用户名: 密码: 验证码:
无机多孔材料的功能化、组装及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无机多孔材料具有规则有序的孔道结构、丰富的组成与优异的性质而被广泛应用于催化、离子交换、吸附分离等方面,在工业、农业、生物、医学等领域具有重要的地位。近几年来,随着人们对材料应用要求的日益提高,无机多孔材料的功能化和组装受到国内外科学家的广泛关注,本论文围绕这一方向开展了以下三部分工作:
     基于“酸碱对”原理,通过引入有机膦酸,利用“共聚法”(co-condensation)成功地合成了含有手性氨基酸基团的介孔膦酸钛。通过先低温加热再用乙醇萃取的两步法有效地脱除表面活性剂,既形成规则有序的介孔结构又保持有机基团的结构完整性和原始手性。研究发现有机膦酸具有扩孔性能,通过调变掺杂有机膦酸的量和种类,可调制孔径尺寸大小。具有手性基团的介孔磷酸钛对L-缬氨酸分子具有选择吸附作用,展现了对小分子外消旋对映体的手性拆分能力。此外,功能基团的存在大大提高了介孔膦酸钛对细胞色素C(cytochrome C)的生物吸附能力。
     利用layer-by-layer表面功能化方法,首次将磷酸钛和磷酸锆分别嫁接于SBA-15的孔道中。经过逐层修饰,磷酸盐通过共价键与SBA-15的结合更牢固,复合结构更稳定。此外,Layer-by-layer表面功能化方法还可以有效的控制磷酸盐的负载量和复合介孔材料的孔径尺寸。磷酸钛和磷酸锆以薄膜的形式铺展于SBA-15表面,为介孔二氧化硅赋予了磷酸盐的性质,经磷酸盐修饰的SBA-15表现出优良的酸催化性质和重金属离子吸附能力。
     将60-80 nm的Silicalite-1纳米晶与聚电解质通过Layer-by-layer静电沉积的方法合成出了具有抗反射性质的分子筛膜。Silicalite-1纳米晶中的微孔与颗粒之间的堆积孔穴形成微孔-大孔复合孔结构,降低了膜的折射率,使其具有较高的光透过率。在进行硅烷化表面修饰以后,获得了超疏水抗反射分子筛膜。
Inorganic porous materials have attracted considerable interests due to their unique properties such as ordered channels arrays, high surface area, and various compositions. They were widely used in the fields of catalysis, ion-exchange, adsorption and separation. In these years, inorganic porous materials were highly desired to meet the long-term need of applications, and there are two objects that aim at promoting their efficiency and exploring their new potentials. Two ideas can lead us to these aims: (1) developing new approaches, synthesizing new materials with novel properties and applications; (2) modifying or assembling the well-known porous materials (e.g. NaY, Silicalite-1, MCM-41, and SBA-15). In this dissertation, based on these ideas, we describe the design of functionalization and assembly of inorganic porous materials, and their significant applications.
     Three works concerning the functionalization of mesoporous and preparation of zeolite coating were presented here: (a) syntheses, characterizations, and applications of titanium organophosphonates with chiral organic groups; (b) layer-by-layer surface modification of SBA-15 with metal phosphate; (c) preparation of superhydrophobic antireflective zeolite coating with layer-by-layer deposition technique.
     Based on“acid-base pairs”method, we synthesized two mesoporous titanium organophosphonates with chiral organic groups (L-hydroxyproline and L-proline groups) in the mesopores. A two-step template-removal process involving low temperature heating followed by ethanol extraction was developed to form ordered mesopores and maintain the structures and chiralities of the organic groups. By changing the incorporated amount of organophosphonate acids, the pore diameters of the mesopores could be continuously tuned. We chose enantiomers and racemic solutions of valine (as a testing system) to demonstrate the enantioselective property of the prepared materials. Furthermore, their performance in bio-adsorption of proteins was investigated on cytochrome c, and the organic groups played a significant role in promoting the adsorption ability of mesoporous titanium phosphonate.
     Metal phosphates have many applications in catalysis, separation, and proton conduction, however, their small surface areas limit their effective utilization. In our work, we controlled liquid-phase grafted titanium phosphate (or zirconium phosphate) onto mesoporous silica (SBA-15) surfaces. Ti(OPri)4 (or Zr(OPr)4) (a base) and POCl3 (an acid) were employed as an appropriate“acid-base pair” precursors for the formation of grafted titanium phosphate. Both the size of mesopores and the content of titanium phosphate can be adjusted by increasing the number of modification cycles in a stepwise (or layer-by-layer) fashion. Two approaches in this work involve (1) the alternate liquid-phase grafting with Ti(OPri)4 (or Zr(OPr)4) and POCl3 on SBA-15 and (2) the one-pot surface-mediated grafting of titanium phosphate (or zirconium phosphate) formed in situ. Their performances in acid catalysis and metal-ion adsorption were investigated. This work furnishes new methodologies for the general synthesis of metal phosphate-based materials with large surface areas, ordered nano-porous structures, and acidic properties.
     In the last part, we synthesized antireflective MFI coating by layer-by-layer deposition of Silicatlite-1 nano-crystals. It is known that many commercial antireflective coatings (e.g. MgF2) are of high light transmittance, but hold the disadvantages of toxicity and complicated synthetic processes. SiO2 has been used in the preparation of antireflective coatings due to its low refractive index. In this work, Silicalite-1 nanocrystals (60-80 nm, negative charged surface) and poly(allylamine hydrochloride) (PAH, positive charged polyelectrolytes) were layer-by-layer alternately deposited on a quartz substrate. The light transmittance of the Silicatlite-1 coating on a quartz substrate with 10 cycles after calcination achieves as high as 99.3% at 630 nm. After chemical vapor deposition (CVD) of a layer of silylation rageant on the surface of zeolite coating, a surperhydrophobic antireflective zeolite coating was obtained.
引文
[1] Kresge, C. T.; Leonowicz, M. E.; Roth, W. J. Nature 1992, 359, 710.
    [2] Sun, T.; Ying, J. Y. Nature 1997, 389, 704.
    [3] Baur, W. H. Nat. Mater. 2003, 2, 17.
    [4] Davis, M. E. Nature 2002, 417, 813.
    [5] Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; McCullen, D. H. S. B.; Higgins, J. B.; Schlenker, J. L. J. Am. Chem. Soc. 1992, 114, 10834.
    [6] Choi, M.; Cho, H.; Srivastava, R.; Venkatesan, C.; Choi, D.; Ryoo, R. Nat. Mater. 2006, 5, 718.
    [7] Xiao, F.; Wang, L.; Yin, K.; Di, Y.; Li, J.; Xu, R.; Su, D.; Schlogl, R.; Yokoi, T.; Tatsumi, T. Angew. Chem. Int. Ed. 2006, 45, 3090.
    [8] Luo, Q.; Li, L.; Yang, B.; Zhao, D. Chem. Lett. 2000, 378, 24.
    [9] Oh, C.; Baek, Y.; Ihm, S. Adv. Mater. 2005, 12, 270.
    [10] Hooand, B. T.; Abrams, L.; Stein, A. J. Am. Chem. Soc. 1999, 121, 4309.
    [11] Huang, L. M.; B., W. Z.; Sun, J. Y.; Miao, L.; Li, Q. Z.; Yan, Y. S.; Y., Z. D. J. Am. Chem. Soc. 2000, 122, 3531.
    [12] Barrer, R. M. J. Chem. Soc. 1948, 10, 2158.
    [13] Corma, A. Chem. Rev. 1995, 95, 559.
    [14] Atlas http://www.iza-structure.org/.
    [15] Li, Y.; Yu, J. H.; Wang, Z. P.; Zhang, J. N.; Guo, M.; Xu, R. R. Chem. Mater. 2005, 17, 4399.
    [16] McCusker, L. B.; Baerlocher, C., Zeolite Strucuture, Studies in Surface and Catalysis: 2001; Vol. 37-38, p 37.
    [17] Newsam, J. M. Science 1989, 231, 1093.
    [18] Barrer, R. M.; Denny, P. J. J. Chem. Soc. 1961, 971.
    [19]徐庆红,《博士学位毕业论文》,吉林大学: 2001.
    [20] Huo, Q. S.; Xu, R. R.; Li, S. G., etal. J. Chem. Soc.- Chem. Commum. 1992, 12, 875.
    [21] Wilson, S. T.; Look, B. M.; Messina, C. A.; Cannon, T. R.; Flannigan, E. M. J. Am. Chem. Soc. 1982, 104, 1146.
    [22] Dessau, R. M.; Schlenker, J. L.; Higgins, J. B. Zeolites 1990, 10, 522.
    [23] Davis, M. E.; Montes, C. S. C.; Garces, J.; Crowder, C. Nature 1988, 331, 698.
    [24] Parise, J. B. Inorg. Chem. 1985, 24, 4312.
    [25] Rao, C. N. R.; Natarajan, S.; Choudhury, A.; Neeraj, S.; Ayi, A. A. Acc. Chem. Res. 2001, 34, 80.
    [26] Guillou, N.; Gao, Q.; Nogués, M.; Morris, R. E.; Hervieu, M.; Férey, G.; Cheetham, A. K. C. R. Acad. Sci. Paris Ser. IIC 1999, 2, 387.
    [27] Escobal, J.; Pizarro, J. L.; Mesa, J. L.; Arriortua, M. I.; Rojo, T. J. Solid State Chem. 2000, 154, 460.
    [28] Shieh, M.; Martin, K. J.; Squattrito, P. J.; Claearfield, A. Inorg. Chem. 1900, 29, 958.
    [29] Fernández, S.; Mesa, J. L.; Pizarro, J. L.; Lezama, L.; Arriortua, M. I.; Rojo, T. Angew. Chem. Int. Ed. 2002, 41, 3683.
    [30] Liang, J.; Li, J. Y.; Yu, J. H.; CHen, P.; Fang, Q. R.; Sun, F. X.; Xu, R. R. Angew. Chem. Int. Ed. 2006, 45, 2546.
    [31] Freyhardt, C. C.; Tsapatsis, M.; Balkus Jr, K. J.; Davis, M. E. Nature 1996, 381, 295.
    [32] Boy, I.; Stowasser, F.; Sch?fer, G.; Kniep, R. Chem. Eur. J. 2001, 7, 834.
    [33] Yang, M.; Yu, J. H.; Di, J. C.; Chen, P.; Fang, Q. R.; Chen, Y.; Xu, R. R. Inorg. Chem. 2006, 45, 3588.
    [34] Yang, M.; Yu, J. H.; SHi, L.; Chen, P.; Li, G. H.; Chen, Y.; Xu, R. R.; Gao, S. Chem. Mater. 2006, 18, 476.
    [35] Yang, W. T.; Li, J. Y.; Pan, Q. H.; Jin, Z.; Yu, J. H.; Xu, R. R. Chem. Mater. 2008, 20, 4900.
    [36] Corma, A.; Díaz-Cabańas, M. J.; Martínez-Triguero, J.; Rey, F.; Rius, J. Nature 2002, 418, 514.
    [37] Paillaud, J.-L.; Harbuzaru, B.; Patarin, J.; Bats, N. Science 2004, 304, 990.
    [38] Ren, X. Y.; Li, Y.; Pan, Q. H.; Yu, J. H.; Xu, R. R.; Xu, Y. J. Am. Chem. Soc. 2009, 131, 14128.
    [39] Li, H. L.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M. Nature 1999, 402, 276.
    [40] Chen, C.-Y.; Burkett, S. L.; Li, H.-X.; Davis, M. E. Microporous Mater. 1993, 2, 27.
    [41] Firouzi, A.; Kumar, D.; Bull, L. M.; Besier, T.; Huo, Q. S.; Walker, S. A.; Stucky, G. D.; Chmelka, B. F. Science 1995, 267, 1138.
    [42] Huo, Q. S.; Margolese, D. I.; Ciesla, U.; Feng, P.; Gier, T. E.; Sieger, P.; Leon, R.; Petroff, P. M.; Schuth, F.; Stucky, G. D. Chem. Mater. 1994, 6, 1176.
    [43] Inagaki, S.; Fukushima, Y.; Kuroda, K. J. Chem. Soc.- Chem. Commum. 1993, 680.
    [44] Huo, Q. S.; Leon, R.; Petroff, P. M.; Stucky, G. D. Science 1995, 268, 1324.
    [45] Zhao, D. Y.; Feng, J. L.; Huo, Q. S.; Melosh, N.; Fredrickson, G.; Chmelka, B. F.; Stucky, G. D. Science 1998, 279, 548.
    [46] Zhao, D. Y.; Huo, Q. S.; Feng, J. L.; Chmelka, B. F.; Stucky, G. D. J. Am. Chem. Soc. 1998, 120, 6024.
    [47] Zhao, D. Y.; Huo, Q. S.; Feng, J. L.; Kim, J.; Han, Y.; Stucky, G. D. Chem. Mater. 1999, 11, 2668.
    [48] Yu, C. Z.; Tian, B. Z.; Fan, J.; Stucky, G. D.; Zhao, D. Y. J. Am. Chem. Soc. 2002, 124, 4556.
    [49] Tanev, P. T.; Chibwe, M.; Pinnavaia, T. J. Nature 1994, 368, 321.
    [50] Tanev, P. T.; Pinnavaia, T. J. Science 1995, 267, 865.
    [51] Bagshow, S. A.; Prouzet, E.; Pinnavaia, T. J. Science 1995, 271, 1267.
    [52] Yu, C. Z.; Yu, Y. H.; Zhao, D. Y. Chem. Commun. 2000, 575.
    [53] Fan, J.; Yu, C. Z.; Gao, F.; Lei, J.; Tie, B.; Wang, L.; Luo, Q.; Tu, B.; Zhao, W.; Zhao, D. Y. Angew. Chem. Int. Ed. 2003, 2, 801.
    [54] Che, S.; Liu, Z.; Ohsuma, T.; Sakamoto, K.; Terasaki, O.; Tatsumi, T. Nature 2004, 429, 281.
    [55] Ma, T. Y.; Zhang, X. J.; Shao, G. S.; Cao, J. L.; Yuan, Z. Y. J. Phys. Chem. C 2008, 112, 3090.
    [56] Sun, X. M.; Liu, J. F.; Li, Y. D. Chem. Eur. J. 2006, 12, 2039.
    [57] Lin, W.; Cai, Q.; Pang, W.; Yue, Y. Chem. Commum. 1998, 2473.
    [58] Cai, Q.; Wei, C.; Xu, Y.; Pang, W.; Zhen, K.高等学校化学学报1999, 20, 344.
    [59] Corma, A.; Navarro, M.; Pariente, J. J. Chem. Soc.- Chem. Commum. 1994, 147.
    [60] Anpo, M.; Yamashita, H.; Ikeue, K.; Fujii, Y.; Zhang, S.; Ichihashi, Y.; park, D.; Suzuki, Y.; Koyano, K.; Tatsumi, T. Catal. Today 1998, 44, 327.
    [61] Sayari, A.; Moudrakovski, J. S.; Reddy, J. S. Chem. Mater. 1996, 8, 2080.
    [62] Feng, P. Y.; Xia, Y.; Feng, J. L.; Bu, X. H.; Stucky, G. D. Chem. Commun. 1997, 949.
    [63] Zhao, D. Y.; Luan, Z. H.; Kevan, L. Chem. Commum. 1997.
    [64] Jiménez-Jiménez, J.; Maireles-Torres, P.; Olivera-Pastor, P.; Rodríguez-Castellón, E.; Jiménez-López, A.; Jones, D. J.; Rozière, J. Adv. Mater. 1998, 10, 812.
    [65] Kimura, T.; Sugahara, Y.; Kuroda, K. Chem. Mater. 1999, 11, 508.
    [66] Jones, D. J.; Aptel, G.; Brandhorst, M.; Jacquin, M.; Jimenez-Jimenez, J.; Jimenez-Lopez, A.; Maireles-Torres, P.; Piwonski, I.; Rodriguez-Castellon, E.; Zajac, J.; Roziere, J. J. Mater. Chem. 2000, 10, 1957.
    [67] Serre, C.; Auroux, A.; Gervasini, A.; Hervieu, M.; Férey, G. Angew. Chem. Int. Ed. 2002, 41, 1594.
    [68]乐英红;马臻化学学报2000, 58, 77.
    [69] Bagshow, S. A.; Pinnavaia, T. J. Angew. Chem. Int. Ed. Engl. 1996, 35, 1102.
    [70] Carbrera, S.; El Haskouri, J.; Alamo, J.; Beltrán, A.; Beltrán, A.; Mendioroz, S.; Dolores Marcos, M.; Amorós, P. Adv. Mater. 1999, 11, 379.
    [71] Zhao, D. Y.; Goldfarb, D. Chem. Mater. 1996, 8, 2571.
    [72] Yang, P. D.; Zhao, D. Y.; Margolese, D. I.; Chmelka, B. F.; Stucky, G. D. Nature 1998, 396, 152.
    [73] Yang, P. D.; Zhao, D. Y.; Margolese, D. I.; Chmelka, B. F.; Stucky, G. D. Chem. Mater. 1999, 11, 2813.
    [74] Blanchard, J.; Schuth, F.; Trens, P.; Hudson, M. Microporous Mesoporous Mater. 2000, 39, 163.
    [75] Romannikov, V. N.; Fenelov, V. B.; Paukshtis, E. A.; Derevyankin, A. Y.; Zaikovskii, V. I. Microporous Mesoporous Mater. 1998, 21, 411.
    [76] Tian, Z. R.; Tong, W.; Wang, J.-Y.; Duan, N.-G.; Krishnan, V. V.; Suib, S. L. Science 1997, 276, 926.
    [77] Braun, P. V.; Osenar, P.; Stupp, S. I. Nature 1996, 380, 325.
    [78] Osenar, P.; Braun, P. V.; Stupp, S. I. Adv. Mater. 1996, 8, 1022.
    [79] Tohver, V.; Braun, P. V.; Pralle, M. U.; Stupp, S. I. Chem. Mater. 1997, 9, 1495.
    [80] Braun, P. V.; Osenar, P.; Tohver, V.; Kennedy, S. B.; Stupp, S. I. J. Am. Chem. Soc. 1999, 121, 7302.
    [81] Bonnehomme, F.; Kanatzidis, M. G. Chem. Mater. 1998, 10, 1153.
    [82] Rangan, K. K.; Trikalitis, P. N.; Kanatzidis, M. G. J. Am. Chem. Soc. 2000, 122, 10230.
    [83] Trikalitis, P. N.; Bakas, T.; Papaefthymiou, V.; Kanatzidis, M. G. Angew. Chem. Int. Ed. Engl.2000, 39, 4558.
    [84] Ryoo, R.; Joo, S. H.; Jun, S. J. Phys. Chem. B 1999, 103, 7743.
    [85] Ryoo, R.; Joo, S. H.; Kruk, M.; Jaroniec, M. Adv. Mater. 2001, 13, 677.
    [86] Joo, S. H.; Chl, S.; Oh, I.; Kwak, J.; Liu, Z.; Terasaki, O.; Ryoo, R. Nature 2001, 412, 169.
    [87] Liang, C. D.; Li, Z. J.; Dai, S. Angew. Chem. Int. Ed. 2008, 47, 2.
    [88] Attard, G. S.; G?ltner, C. G.; Corker, J. M.; Henke, S.; Templer, R. H. Angew. Chem. Int. Ed. Engl. 1997, 36, 1315.
    [89] Attard, G. S.; Bartlett, P. N.; Coleman, N. R. B.; Elliott, J. M.; Owen, J. R.; Wang, J. H. Science 1997, 278, 838.
    [90] Whitehead, A. H.; Elliott, J. M.; Owen, J. R.; Attard, G. S. Chem. Commum. 1999, 331.
    [91] Schüth, F. Chem. Mater. 2001, 13, 3184.
    [92] Hogarth, W. H. J.; da Costa, J. C. D.; Drennan, J.; Lu, G. Q. J. Mater. Chem. 2004, 754.
    [93] Bhaumik, A.; Inagaki, S. J. Am. Chem. Soc. 2001, 123, 691.
    [94] Antonelli, D.; Ying, J. Y. Angew. Chem. Int. Ed. 1996, 35, 426.
    [95] Diggle, J. W.; Downie, T. C.; Goulding, C. W. Chem. Rev. 1969, 69, 365.
    [96] Kaskel, S.; Farrusseng, D.; Schlichte, K. Chem. Commum. 2000, 2481.
    [97] Fyfe, C. A.; Schwieger, W.; Fu, G.; Kokotailo, G. T.; Grondey, H. Petrol. Chem. 1995, 40, 266.
    [98] Shen, S. D.; Tian, B. Z.; Yu, C. Z.; Xie, S. H.; Zhang, Z. D.; Tu, B.; Zhao, D. Y. Chem. Mater. 2003, 15, 4046.
    [99] Yu, J.; Wang, A.; Tan, J.; Li, X.; van Bokhoven, J. A.; Hu, Y. J. Mater. Chem. 2008, 18, 3601.
    [100] Guo, X. F.; Ding, W. P.; Wang, X. G.; Yan, Q. J. Chem. Commun. 2001, 709.
    [101] Yu, D. H.; Wu, C.; Kong, Y.; Xue, N. H.; Guo, X. F.; Ding, W. P. J. Phys. Chem. C 2007, 111, 14394.
    [102] Yao, J.; Tjandra, W.; Chen, Y. Z.; Tam, K. C.; Ma, J.; Soh, B. J. Mater. Chem. 2003, 13, 3053.
    [103] Schmidt, S. M.; McDonald, J.; Pineda, E. T.; Verwilst, A. M.; Chen, Y. M.; Josephs, R.; Ostafin, A. E. Microporous Mesoporous Mater. 2006, 94, 330.
    [104] Yang, P. P.; Quan, Z. W.; Li, C. X.; Kang, X. J.; Lian, H. Z.; Lin, J. Biomaterials 2008, 29, 4341.
    [105] He, W.; Li, Z.; Wang, Y.; Chen, X.; Zhang, X.; Zhao, H.; Yan, S.; Zhou, W. J. Mater. Sci.: Mater. Med. 2009, 21, 155.
    [106] Xia, Z.; Liao, L.; Zhao, S. Mater. Res. Bull. 2009, 44, 1626.
    [107]徐如人;庞文琴,《分子筛与多孔材料化学》,人民教育出版社: 2001.
    [108] Tian, B. Z.; Liu, X. Y.; Tu, B.; Yu, C. Z.; Fan, J.; Wang, L. M.; Xie, S. H.; Stucky, G. D.; Zhao, D. Y. Nat. Mater. 2003, 2, 159.
    [109] Jacobs, G.; Ghadiali, F.; Pisanu, A. e. a. Appl. Catal., A 1999, 188, 79.
    [110] Weber, W. A.; Gates, B. C. J. Catal. 1998, 180, 207.
    [111] Weber, W. A.; Zhao, A.; Gates, B. C. J. Catal. 1999, 182, 13.
    [112] Okamoto, Y.; Maezawa, A.; Kane, H.; Imanaka, T. J. Catal. 1988, 112, 585.
    [113] Schmidt, F.; Gunsser, W.; Adolph, J., In: Katzer JR (ed) Molecular sieves II, ACS Symp Ser. 40, Washington DC, Am Chem Soc, p 291
    [114] Tri, T. M.; Candy, J. P.; Gallezot, P. P. e. a. J. Catal. 1983, 79, 396.
    [115] Tsang, C. M.; Augustine, S. M.; Butt, J. B.; Sachtler, W. M. H. Appl. Catal. 1989, 46, 45.
    [116] Ogunsumi, S. B.; Bein, T. Chem. Commum. 1997, 901.
    [117] Sabater, M. J.; Corma, A.; Domenech, A.; Fornés, V.; Hermenegildo, G. Chem. Commum. 1997, 1285.
    [118] Klabunde, K. J.; Tanaka, Y. J. Mol. Catal. 1993, 21, 57.
    [119] Martens, L. R. M.; Grobert, P. J.; Jacobs, P. A. Nature 1985, 315, 568.
    [120] Ralek, M.; Jiru, P.; Grubner, O. e. a. Chem. Commum. 1962, 27, 142.
    [121] Kim, Y.; Seff, K. J. Am. Chem. Soc. 1977, 99, 7055.
    [122] Jacobs, P. A.; Uytterhoeven, J. B.; Beyer, H. K. J. Chem. Soc. Faraday Trans. I 1979, 75, 56.
    [123] Jones, C. W.; Tsuji, K.; Davis, M. E. Nature 1998, 393, 52.
    [124] Dossi, C.; Psaro, R.; Bartsch, A. e. a. J. Catal. 1994, 145, 377.
    [125] Pauchard, M.; Huber, S.; Meallet-Renault, R. e. a. Angew. Chem. Int. Ed. 2001, 40, 2839.
    [126] Calzaferri, G., Dye molecules in zeolite L nano crystals for efficient light harvesting, In: Anpo M, ed. Photofunctional Zeolites, Newyork, NOVA Science Publishers, 205
    [127]周明;张宝泉;刘秀凤科学通报2008, 53, 257.
    [128] Lee, J. S.; Lee, Y. J.; Yoon, K. B., et al Science 2003, 301, 818.
    [129] Wang, X. D.; Zhang, B. Q.; Liu, X. F.; Lin, J. Y. S. Adv. Mater. 2006, 18, 3261.
    [130] Wang, Z. B.; Wang, H. T.; Mitra, A.; Huang, L. M.; Yan, Y. S. Adv. Mater. 2001, 13, 746.
    [131] Li, Z. J.; Li, S.; Luo, H. M.; Yan, Y. S. Adv. Funct. Mater. 2004, 14, 1019.
    [132] Wang, Z. B.; Mitra, A. P.; Wang, H. T.; Huang, L. M.; Yan, Y. S. Adv. Mater. 2001, 13, 1463.
    [133] Lee, G. S.; Lee, Y. J.; Yoon, K. B. J. Am. Chem. Soc. 2001, 123.
    [134] Wang, Y. J.; Tang, Y.; Wang, X. D., et al J. Mater. Sci. Lett. 2001, 20, 2091.
    [135] Mintova, S.; Hedlund, J.; Sterte, J., et al. Chem. Commum. 1997, 1, 15.
    [136] Holland, B. T.; Abrams, L.; Stein, A. J. Am. Chem. Soc. 1999, 121, 4308.
    [137] Cucchi, I.; Spano, F.; Giovanella, U.; Catellani, M.; Varesano, A.; Calzaferri, G.; Botta, C. Small 2007, 3, 305.
    [138] Inagaki, S.; Guan, S.; Fukushima, Y.; Ohsuna, T.; Terasaki, O. J. Am. Chem. Soc. 1999, 121, 9611.
    [139] Hatton, B.; Landskron, K.; Whitnall, W.; Perovic, D.; Ozin, G. A. Acc. Chem. Res. 2005, 38, 305.
    [140] Mercier, L.; Pinnavaia, T. J. Adv. Mater. 1997, 9, 500.
    [141] Liu, A. M.; Hidajat, K.; Kawi, S.; Zhao, D. Y. Chem. Commum. 2000, 1145.
    [142] Yoshitake, H.; Yokoi, T.; Tatsumi, T. Chem. Mater. 2002, 14, 4603.
    [143] Zhang, Z.; Saengkerdsub, S.; Dai, S. Chem. Mater. 2003, 15, 2921.
    [144] Slowing, I. I.; Trewyn, B. G.; Lin, V. S. Y. J. Am. Chem. Soc. 2006, 128, 14792.
    [145] Lee, C.-H.; Lin, T.-S.; Mou, C.-Y. J. Phys. Chem. B 2003, 107, 2543.
    [146] Jia, M. J.; Seifert, A.; Thiel, W. R. Chem. Mater. 2003, 15, 2174.
    [147] Xiang, S.; Xin, Q.; Li, C. Angew. Chem. Int. Ed. 2002, 5, 41.
    [148]林国强;陈耀全等著,手性合成—不对称反应及其应用,科学出版社:北京, 2000.
    [149]尤田耙,手性化合物的现代研究方法,中国科技大学出版社:合肥, 1993; p 21.
    [150]叶秀林,立体化学,北京大学出版社:北京, 1999; p 83.
    [151]田井晰著,日.泉.;张改;李严;胡家俊译,立体差异反应——不对称反应的性质,科学出版社:北京, 1987.
    [152] Hyun, M. H.; Lee, G. S.; Han, S. C.; Cho, Y. J.; Baik, I. K. Chirallity 2002, 14, 503.
    [153] Oliva, A. I.; Simón, L.; Mu?iz, F. M.; Sanz, F.; Morán, J. R. Org. Lett. 2004, 6, 1155.
    [154] Imai, H.; Munakata, H.; Uemori, Y.; Sakura, N. Inorg. Chem. 2004, 43, 1211.
    [155] Hyun, M. H.; Han, S. C.; Whangbo, S. H. Biomed. Chromatogr. 2003, 17, 292.
    [156] Baleizao, C.; Gigante, B.; Das, D.; Alvaro, M.; Garcia, H.; Corma, A. Chem. Commum. 2003, 15, 1860.
    [157] Gabashvili, A.; Medina, D. D.; Gedanken, A.; Mastai, Y. J. Phys. Chem. B 2007, 111, 11105.
    [158] Paik, P.; Gadanken, A.; Mastai, Y. ACS Appli. Materi. Inter. 2009, 1, 1834.
    [159] Li, Z. J.; Lew, C. M.; Li, S.; Medina, D. I.; Yan, Y. S. J. Phys. Chem. B 2005, 109, 8652.
    [160] Li, Z. J.; Johnson, M. C.; Sun, M. W.; Ryan, E. T.; Earl, D. J.; Maichen, W.; Martin, J. I.; Li, S.; Lew, C. M.; Wang, J.; Deem, M. W.; Davis, M. E.; Yan, Y. S. Angew. Chem. Int. Ed. 2006, 45, 6329.
    [161] Lew, C. M.; Liu, Y.; Day, B.; Kloster, G. A.; Tiznado, H.; Sun, M. W.; Zaera, F.; Wang, J. L.; Yan, Y. S. Langmuir 2009, 25, 5039.
    [162] Guo, H. L.; Zhu, G. S.; Li, H.; Zou, X. Q.; Yin, X. J.; Yang, W. S.; Qiu, S. L.; Xu, R. Angew. Chem. Int. Ed. 2006, 45, 7053.
    [1] Wight, A. P.; Davis, M. E. Chem. Rev. 2002, 102, 3589.
    [2] Hoffmann, F.; Cornelius, M.; Morell, J.; Fr?ba, M. Angew. Chem. Int. Ed. 2006, 45, 3216.
    [3] Xu, Q.; Li, L.; Liu, X.; Xu, R. Chem. Mater. 2002, 14, 549.
    [4] Zhao, L.; Wang, S.; Wu, Y.; Hou, Q.; Wang, Y.; Jiang, S. J. Phys. Chem. C 2007, 111, 18387.
    [5] Lee, B.; Kim, Y.; Lee, H.; Yi, J. Microporous Mesoporous Mater. 2001, 50, 77.
    [6] Hartmann, M. Chem. Mater. 2005, 17, 4577.
    [7] Zeidan, R. K.; Hwang, S. J.; Davis, M. E. Angew. Chem. Int. Ed. 2006, 45, 6332.
    [8] Melero, J. A.; van Grieken, R.; Morales, G. Chem. Rev. 2006, 106, 3790.
    [9] Li, C. M.; Liu, J.; Shi, X.; Yang, J.; Yang, Q. H. J. Phys. Chem. C 2007, 111, 10948.
    [10] Sepehrian, H.; Waqif-Husain, S.; Ghannadi-Maragheh, M. Chromatographia 2009, 70, 277.
    [11] Malvi, B.; Sarkar, B. R.; Pati, D.; Mathew, R.; Ajithkumar, T. G.; Sen Gupta, S. J. Mater. Chem. 2009, 19, 1409.
    [12] Mercier, L.; Pinnavaia, T. J. Adv. Mater. 1997, 9, 500.
    [13] Morey, M. S.; O'Brien, S.; Schwarz, S.; Stucky, G. D. Chem. Mater. 2000, 12, 898.
    [14] Sharma, K. K.; Asefa, T. Angew. Chem. Int. Ed. 2007, 46, 2879.
    [15] Clearfield, A.; Thakur, D. S. Appl. Catal. 1986, 26, 1.
    [16] Tanabe, K.; Misono, M.; Ono, Y.; Hattori, H., New Solid Acids and Bases, Elsevier: Amsterdam, 1989.
    [17] Deoliveira, S. F.; Airoldi, C. Mikrochim Acta 1993, 110, 95.
    [18] Feng, S. H.; Zhao, H.; Li, L. S.; Greenblatt, M. Chem. Res. Chin. Univ. 1999, 15, 5.
    [19] Armento, P.; Casciola, M.; Pica, M.; Marmottini, F.; Palombari, R.; Ziarelli, F. Solid State Ionics 2004, 166, 19.
    [20] Sharkeev, Y. P.; Legostaeva, E. V.; Eroshenko, A. Y.; Khlusov, I. A.; Kashin, O. A. Compos. Interfaces 2009, 16, 535.
    [21] Zhang, J. N.; Ma, Z.; Jiao, J.; Yin, H. F.; Yan, W. F.; Hagaman, E. W.; Yu, J. H.; Dai, S. Langmuir 2009, 25, 12541.
    [22] Tarafdar, A.; Panda, A. B.; Pradhan, N. C.; Pramanik, P. Microporous Mesoporous Mater. 2006, 95, 360.
    [23] Jung, J.-H.; Sohn, H.-J. Microporous Mesoporous Mater. 2007, 106, 49.
    [24] Jones, D. J.; Aptel, G.; Brandhorst, M.; Jacquin, M.; Jiménez-Jiménez, J.; Jiménez-López,A.; Maireles-Torres, P.; Piwonski, I.; Rodriguez-Castellón, E.; Zajac, J.; Rozière, J. J. Mater. Chem. 2000, 10, 1957.
    [25] Bhaumik, A.; Inagaki, S. J. Am. Chem. Soc. 2001, 123, 691.
    [26] Kapoor, M. P.; Inagaki, S.; Yoshida, H. J. Phys. Chem. B 2005, 109, 9231.
    [27] Feng, P. Y.; Xia, Y.; Feng, J. L.; Bu, X. H.; Stucky, G. D. Chem. Commun. 1997, 949.
    [28] Guo, X. F.; Ding, W. P.; Wang, X. G.; Yan, Q. J. Chem. Commun. 2001, 709.
    [29] Yu, D. H.; Wu, C.; Kong, Y.; Xue, N. H.; Guo, X. F.; Ding, W. P. J. Phys. Chem. C 2007, 111, 14394.
    [30] El Haskouri, J.; Pérez-Cabero, M.; Guillem, C.; Latorre, J.; Beltrán, A.; Beltrán, D.; Amorós, P. J. Solid State Chem. 2009, 182, 2122.
    [31] El Haskouri, J.; Roca, M.; Cabrera, S.; Alamo, J.; Beltrán-Porter, A.; Beltrán-Porter, D.; Marcos, M. D.; Amorós, P. Chem. Mater. 1999, 11, 1446.
    [32] Serre, C.; Auroux, A.; Gervasini, A.; Hervieu, M.; Férey, G. Angew. Chem. Int. Ed. 2002, 41, 1594.
    [33] Anabia, M.; Rofouel, M. K.; Husain, S. W. Chinese J. Chem. 2006, 24, 1026.
    [34] Yu, J.; Wang, A.; Tan, J.; Li, X.; van Bokhoven, J. A.; Hu, Y. J. Mater. Chem. 2008, 18, 3601.
    [35] Kimura, T. Chem. Mater. 2003, 15, 3742.
    [36] Kimura, T. Chem. Mater. 2005, 17, 5521.
    [37] Kimura, T. J. Mater. Chem. 2003, 13, 3072.
    [38] El Haskouri, J.; Guillem, C.; Latorre, J.; Beltrán, A.; Beltrán, D.; Amorós, P. Eur. J. Inorg. Chem. 2004, 1804.
    [39] El Haskouri, J.; Guillem, C.; Latorre, J.; Beltrán, A.; Beltrán, D.; Amorós, P. Chem. Mater. 2004, 16, 4359.
    [40] Kimura, T.; Kato, K. New Journal of Chemistry 2007, 31, 1488.
    [41] Kimura, T.; Kato, K. Microporous Mesoporous Mater. 2007, 101, 207.
    [42] Bellezza, F.; Cipiciani, A.; Costantino, U.; Marmottini, F. Langmuir 2006, 22, 5064.
    [43] Shi, X.; Yang, J.; Yang, Q. H. Eur. J. Inorg. Chem. 2006, 1936.
    [44] Shi, X.; Liu, J.; Li, C.; Yang, Q. Inorg. Chem. 2007, 46, 7944.
    [45] Huang, K. L.; Yu, J. H.; Wang, G. M.; Li, Y.; Xu, R. R. Eur. J. Inorg. Chem. 2004, 2956.
    [46] Turner, A.; Jaffres, P. A.; MacLean, E. J.; Villemin, D.; McKee, V.; Hix, G. B. Dalton T. 2003, 1314.
    [47] Tian, B. Z.; Liu, X. Y.; Tu, B.; Yu, C. Z.; Fan, J.; Wang, L. M.; Xie, S. H.; Stucky, G. D.;Zhao, D. Y. Nat. Mater. 2003, 2, 159.
    [48] Dong, W. Y.; Sun, Y. J.; Lee, C. W.; Hua, W. M.; Lu, X. C.; Shi, Y. F.; Zhang, S. C.; Chen, J. M.; Zhao, D. Y. J. Am. Chem. Soc. 2007, 129, 13894.
    [49] Kovalchuk, T. V.; Sflhi, H.; Korchev, A. S.; Kovalenko, A. S.; Il'in, V. G.; Zaitsev, V. N.; Fraissard, J. J. Phys. Chem. B 2005, 109, 13948.
    [50] Gabashvili, A.; Medina, D. D.; Gedanken, A.; Mastai, Y. J. Phys. Chem. B 2007, 111, 11105.
    [51] Paik, P.; Gadanken, A.; Mastai, Y. ACS Appl. Mater. Inter. 2009, 1, 1834.
    [52] Deere, J.; Magner, E.; Wall, J. G.; Hodnett, B. K. J. Phys. Chem. B 2002, 106, 7340.
    [53] Lee, C.-H.; Lang, J.; Yen, C.-W.; Shih, P.-C.; Lin, T.-S.; Mou, C.-Y. J. Phys. Chem. B 2005, 109, 12277.
    [54] Humphrey, H. H. P.; Botting, C. H.; Botting, N. P.; Wright, P. A. Phys. Chem. Chem. Phys. 2001, 2983.
    [55] Harbury, H. A.; Loach, P. A. J. Biol. Chem. 1960, 235, 3640.
    [56] Senn, H.; Wüthrich, K. Q. Rev. Biophys. 1985, 18, 111.
    [57] Vinu, A.; Murugesan, V.; Tangermann, O.; Hartmann, M. Chem. Mater. 2004, 16, 3056.
    [58] Takahashi, H.; Li, B.; Sasaki, T.; Miyazaki, C.; Kajino, T.; Inagaki, S. Microporous Mesoporous Mater. 2001, 44, 755.
    [59] Yiu, H. H. P.; Botting, C. H.; Botting, N. P.; Wright, P. A. Phys. Chem. Chem. Phys. 2001, 3, 2983.
    [60] Deere, J.; Magner, E.; Wall, J. G.; Hodnett, B. K. Chem. Commun. 2001, 465.
    [61] Deere, J.; Magner, E.; Wall, J. G.; Hodnett, B. K. Catal. Lett. 2003, 85, 19.
    [1] Katz, H. E.; Scheller, G.; Putvinski, T. M.; Schilling, M. L.; Wilson, W. L.; Chidsey, C. E. D. Science 1991, 254, 1485.
    [2] Guang, C.; Hong, H. G.; Mallouk, T. E. Acc. Chem. Res. 1992, 25, 420.
    [3] Freiman, G.; Barboux, P.; Perriere, J.; Giannakopoulos, K. Chem. Mater. 2007, 19, 5862.
    [4] Jing, D. W.; Guo, L. J. J. Phys. Chem. C 2007, 111, 13437.
    [5] Das, D. P.; Parida, K. M. Catal. Surv. Asia 2008, 12, 203.
    [6] Yu, J. H.; Xu, R. R. Chem. Soc. Rev. 2006, 35, 593.
    [7] Song, X. W.; Li, Y.; Gan, L.; Wang, Z. P.; Yu, J. H.; Xu, R. R. Angew. Chem. Int. Ed. 2009, 48, 314.
    [8] Poojary, D. M.; Shpeizer, B.; Clearfield, A. J. Chem. Soc. Dalton 1995, 111.
    [9] Bruque, S.; Aranda, M. A. G.; Losilla, E. R.; Olivera-Pastor, P.; Maireles-Torres, P. Inorg. Chem. 1995, 34, 893.
    [10] Jiménez-Jiménez, J.; Maireles-Torres, P.; Olivera-Pastor, P.; Rodríguez-Castellón, E.; Jiménez-López, A.; Jones, D. J.; Rozière, J. Adv. Mater. 1998, 10, 812.
    [11] Jones, D. J.; Aptel, G.; Brandhorst, M.; Jacquin, M.; Jimenez-Jimenez, J.; Jimenez-Lopez, A.; Maireles-Torres, P.; Piwonski, I.; Rodriguez-Castellon, E.; Zajac, J.; Roziere, J. J. Mater. Chem. 2000, 10, 1957.
    [12] Guo, X. F.; Ding, W. P.; Wang, X. G.; Yan, Q. J. Chem. Commun. 2001, 709.
    [13] Shen, S. D.; Tian, B. Z.; Yu, C. Z.; Xie, S. H.; Zhang, Z. D.; Tu, B.; Zhao, D. Y. Chem. Mater. 2003, 15, 4046.
    [14] El Haskouri, J.; Guillem, C.; Latorre, J.; Beltran, A.; Beltran, D.; Amoros, P. Chem. Mater. 2004, 16, 4359.
    [15] Kapoor, M. P.; Inagaki, S.; Yoshida, H. J. Phys. Chem. B 2005, 109, 9231.
    [16] Anabia, M.; Rofouel, M. K.; Husain, S. W. Chin. J. Chem. 2006, 24, 1026.
    [17] Yu, D. H.; Wu, C.; Kong, Y.; Xue, N. H.; Guo, X. F.; Ding, W. P. J. Phys. Chem. C 2007, 111, 14394.
    [18] Tian, B. Z.; Liu, X. Y.; Tu, B.; Yu, C. Z.; Fan, J.; Wang, L. M.; Xie, S. H.; Stucky, G. D.; Zhao, D. Y. Nat. Mater. 2003, 2, 159.
    [19] Wang, Y.; Wang, X. X.; Su, Z.; Guo, Q.; Tang, Q. H.; Zhang, Q. H.; Wan, H. L. Catal. Today 2004, 93-95, 155.
    [20] Ichinose, I.; Senzu, H.; Kunitake, T. Chem. Lett. 1996, 831.
    [21] Ichinose, I.; Senzu, H.; Kunitake, T. Chem. Mater. 1997, 9, 1296.
    [22] Yan, W. F.; Mahurin, S. M.; Overbury, S. H.; Dai, S. Top. Catal. 2006, 39, 199.
    [23] Yan, W. F.; Mahurin, S. M.; Overbury, S. H.; Dai, S. Chem. Mater. 2005, 17, 1923.
    [24] Yan, W. F.; Chen, B.; Mahurin, S. M.; Hagaman, E. W.; Dai, S.; Overbury, S. H. J. Phys. Chem. B 2004, 108, 2793.
    [25] Zhao, D. Y.; Huo, Q. S.; Feng, J. L.; Chmelka, B. F.; Stucky, G. D. J. Am. Chem. Soc. 1998, 120, 6024.
    [26] Corriu, R. J. P.; Leclercq, D.; Lefevre, P.; Mutin, P. H.; Vioux, A. J. Non-Cryst. Solids 1992, 146, 301.
    [27] Corriu, R. J. P.; Leclercq, D.; Mutin, P. H.; Sarlin, L.; Vioux, A. J. Mater. Chem. 1998, 8, 1827.
    [28] Krishnan, C. K.; Hayashi, T.; Ogura, M. Adv. Mater. 2008, 20, 2131.
    [29] Gutiérrez, O. Y.; Pérez, F.; Fuentes, G. A.; Bokhimi, X.; Klimova, T. Catal. Today 2008, 130, 292.
    [30] Dragoi, B.; Dumitriu, E.; Guimon, C.; Auroux, A. Microporous Mesoporous. Mater. 2009, 121, 7.
    [31] Kovalchuk, T. V.; Sflhi, H.; Korchev, A. S.; Kovalenko, A. S.; Il'in, V. G.; Zaitsev, V. N.; Fraissard, J. J. Phys. Chem. B 2005, 109, 13948.
    [32] Alfaya, A. A. S.; Gushikem, Y. Chem. Mater. 1998, 10, 909.
    [33] Frianeza, T. N.; Clearfield, A. J. Catal. 1984, 85, 398.
    [34] Tanabe, K.; Misono, M.; Ono, Y.; Hattori, H., New Solid Acids and Bases, Elsevier: Amsterdam, 1989.
    [35] Ma, Z.; Yue, Y. H.; Deng, X. Y.; Gao, Z. J. Mol. Catal. A-Chem. 2002, 178, 97.
    [36] Llavona, R.; Suarez, M.; Garcia, J. R.; Rodriguez, J. Inorg. Chem. 1989, 28, 2863.
    [37] Deoliveira, S. F.; Airoldi, C. Mikrochim. Acta. 1993, 110, 95.
    [38] Roca, S.; Airoldi, C. Thermochim. Acta 1996, 284, 289.
    [39] Shin, Y. S.; Arey, B. W.; Wang, C. M.; Li, X. H. S.; Engelhard, M. H.; Fryxell, G. E. Inorg. Chem. Commun. 2007, 10, 642.
    [40] Wang, Q. F.; Zhong, L.; Sun, J. Q.; Shen, J. C. Chem. Mater. 2005, 17, 3563.
    [41] Clearfield, A.; Stynes, J. A. J. Inorg. Nucl. Chem. 1964, 26, 117.
    [42] Trobajo, C.; Khainakov, S. A.; Espina, A.; García, J. R. Chem. Mater. 2000, 12, 1787.
    [43] Pan, B. C.; Zhang, Q. R.; Du, W.; Zhang, W. M.; Pan, B. J.; Zhang, Q. J.; Xu, Z. W.; Zhang, Q. X. Water Res. 2007, 41, 3103.
    [44] Zhu, H. G.; Ma, Z.; Clark, J. C.; Pan, Z. W.; Overbury, S. H.; Dai, S. Appl. Catal. A-Gen. 2007, 326, 89.
    [45] Clayden, N. J. J. Chem. Soc. Dalton 1987, 1877.
    [46] Nakayama, H.; Eguchi, T.; Nakamura, N.; Yamaguchi, S.; Danjyo, M.; Tsuhako, M. J. Mater. Chem. 1997, 7, 1063.
    [47] Sawant, D. P.; Vinu, A.; Mirajkar, S. P.; Lefebvre, F.; Ariga, K.; Anandan, S.; Mori, T.; Nishimura, C.; Halligudi, S. B. J. Mol. Catal. A-Chem. 2007, 271, 46.
    [1] Lowdermilk, W. H.; Milam, D. Appl. Phys. Lett. 1980, 36, 891.
    [2] Zheng, Y.; K., K.; Yamasaki, M.; Sonoi, K.; K., U. Appl. Opt. 1997, 36, 6335.
    [3] Bilyalov, R.; Stalmans, L.; Poortmans, J. J. Electrochem. Soc. 2003, 150, G216.
    [4] Clampham, P. B.; Hutley, M. C.; Clapham, P. B.; Hutley, M. C. Nature (London) 1973, 244, 281.
    [5] Walheim, S.; Sch?ffer, E.; Mlynek, J.; Steiner, U. Science 1999, 283, 520.
    [6] Ibn-Elhaj, M.; Schadt, M. Nature 2001, 410, 796.
    [7] Shcelle, C.; Menning, M.; Krug, H.; Jonschker, G.; Schmidt, H. J. Non-Cryst. Solids 1997, 218, 25.
    [8] Chen, D. Energy Mater. 2001, 68, 313.
    [9] Szczyrbowski, J.; Braeuer, G.; Teschner, G.; Zmelty, A. J. Non-Cryst. Solids 1997, 218, 25.
    [10] Hadobas, K.; Kirsch, S.; Carl, A.; Acet, M.; Wassermann, E. F. Nanotechnology 2000, 11, 161.
    [11] Decher, G. Science (Washington, DC, U.S.) 1997, 277, 1232.
    [12] Hattori Adv. Mater. 2001, 13, 51.
    [13] Yancey, S. E.; Zhong, W.; Heflin, J. R.; Ritter, A. L. J. Appl. Phys. 2006, 99, 034313/1.
    [14] Cebeci, F. C.; Wu, Z. Z.; Zhai, L.; Cohen, R. E.; Rubner, M. F. Langmuir 2006, 22, 2856.
    [15] Rouse, J. H.; Ferguson, G. S. J. Am. Chem. Soc. 2003, 125, 15529.
    [16] Lee, D.; Rubner, M. F.; Cohen, R. E. Nano Lett. 2006, 6, 2305.
    [17] Zhang, X. T.; Fujishima, A.; Jin, M.; Emeline, A. V.; T., M. J. Phys. Chem. B 2006, 110, 25142.
    [18] Hiller, J.; Mendelsohn, J. D.; Rubner, M. F. Nat. Mater. 2002, 1, 59.
    [19] Podsiadlo, P.; Sui, L.; Elkasabi, Y.; Burgardt, P.; Lee, J.; Miryala, A.; Kusumaatmaja, W.; Carman, M. R.; Shtein, M.; Kieffer, J.; Lahann, J.; Kotov, N. A. Langmuir 2007, 23, 7901.
    [20] Zhang, L. B.; Li, Y.; Sun, J. Q.; Shen, J. C. Langmuir 2008, 24, 10851.
    [21] Li, Y.; Liu, F.; Sun, J. Q. Chem. Commun. 2009, 2730.
    [22] Liu, X. M.; He, J. H. J. Phys. Chem. C 2009, 113, 148.
    [23] Manaca, M.; Cannavale, A.; De Marco, L.; Aricò, A. S.; Cingolani, R.; Gigli, G. Langmuir 2009, 25, 6357.
    [24] Li, Z. J.; Li, S.; Luo, H. M.; Yan, Y. S. Adv. Funct. Mater. 2004, 14, 1019.
    [25] Li, Z. J.; Lew, C. M.; Li, S.; Medina, D. I.; Yan, Y. S. J. Phys. Chem. B 2005, 109, 8652.
    [26] Li, Z. J.; Johnson, M. C.; Sun, M. W.; Ryan, E. T.; Earl, D. J.; Maichen, W.; Martin, J. I.; Li, S.; Lew, C. M.; Wang, J.; Deem, M. W.; Davis, M. E.; Yan, Y. S. Angew. Chem. Int. Ed. 2006, 45, 6329.
    [27] Lew, C. M.; Li, Z. J.; Li, S.; Hwang, S. J.; Liu, Y.; Medina, D. I.; Sun, M. W.; Wang, J. L.; Davis, M. E.; Yan, Y. S. Adv. Funct. Mater. 2008, 18, 3454.
    [28] Guo, H. L.; Zhu, G. S.; Li, H.; Zou, X. Q.; Yin, X. J.; Yang, W. S.; Qiu, S. L.; Xu, R. Angew. Chem. Int. Ed. 2006, 45, 7053.
    [29] Lew, C. M.; Liu, Y.; Day, B.; Kloster, G. A.; Tiznado, H.; Sun, M. W.; Zaera, F.; Wang, J. L.; Yan, Y. S. Langmuir 2009, 25, 5039.
    [30] Li, Q.; Creaser, D.; Sterte, J. Microporous Mesoporous Mater. 1999, 31, 141.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700