biological effects of organophosphorus compounds of C_(60). Tetrahedron, 2001,57, 7331; b) E. Brunet, M. Alonso, M. C. Quintana, O. Juanes, J. C. Rodriguez-Ubis. Facile synthesis of new fullerene-Ru(bpy)3 dyads bearing phosphonate groups for hybrid organic-inorganic materials. Tetrahedron Lett., 2007,48, 3739.
    [24].a) C. Caron, R. Subramanian, F. D'Souza, J. Kim, W. Kutner, M. T. Jones, K. M. Kadish.Selective electrosynthesis of (CH_3)_2C_(60): a novel method for the controlled functionalization of fullerenes. J. Am. Chem. Soc., 1993, 115, 8505; b) R. Subramanian, K. M. Kadish, M. N.Vijayashree, X. Gao, M. T. Jones, M. D. Miller, K. L. Krause, T. Suenobu, S. Fukuzumi.Chemical generation of C__(60)~(2-) and electron transfer mechanism for the reactions with alkyl bromides. J. Phys. Chem., 1996, 100, 16327.
    [25].F. Y. Cheng, Y. Murata, K. Komatsu. Synthesis, X-ray structure, and properties of the singly bonded C_(60) dimer having diethoxyphosphorylmethyl groups utilizing the chemistry of C__(60)~(2-).Org. Lett., 2002,4, 2541.
    [26].E. Allard, F. Y. Cheng, S. Chopin, J. Delaunay, D. Rondeau, J. Cousseau. Easy access to unprecedented mixed functionalized dihydrofullerenes C_(60)RH and C_(60)RR': the C_(60)~(2-) anion route. New J. Chem., 2003,27, 188.
    [27]. J. J. Yin, Y. G. Li, B. Li, W. X. Li, L. M. Jin, J. M. Zhou, Q. Y. Chen. Facile and potent synthesis of carbon bridged fullerene dimers (HC_(60)-CR_2-C_(60)H type). Chem. Commun., 2005,3041.
    [28]. S. H. Wu, W. Q. Sun, D. W. Zhang, L. H. Shu, H. M. Wu, J. F. Xu, X. F. Lao. Reaction of [60]fullerene with trialkylphosphine oxide. Tetrahedron Lett., 1998, 39, 9233.
    [29].H. Isobe, A. J. Chen, N. Solin, E. Nakamura. Synthesis of hydrophosphorylated fullerene under neutral conditions. Org. Lett., 2005, 25, 5633.
    
    [30].T. Cai, L. S. Xu, C. Y. Shu, H. A. Champion, J. E. Reid, C. Anklin, M. R. Anderson, H. W.Gibson, H. C. Dom. Selective formation of a symmetric Sc_3N@C_(78) bisadduct: adduct docking controlled by an internal trimetallic nitride cluster. J. Am. Chem. Soc., 2008, 130,2136.
    
    [31].a) X. F. Li, L. Z. Fan, D. F. Liu, H. H. Y. Sung, I. D. Williams, S. H. Yang, K. Tan, X. Lu.Synthesis of a Dy@C_(82) derivative bearing a single phosphorus substituent via a zwitterion approach. J. Am. Chem. Soc., 2007, 129, 10636; b) Y. Iiduka, T. Wakahara, K. Nakajima, T.Nakahodo, T. Tsuchiya, Y. Maeda, T. Akasaka, K. Yoza, M. T. H. Liu, N. Mizorogi, S.Nagase. Experimental and theoretical studies of the scandium carbide endohedral metallofullerene Sc_2C_2@C_(82) and its carbene derivative. Angew. Chem. Int. Ed, 2007, 46,5562; c) M. Yamada, C. Someya, T. Wakahara, T. Tsuchiya, Y. Maeda, T. Akasaka, K. Yoza,E. Horn, M. T. H. Liu, N. Mizorogi, S. Nagase. Metal atoms collinear with the spiro carbon of 6, 6-open adducts, M_2@C_(80)(ad) (M = La and Ce, ad = adamantylidene). J. Am. Chem. Soc.,2008, 130, 1171; d) B. P. Cao, H. Nikawa, T. Nakahodo, T. Tsuchiya, Y. Maeda, T. Akasaka,H. Sawa, Z. Slanina, N. Mizorogi, S. Nagase. Addition of adamantylidene to La_2@C_(78):isolation and single-crystal X-ray structural determination of the monoadducts. J. Am. Chem.Soc., 2008, 130, 983; e) X. Lu, H. Nikawa, T. Nakahodo, T. Tsuchiya, M. O. Ishitsuka, Y.Maeda, T. Akasaka, M. Toki, H. Sawa, Z. Slanina, N. Mizorogi, S. Nagase. Chemical understanding of a non-IPR metallofullerene: stabilization of encaged metals on fused-pentagon bonds in La_2@C_(72). J. Am. Chem. Soc., 2008, 130, 9129; f) Y. Iiduka, T. Wakahara,T. Nakahodo, T. Tsuchiya, A. Sakuraba, Y. Maeda, T. Akasaka, K. Yoza, E. Horn, T. Kato,M. T. H. Liu, N. Mizorogi, K. Kobayashi, S. Nagase. Structural determination of metallofullerene Sc_3C_(82) revisited: a surprising finding. J. Am. Chem. Soc., 2005, 127, 12500;g) C. Y. Shu, W. Xu, C. Slebodnick, H. Champion, W. J. Fu, J. E. Reid, H. Azurmendi, C. R.Wang, K. Harich, H. C. Dorn, H. W. Gibson. Syntheses and structures of phenyl-C81-butyric acid methyl esters (PCBMs) from M_3N@C_(80). Org. Lett., 2009, 11, 1753.
    
    [32].M. N. Chaur, F. Melin, A. J. Athans, B. Elliott, K. Walker, B. C. Holloway, L. Echegoyen.The influence of cage size on the reactivity of trimetallic nitride metallofullerenes: a mono-and bis-methanoadduct of Gd_3N@C_(80) and a monoadduct of Gd_3N@C_(84). Chem. Commun.,2008,2665.
    
    [33].a) T. Cai, L. S. Xu, C. Y. Shu, J. E. Reid, H. W. Gibson, H. C. Dorn. Synthesis and Characterization of a Non-IPR Fullerene Derivative: Sc_3N@C_(68)[C(COOC_2H_5)_2]. J. Phys.Chem. C, 2008, 112, 19203; b) C. M. Cardona, A. Kitaygorodskiy, L. Echegoyen. Trimetallic nitride endohedral metallofullerenes: reactivity dictated by the encapsulated metal cluster. J.Am. Chem. Soc., 2005, 127, 10448.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700