用户名: 密码: 验证码:
有机基材表面构筑微纳金属/无机/生物高级结构的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机聚合物具有成本低、易加工、透明性好、柔软、质轻、可回收、易降解等优异性能,以聚合物基材为基底的现代材料引起了人们的广泛关注,如在聚合物基材表面制备金属纳米粒子,功能化修饰的金属纳米粒子具有独特的光学、磁学、催化和电学性能,在化学、材料科学、生物学、纳米技术等领域得到了广泛应用。此外,在有机聚合物基材表面制备一层无机氧化物进而组成有机/无机复合层及对其表面进一步功能化具有重要的理论意义和研究价值。有机/无机复合物不仅具备有机聚合物的优良性能,同时也具备无机氧化物的一些特性,如高反应性,易对其表面进行分子设计等,因而常用于分子自组装、包装材料、生物技术、传感器及光电器件领域。然而这种复合材料制备的一个关键问题就是有机、无机两相的粘接性,因此需要预先对有机基材表面进行改性。有机聚合物基材表面接枝聚合物刷改性以提高有机聚合物表面的生物相容性、或进行表面分子设计以便固定蛋白质也是有机聚合物基材应用的重要方面。
     本文基于上述考虑,进行了如下工作:
     1.通过硅烷偶联剂在通用聚合物膜表面制备一层近单分子层过渡层进而组装金纳米颗粒,得到尺寸约为20nm的金纳米颗粒。前期改性过程中使用不同形状光掩模可很容易的在改性膜表面得到大范围、均匀、效果良好的图案化金纳米颗粒。由于前期反应的普遍性,基底可以是任何有机聚合物。同时由于硅氧烷种类较多,因此可制备末端带有巯基、环氧基、羧基等系列单层膜进而组装金属纳米颗粒。
     2.有机/无机复合膜制备研究:
     (a) BOPP/SiO_x复合膜的制备研究:利用“界面定向溶胶-凝胶法”在通用聚合物膜表面制备了高质量的SiO_x层并使其图案化,该方法具备以下优点:制备条件温和,不需要真空等苛刻条件,在常温下就能简单、快速、廉价制备;不会像高能辐射等方法造成基体降解;通过共价键使SiO_x层与功能化聚合物表面紧密结合;通过超声或胶带撕拉可在表面制备低扩散(<5%)和大尺寸(cm~2)的清晰图案;通过旋涂可在表面获得平整SiO_x层(RMS<9(?)),其衍生性好,可以同样制备TiO_2无机层;可在表面引入可进一步应用的各种功能性基团。因此,以所得聚合物为基体的柔软、透明电学或生物材料具有广泛的研究价值和工业前景。
     (b) BOPP/SiO_x/TiO_2复合膜制备研究:在制备BOPP/TiO_2复合膜的过程中引入一层无机SiO_x过渡层,可以获得BOPP/SiO_x/TiO_2复合膜。SiO_x过度层对表面沉积TiO_2的性质无影响,SiO_x不会破坏有机聚合物基底,同时又能在TiO_2无机层下稳定存在,所以增加过渡层不会改变原有良好的反应性质,同时还起到了保护基底的作用。
     3.利用表面光反应改性方法,以过硫酸铵水溶液为反应液,在通用聚合物膜材料(聚酯PET、双向拉伸聚丙烯BOPP、流延聚丙烯CPP)表面引入了单层酸根离子或羟基基团,然后研究了所得膜材料对3种代表性蛋白质(木瓜蛋白酶,牛血清白蛋白和抗体IgG)的非特异性吸附。采用称重法、付立叶红外光谱仪(FTIR-ATR)、水接触角(CA)、荧光显微镜等测试手段对表面改性效果和非特异性吸附强弱进行了表征。结果表明:改性和未改性PET膜对3种蛋白质的非特异性吸附均较小;表面硫酸化BOPP膜对抗体IgG的非特异性吸附较小;表面羟基化CPP膜对牛血清白蛋白的非特异性吸附较小。
     以二苯甲酮为光引发剂,通过表面光接枝改性在聚丙烯膜表面分别接枝一层聚丙烯酸(PAA)、聚丙烯酰胺(PAM)和聚马来酸酐(PMAH),然后分别在上述接枝层表面固定牛血清白蛋白(BSA)。采用称重法、付立叶红外光谱仪、水接触角测试仪、紫外-可见光谱等测试手段对表面改性效果和固定蛋白量进行表征。结果表明上述接枝改性聚丙烯膜表面都可固定BSA,固定效率比较为:PP-g-PMAH>PP-g-PAA>PP-g-PAM。
     引入功能性基团改性表面已经被广泛用于生物医学领域。本论文研究了一种经硅烷化处理向聚合物表面快速、简单引入各种分子级功能基团的方法。在羟基化PP膜表面通过羟基与3-APTES分子中硅氧烷反应引入较高覆盖率的伯氨基,再利用戊二醛进行活化,通过醛胺缩合反应,将蛋白质(IgG)有效固定在聚合物基体表面。借由不同末端功能基团的硅氧烷分子可向任何惰性表面引入各种功能基团,广泛用于微排列,生物传感器,过滤膜和微分离等领域。
     有机/无机复合膜表面无机层上引入功能基团使表面反应像在无机基体表面一样进行。比较了BOPP/SiO_x表面和石英表面的性能,将石英表面发生的化学反应引入到复合膜表面,得到很好的重复性,因而可说该复合膜表面具备了石英一样的性能,能够应用于生物芯片等领域。
Plastics-supported modern material has received increasing attentions because polymers have unique benefits including low cost, easy processability, high transparency, flexibility, light-weight, recyclability and disposability. For example, metal nanoparticles were fabricated on the surface of polymer-supported. Metal nanoparticles have drawn considerable interest in various fields of chemistry, materials, biology and nano-technology because of their unique physical and chemical properties in optical, magnetic catalyse and electronics. In addition, the fabrication of organic/inorganic hybrid materials, and the surface functionalization of polymer-supported. The fabrication of an inorganic oxide layer on organic-supported surface for organic/inorganic compound layers and its surface functionalization has an important theory significance and worthiness. The compound materials have not only the excellent characters of organic polymers, but also the outstanding characteristics of inorganic oxide. That is high and activity reaction, and it is easy to design surface on molecule level. It has found a wide range of applications in colloid self-assembly, packaging, biotechnology, sensors, and opt-electronic devices. However, an important factor restricting the development of the compound material was the low viscidity between organic phase and inorganic phase. Therefore the surface of organic-supported was used to be modified before the compound material fabrication. It was also an important aspect for application that the surface of organic materials was grafted polymer brushes modification in order to the biocompatibility and molecule design for immobilization protein.
     Base on thinking above, the main contents of this thesis were as follows:
     1. An approximately monolayer was fabricated on polymer film surface by silanization for assembly golden nanoparticles. The size of particles was about 20 nm. It is easy that golden nanoparticles pattern was gained on the surface by photomask on the process of modification. The effect of pattern was very nice and uniformity on quite bounty area. Owing to the method's catholicity and applicability to all of inert organic surfaces which have similar alkyl C-H structures, meanwhile the existence of the well-established silanes library, it is no doubt that a variety of functional groups hence could be attached onto inert polymer surface for assembly different metal nanoparticles.
     2.The research of organic/inorganic compound film: (a) The fabrication of BOPP/SiO_x compound film. Here demonstrate a new method, named as "interface-directed sol-gel" is capable of fabricating high quality silicon oxide (SiO_x) film and its patterning onto various commodity plastics. Our method has at least seven advantages than current techniques: simple and fast process at low cost without the need of vacuum devices and cleanroom facilities; mild process without the damage on the substrate because of the exclusion of high-energy species and photolithography; strong interfacial adhesive strength between SiO_x and polymer substrate due to the formation of covalent bond on functionalized surface; easy to obtain clear pattern in large area (cm~2) with low line edge variation (<5%) by simple ultrasonic washing or adhesive tape peeling; very smooth SiO_x surface (RMS<9A by AFM) could be obtained by spin-coating; good generality to extend other oxide layer fabrication, for example TiO_2 pattern fabrication shown in this study; versatile functions could be conducted on such SiO_x-coated polymer matrix, as also partially demonstrated by protein immobilization and oxygen barrier test in this study. On the basis of the above merits, we are fully confident that this method would draw a myriad of attentions from academic and industrial fields in that it is highly desirable and important for polymer-supported flexible optical, electrical and biomedical materials, (b) The fabrication of BOPP/SiO_x/TiO_2 compound film: The BOPP/SiO_x/TiO_2 compound film was fabricated by adding a SiO_x transition layer on the process of fabricating BOPP/SiO_x. It was found that the SiO_x has not affected the property of TiO_2. Not destroying the organic-supported, the SiO_x layer can exist stably below TiO_2 layer. The transition layer can play an important role in protecting the organic-supported.
     3.The research of biocompatibility and surface functionalize about polymer-supported. Monolayer vitriol acid radical or hydroxyl on polymer films (PET、BOPP、CPP) have been synthesized by surface photoreaction modification method using Ammonium persulfate as reagent. The non-specific adsorption has been studied between these films and three kinds of protein (Enzyme, BSA and anti-body IgG). The effect of the surface modification and protein adsorption was determined by Weightiness, FTIR-ATR, Water Contact Angle and fluorescence microscope (Olympus IX-81). As a result, the non-specific adsorption of unmodified and modified PET to three kinds of protein is less. The fewer non-specific adsorption was happen between acidified BOPP and anti-body IgG. It was also appeared between hydroxyl CPP and BSA. Layers of poly (acrylic acid) (PAA), polyacrylamide (PAM) and maleic anhydride (PMAH) have been synthesized on polypropylene (PP) films by a surface photografting modification method using benzophenone (BP) as photoinitiator. Bovine serum albumin (BSA) was subsequently grafted onto these films. The effect of the surface modification and protein adsorption was determined by weight changes, FTIR-ATR, water contact angle measurement s and UV-visible spect-roscopy. The extent of grafting of BSA on the modified PP films decreased in the order PP-g-PMAH > PP-g-PAA > PP-g-PAM.
     Surface modification through implanting functional groups has been demonstrated to be extremely important to biomedical applications. Here report the potential to perform silanization techniques on alkyl polymer surface, which provide a simple, fast, inexpensive and general method to decorate versatile functional groups at molecular level. As an example, high-density primary amines could be obtained on a model polymer, polypropylene substrate through the reaction between amine-capped silane, 3-aminopropyltriethoxysilane (APTES) and hydroxylated polypropylene surface. A model protein, immunoglobulin (IgG), could be effectively immobilized on the surface after transforming amines to aldehydes by the aldehyde-amine condensation reaction between glutaraldehyde (GA) and amines. The routes we reported here could directly makes use of the benefits from well-developed silane chemistry, and hereby is capable to graft any functionalities on inert alkyl surface via changing the terminal groups in silanes, which should stimuli instantly the development of many realms such as microarrays, immunoassays, biosensors, filtrations, and microseparation.
     Functionality groups were introduced on the organic/inorganic compound film surface. Make the reaction happen on organic/inorganic compound film surface the same as inorganic-supported surface. Comparing BOPP/SiO_x surface with quartz surface, many characters have the same. The reaction happened on quartz surface had echoed well on organic/inorganic compound film surface. So it can be applied on biochips' area as quartz.
引文
[1]屈海云,王海涛,黄懿,陆豪杰,钟伟,孔继烈,等.有机玻璃微流控芯片表面的蛋白质固定化及应用研究[J].高等学校化学学报,2004,25,Suppl.59-60.
    [2]材料科学技术所面临的挑战(Challenges for the Chemical Sciences in the 21st Century—Materials Science and Technology).美国科学院院报(英文)[M].2003.
    [3]刘新厚.有机电致发光(OLED)及柔性显示.中国感光学会第七次全国会员代表大会暨学术年会和第七届青年学术交流会论文摘要集[C].2006,中国,西安,pp1-4.
    [4]Senaratne W,Andruzzi L,Ober C K.Self-Assembled Monolayers and Polymer Brushes in Biotechnology:Current Applications and Future Perspectives[J].Biomacromolecules,2005,6:2427-2448.
    [5]Kane R S,Ingber D E,Whitesides G M,et al.Patterning proteins and cells using soft lithography[J].Biomaterials,1999,20:2363-2376.
    [6]Craighead H G,James C D,Tumer A M P.Chemical and topographical patterning for directed cell attachment[J].Current Opinion in Solid Sate and Materials Science,2001,5:177-184.
    [7]Vitzthum F,Behrens F,et al.Proteomics:From Basic Research to Diagnostic Application.A Review of Requirements & Needs[J].J.Proteome Research,2005,4:1086-1097.
    [8]Balakirev M Y,Porte S,Gris M V,et al.Photochemical Patterning of Biological Molecules Inside a Glass Capillary[J].Anal.Chem.,2005,77:5474-5479.
    [9]Falconnet D,Csucs G,Textor M,et al.Surface engineering approaches to micropattern surfaces for cell-based assays[J].Biomaterials,2006,27:3044-3063.
    [10]Wang Y,Lai H H,Bachman M,et al.Covalent Micropatterning of Poly(dimethylsiloxane) by Photografting through a Mask[J].Anal.Chem.,2005,77:7539-7546.
    [11]Hu S,Ren X,Bachman M,et al.Surface-Directed,Graft Polymerization within Microfluidic Channels[J].Anal.Chem.,2004,76:1865-1870.
    [12]Matsuda T.Photoiniferter-Driven Precision Surface Graft Microarchitectures for Biomedical Applications[J].Adv.Polym.Sci.2006,197:67-106.
    [13]张增民.以聚丙烯为中心的改性技术[J].塑料科技,1997,6:18-23.
    [14]肖迎红,车剑飞,吉法祥.短切玻纤增强聚丙烯表面的化学处理及其表征[J].南京理工大学学报,1995,19(1):46-52.
    [15]Torstensson M,Ranby B.Hult A.Monomeric Surfactants for Surface Modification of Polymers[J].Macromolecules,1990,23:126-130.
    [16]Rao,M.H.,Rao,K.N.Radiation Induced Grafting of Mixed Monomers onto Polyester and Polypropylene Fibers[J].J.Appl.Polym.Sci.,1987,33:2707-2714.
    [17]Inaba M,Ogumi Z,Takehara Z.Application of the Solid Polymer Electrolyte Method to Organic Electrochemistry.(ⅩⅣ)[J].J.Electrochem.Soc.,1993,140:19-22.
    [18]Memetea T,Stannett V.Radiation Grafting to PET Fibres[J].Polymer,1979,20:465-468.
    [19]Shkolnik S,Behar D.Radiation-induced Grafting of Sulfonates on Polyethylene[J].J.Appl.Polym.Sci.,1982,27:2189-2196.
    [20]Haruvy Y,Rajbenbach L A.Grafting of Acrylamide to Nylon-6 by the Electron-beam Preirradiation Technique.Ⅱ.Kinetic Aspects and Film Permeability[J].J.Appl.Polym.Sci.,1982,27:2711-2723.
    [21]Ishigaki I,Sugo T,Senoo K.Graft Polymerization of Acrylic Acid onto Polythylene Film by Preirradiation Method.I.Effects of Preirradiation Dose,Monomer Concentration,Reaction Temperature,and Film Thickness[J].J.Appl.Polym.Sci.,1982,27:1033-1041.
    [22]Omichi H,Okamoto J.Synthesis of Ion-exchange Membranes by Radiation-induced Multiple Grafting of Methyl α,β,β-trifluoroacrylate[J].J.Polym.Sci.:Polym.Chem.,1982,20:521-528.
    [23]Bhattacharyya S N,Maldas D.Radiation-induced Graft Copoymerization of Mixtures of Styrene and Acrylamide onto Cellulose Acetate.I.Effect of Solvents[J].J.Polym.Sci.:Polym.Chem.,1982,20:939-950.
    [24]Kaji K.Grafting of Polyacrylic Acid onto PE Filament and its Distribution[J].J.Appl.Polym.Sci.,1983,28:3767-3777.
    [25]Okamoto J,Sugo T,Katakai A.Amidoxime-group-containing Adsorbents for Metal Ions Synthesized by Radiation-induced Grafting[J].J.Appl.Polym.Sci., 1985,30:2967-2977.
    [26]O'Neill T.Grafting of Acrylic Acid onto Radiation-peroxidized Polypropylene Film in the Presence of Ferrous Ion[J].J.Polym.Sci.,1972,A10:569-580.
    [27]Matsuzaki K,Nakamura S,Shindo S.Radiation-induced Graft Copolymerization of Mixtures of Styrene and n-butyl Acrylate onto Cellulose and Cellulose Triacetate[J].J.Appl.Polym.Sci.,1972,16:1339-1355.
    [28]Oster M I,Rogers C E.Modification of Membrane Permselectivity by Graft Copolymerization[J].J.Appl.Polym.Sci.,1974,18:1359-1371.
    [29]Kale P D,Lokhande H T.Grafting on Polyester Fibers[J].J.Appl.Polym.Sci.,1975,19:461-480.
    [30]Harris J A,Arthur J C.Radiation-initiated Graft Copolymerization of Binary Monomer Mixtures Containing Acrylonitrile with Cotton Cellulose[J].J.Appl.Polym.Sci.,1970,14:3113-3128.
    [31]Ratner B D,Weathersby P K,Hoffman A S.Radiation-grafted Hydrogels for Biomaterial Applications as Studied by the ESCA Technique[J].J.Appl.Polym.Sci.,1978,22:643-664.
    [32]Youling Yuan,Jun Zhang,Fei Ai.Surface modification of SPEU films by ozone induced graft copolymerization to improve hemocompatibility[J].Colloids and Surfaces B:biointerfaces,2003(29):247-256.
    [33]黄玉东.聚合物表面与界面技术[M].北京:化学工业出版社,2003:35-45.
    [34]Nai-Yi Cui,Norman M,Brown D.Modification of the surface properties of a polypropylene(PP) film using an air dielectric barrier discharge plasma[J].Applied surface science,2002,189:31-38.
    [35]洪啸吟.光照下的缤纷世界——光敏高分子化学的应用[M],第1版,长沙:湖南教育出版社,1999。
    [36]杨鹏.新型表面有机光化学反应,表面功能化及2D/3D微纳结构制造[D].北京:北京化工大学,2006.
    [37](O|¨)ster G,Shibata O.Graft copolymer of polyacrylamide and natural rubber produced by means of ultraviolet light[J].J.Polym.Sci.,1957,26:233-237.
    [38]Tazuke S,Kimura H.Surface photografting.Ⅰ.Graft polymerization of hydrophilic monomers onto various polymer films[J].J.Polym.Sci.Polym.Lett.Ed.,1978,16:497-502.
    [39]Tazuke S,Kimura H.Surface photografting.Ⅱ.Modification of polypropylene film surface by graft polymerization of acrylamide[J].Makromol.Chem.,1978,179:2603-2612.
    [40]Yang WT,Ranby B.The role of far UV radiation in the photografting process[J].Polymer Bulletin,1996,37:89-96.
    [41]Yang WT,Ranby B.Photoinitiation performance of some ketones in the LDPE-acrylic acid surface photografting system[J].Eur.Polym.J.,1999,35:1557-1568.
    [42]Yang WT,Ranby B.Bulk surface photografting process and its applications.Ⅰ.Reactions and kinetics[J].J.Appl.Polym.Sci.,1996,62:533-543.
    [43]Yang WT,Ranby B.Bulk surface photografting process and its applications.Ⅱ.Principal factors affecting surface photografting[J].J.Appl.Polym.Sci.,1996,62:545-555.
    [44]Yang WT,Ranby B.Bulk surface photografting process and its applications.Ⅲ.Photolamination of polymer films[J],.J.Appl.Polym.Sci.1997,63:1723-1732.
    [45]Yang WT,Ranby B.Radical living graft polymerization on the surface of polymeric materials[J].Macromolecules,1996,29:3308-3310.
    [46]Tsujii,Y.;Ohno,K.;Fukuda,T.,et al.Structure and Properties of High-Density Polymer Brushes Prepared by Surface-Initiated Living Radical Polymerization[J].Adv.Polym.Sci.,2006,197:1-45.
    [47]杨万泰,尹梅贞,表面光接枝技术及应用,影像技术[J],1998,3:5-10.
    [48]杨万泰,尹梅贞,邓建元,杜久明,表面光接枝原理、方法及应用前景[J].高分子通报,1929,3:60-65.
    [49]杨万泰,光引发与表面改性,高分子化学(周其凤,胡汉杰编)[M],第1版,北京:化学工业出版社,2001,第三章.
    [50]Hitoshi K,Noriyasu N,Ryoichi.Temperature-responsive characteristics of N-isopropylacrylamide-grafted polymer films prepared by photografting[J].Journal of Applied Polymer Science,1994,51:925-929.
    [51]Stephen.E,Susan.W,W.James.Surface modification of polyethylene by photochemical grafting with 2-hydroxyethylmethacrylate[J].Journal of Applied Polymer Science,1993,47:1075-1082.
    [52]Hitoshi Kubota,Yasumichi Shigehisa.Introduction of amidoxime groups into cellulose and its ability to adsorb metal ions[J].Journal of Applied Polymer Science,1995,56:147-151.
    [53] Chan C M, Venkatraman S. Crosslinking of poly(arylene etherk etone)s 1 .Rheological behavior of the melt and mechanical properties of cured resin[J]. Journal of Applied Polymer Science, 1986, 32: 5933-5943.
    [54] Amornsakhai T, Kubota H. Photoinitiated grafting of methyl methacrylate on highly oriented polyethylene: Effect of draw ratio on grafting[J]. J. Appl. Polym. Sci., 1998, 70: 465-470.
    [55] Ranby B, Gao ZM. Modification of polymer surfaces by graft copolymerization[J]. Polymer Preprints, 1986, 27: 38-39.
    
    [56] Ranby B, Gao ZM. ACS Symp. Ser. [J], 1988, 364: 168.
    [57] Kubota H, Yoshino N, Ogiwara Y. Vapor phase photografting on LDPE film in binary monomer systems[J]. J. Appl. Polym. Sci., 1990, 39: 1231-1239.
    [58] Imaizumi M, Kubota H, Hata Y. Comparative examination of acrylic acid and 4-vinylpyridine in liquid-phase photografting on polyethylene film[J]. Eur. Polym. J., 1994, 30: 979-983.
    [59] Ogiwara Y, Kanda M, Takumi M. Photosensitized grafting on polyolefin films in vapor and liquid phases[J]. J. Polym. Sci. Polym. Lett. Ed., 1981, 19: 457-462.
    [60] Allmer K, Hult A, Ranby B. Surface modification of polymers. I. Vapour phase photografting with acrylic acid[J]. J. Polym. Sci. Polym. Chem., 1988, 26:2099-2111.
    [61] Kubota H, Ogiwara Y., Effect of water in vapor-phase photografting of vinyl monomers on polymer films [J]. J. Appl. Polym. Sci., 1991, 43: 1001-1005.
    [62] Kubota H. Photografting of acrylonitrile and methacrylic acid on polyethylene film under air atmosphere[J]. J. Appl. Polym. Sci., 1993, 48: 1717-1721.
    [63] Stephen Edge, Susan Walker, W. James Feast. Surface modification of polyethylene by photochemical grafting with 2-hydroxyethylmethacrylate[J]. Journal of Applied Polymer Science, 1993, 47:1075-1082.
    [64] Schottner G. Hybrid Sol-Gel-Derived Polymers: Applications of Multifunctional Materials[J]. Chem. Mater. 2001, 13: 3422-3435.
    [65] Ruthy Sfez, Liu De-Zhong, Iva Turyan, Daniel Mandler, Shlomo Yitzchaik. Polyaniline Monolayer Self-Assembled on Hydroxyl-Terminated Surfaces[J]. Langmuir, 2001, 17: 2556-2559.
    [66] Peters R D, Yang X M, Kim T K, et al. Using Self-Assembled Monolayers Exposed to X-rays To Control the Wetting Behavior of Thin Films of Diblock Copolymers[J].Langmuir,2000,16:4625-4631.
    [67]Ingall M D K,Honeyman C H,Mercure J V,et al.Surface Functionalization and Imaging Using Monolayers and Surface-Grafted Polymer Layers[J].J.Am.Chem.Soc.,1999,121:3607-3613.
    [68]Zheyuan Huang,Pen-Cheng Wang,MacDiarmid A G,et al.Selective Deposition of Conducting Polymers on Hydroxyl-Terminated Surfaces with Printed Monolayers of Alkylsiloxanes as Templates[J].Langmuir,1997,13:6480-6484.
    [69]Paolo Facci,Dario Alliata,Laura Andolfi,et al.Formation and characterization of protein monolayers on oxygen-exposing surfaces by multiple-step self-chemisorption[J].Surface Science.2002,504:282-292.
    [70]Niroshan Ramachandran,Eugenic Hainsworth,Bhupinder Bhullar,et al.Self-Assembling Protein Microarrays[J].Science,2004,305:86-90.
    [71]Stefano Tugulu,Anke Arnold,India Sielaff,et al.Protein-Functionalized Polymer Brushes[J].Biomacromolecules,2005,6:1602-1607.
    [72]童勤义,孙国梁,徐晓莉,等.硅片直接健合中表面活化的研究[J].电子学报,1990,18(3):32-36.
    [73]陈志敏,杨连生,刘仲明,刘芳.压电免疫传感器在梅毒检测中的研究[J].分析测试学报,2004,23(3):39-42.
    [74]Bergbreiter,David E.Polyethylene surface chemistry[J].Prog.Polym.Sci.,1994,19:529-560.
    [75]Occhiello E,Morra M,Morini G;et al.Oxygen-plasma-treated polypropylene interfaces with air,water,and epoxy resins:Part Ⅰ.Air and water[J].Journal of Applied Polymer Science.1991,42(2):551-559.
    [76]Hopkins J,Wheale S H,Badyal J P S.Synergistic Oxidation at the Plasma/Polymer Interface[J].J.Phys.Chem.,1996,100(33):14062-14066.
    [77]Barton D,Bradley J W,Steele D A,et al.Investigating Radio Frequency Plasmas Used for the Modification of Polymer Surfaces[J].J.Phys.Chem.B.,1999,103(21):4423-4430.
    [78]Ryan M E,Badyal J P S.Surface Texturing of PTFE Film Using Nonequilibrium Plasmas[J].Macromolecules,1995,28(5):1377-1382.
    [79]France R M,Short R D.Plasma Treatment of Polymers:The Effects of Energy Transfer from an Argon Plasma on the Surface Chemistry of Polystyrene,and Polypropylene.A High-Energy Resolution X-ray Photoelectron Spectroscopy Study[J].Langmuir,1998,14(17):4827-4835.
    [80]Kang-Wook Lee,Thomas J.McCarthy.Surface-Selective Hydroxylation of Polypropylene[J].Macromolecules,1988,21:309-313.
    [81]Koichiro Kato.Change of polypropylene film surface by chromic acid mixture treatment[J].Journal of Applied Polymer Science,1975,19(6):1593-1599.
    [82]Blais P,Carlsson D J,Csullog G W,et al.The chromic acid etching of polyolefin surfaces,and adhesive bonding[J].J.Colloid.Interface.Sci.,1974,47(3):636-649.
    [83]Fitchmun D R,Newman S,Wiggle R.Electroplating on crystalline polypropylene.Ⅰ.Compression molding and adhesion[J].Journal of Applied Polymer Science,1970,14(10):2441-2455.
    [84]Fitchmun D R,Newman S,Wiggle R.Electroplating on crystalline polypropylene.Ⅱ.Injection molding and adhesion.Journal of Applied Polymer[J].Science,1970,14(10):2457-2468.
    [85]Morris C E M.Adhesive bonding of polyethylene[J].J.Appl.Polym.Sci.,1970,14:2171-2181.
    [86]House D A.Kinetics and mechanism of oxidations by peroxydisulfate[J].Chem.Rev.,1962,62(3):185-203.
    [87]Wilmarth W K,Haim A.Peroxide Reaction Mechanism[M].J.O.Edwards(Ed.),New York:Interscienee,1962.175.
    [88]Bamford C H,AI-Lamee K G Studies in polymer surface functionalization and grafting for biomedical and other applications[J].Polymer,1994,35(13):2844-2852.
    [89]Price G J,Keen F,Clifton A A.Sonochemically-Assisted Modification of Polyethylene Surfaces[J].Macromolecules,1996,29(17):5664-5670.
    [90]Kubota Hitoshi,Hariya Yayoi,Kuroda Shin-ichi,et al.Effect of photoirradiation on potassium persulfate-surface oxidation of low-density polyethylene film[J].Polym.Degrad.Stab.,2001,72:223-227.
    [91]Peng Yang,Jian Yuan Deng,Wan Tai Yang.Confined photo-catalytic oxidation:a fast surface hydrophilic modification method for polymeric materials[J].Polymer,2003,44:7157-7164.
    [92]赵洪池.聚合物表面羟基化及其在化学键组装和生物功能化方面的研究[D].北京:北京化工大学,2006.
    [93]Hermanson,G.T.Bioconjugate techniques.Academic Press:San Diego,1996;p 137-145.
    [94]Uyama Y,Kato K,Ikada Y.Surface Modification of Polymers by Grafting[J].Adv.Polym.Sci.1998,137:1-39.
    [95]Hoffman A S.Surface modification of polymers:physical,chemical,mechanical and biological methods[J].Macromol.Symp.1996,101,443-454.
    [96]Bergbreiter D E.Polyethylene surface chemistry[J].Prog.Polym.Sci.,1994,19,529-560.
    [97]Singh R P.Surface grafting onto polypropylene-a survey of recent developments[J].Prog.Polym.Sci.,1992,17,251-281.
    [98]Cohn D,Steru T.Sequential Surface Derivatization of PET Films.Macromolecules[J],2000,33,137-142.
    [99]生物芯片(第二版).马立人、蒋中华主编.化学工业出版社,北京,2002.
    [100]MASCIA L,ZHANG L,SHAW S J.Carbon fiber composites based on polyimide/silica ceramers:aspects of structure-properties relationship[J].Composites,1996,27(6):1211-1221.
    [101]王学松.膜分离现状及发展趋向[J].化学进展,1994,6(4):321-338.
    [102]许国财,张立德.纳米复合材料[M].北京:化学工业出版社,2001:108-147.
    [103]李传峰,邵怀启,钟顺和.有机无机杂化膜材料的制备技术.化学进展,2004,16:83-89.
    [104]Cornelius C,Hibshman C,Marand E.Hybrid organic-inorganic membranes[J].Separation and Purification Technology,2001,25:181-193.
    [105]Rama R G V,Balamurugan S,Meyer D E,et al.Hybrid Bioinorganic Smart Membranes That Incorporate Protein-Based Molecular Switches[J].Langmuir,2002,18(5):1819-1824.
    [106]Atsushi I.STM and AFM of bio/organic molecules and structures[J].Surf.Sci.Rep.,1996,26(8):261-332.
    [107]Stevens N S M,Rezac M E.Formation of hybrid organic/inorganic composite membranes via partial pyrolysis of poly(dimethyl siloxane)[J].Chem.Eng.Sci.,1998,53(9):1699-1711.
    [108]Cornelius C J,Marand E.Hybrid silica-polyimide composite membranes:gas transport properties[J].J.Membr.Sci.,2002,202(1/2):97-118.
    [109]Mascia L,Kioul A.Influence of siloxane composition and morphology on properties of polyimide-silica hybrids[J].Polymer,1995,36(19):3649-3659.
    [110]Christine J T L,Bradley K C.In situ polymerization of tetraethoxysilane in polymers:chemical nature of the interactions[J].Polymer,1992,33(7):1496-1504.
    [111]钟顺和,李传峰,孙宏伟,等.负载型TiO_2-聚丙烯疏水复合膜的制备与表征[J].膜科学与技术,2002,22(4):21-25.
    [112]孙宏伟,钟顺和.TiO2-聚乙烯复合膜的制备及红外光谱对其膜层结构的表征[J].膜科学与技术,1997,17(5):44-48.
    [113]郭清萍,钟顺和.负载型TiO2-聚丙烯微孔复合膜的制备及性能[J].太原工业大学学报,1997,28(3):84-87.
    [114]Tadashi Uragami,Kenji Okazaki,Hiroshi Matsugi,et al.Structure and Permeation Characteristics of an Aqueous Ethanol Solution of Organic-Inorganic Hybrid Membranes Composed of Poly(vinyl alcohol) and Tetraethoxysilane[J].Macromolecules,2002,35,9156-9163.
    [115]Goo-Dae Kim,Dong-A.Lee,Ji-Woong Moon,et al.Synthesis and applications of TEOS/PDMS hybrid material by the sol-gel process[J].Appl.Organometal.Chem.1999,13(5):361-372.
    [116]Mascia L,Zhang Z,Shaw S J.Carbon fibre composites based on polyimide/silica ceramers:aspects of structure-properties relationship[J].Compos.Part A,1996,27A:1211-1221.
    [117]史德青,孔瑛,杨金荣,等.气体膜分离用过渡金属有机络合物聚酰亚胺杂化材料的研究[J].高分子学报,2000,4:457-461.
    [118]Canto C F,Prado L A,Radovanovic E.,et al.Organic-inorganic hybrid materials derived from epoxy resin and polysiloxanes:synthesis and characterization[J].Polymer Engineering and Science,2008,48(1):141-148.
    [119]Mingna Xiong,Shuxue Zhou,Bo You,Limin Wu.Trialkoxysilane-capped acrylic resin/titania organic-inorganic hybrid optical films prepared by the sol-gel process[J].J Polym Sci Part B:Polym Physics,2005,43(6)637-649.
    [120]Tian D,Dubois P H,Jerome R.Biodegradable and biocompatible inorganicorganic hybrid materials.I.Synthesis and characterization[J].J Polym Sci Part A:Polym Chem,1997,35(11):2295-2309.
    [121]刘洪波.微波诱导等离子体合成有机膜包裹的TiO2纳米粉体[J].化学通报, 1997,10:45-47.
    [122]Nunes S P,Pernemann K V,Ohlrogge K,et al.Membranes of poly(ether imide)and nanodispersed silica[J].J.Membr.Sci.,1999,157(2):219-226.
    [123]Yuri Lvov,Katsuhiko Ariga,Izumi Ichinose,et al.Assembly of Multicomponent Protein Films by Means of Electrostatic Layer-by-Layer Adsorption[J].J.Am.Chem.Soc.,1995,117(22):6117-6123.
    [124]竺亚斌,高长有,刘云肖,等.聚乳酸的层层自组装修饰及其内皮细胞相容性研究[J].高等学校化学学报,2004,25(7):1347-1350.
    [125]何成毅,梁振鹏,王朝阳,等.PS胶体粒子表面逐层自组装固定化SOD及其生物活性[J].高等学校化学学报,2005,26(1):88-92.
    [126]Wei Chen,Thomas J.McCarthy.Layer-by-Layer Deposition:A Tool for Polymer Surface Modification[J].Macromolecules,1997,30:78-86.
    [127]Jean-Michel Widmaier,Gabriela Bonilla.In situ synthesis of optically transparent interpenetrating organic/inorganic networks[J].Polym.Adv.Technol.2006,17(9/10):634-640.
    [128]肖明艳,陈建敏.有机-无机杂化材料研究进展[J].高分子材料科学与工程,2001,17(5):6-10.
    [129]姜云鹏,王榕树,纳米SiO2/PVA复合超滤膜的制备及性能研究[J].高分子材料科学与工程,2002,18(5):177-180.
    [130]Bottino A,Capannelli G,Asti V D,et al.Preparation and properties of novel organic-inorganic,porous membranes[J].Separation and Purification Technology,2001,22-23:269-275.
    [131]Bottino A.,Capannelli G.,Comite A.,Preparation and characterization of novel porous PVDF-ZrO2 composite membranes[J].Desalination,2002,146(5):35-40.
    [132]Shelekhin A B,Grosgogeat E J,Hwang S T.Gas separation properties of a new polymer/inorganic composite membrane[J].J.Membr.Sci.,1991,66(2/3):129-141.
    [133]Brzesowsky R H,With G De,Cruijsem S V D,et al.Glass strengthening by silica particle reinforced organic-inorganic coatings[J].J.Non-Cryst.Solids,1998,241(1):27-37.
    [134]Livage J,Sanchez C.Sol-gel Chemistry[J].J.Non-Cryst.Solids,1992,145:11-19.
    [135]章永化,龚克成.Sol-Gel法制备有机/无机纳米复合材料的进展[J].高分子材料科学与工程,1997,13(4):15-19.
    [136]Kioul A,Mascia L.Compatibility of polyimide-silicate ceramers induced by alkoxysilane silane coupling agents[J].J.Non-Cryst.Solids,1994,175(2/3):169-186.
    [137]冯守华,徐如人.无机合成与制备化学研究进展[J].化学进展,2000,12(4):445-457.
    [138]Sanchez A,In M.Molecular design of alkoxide precursors for the synthesis of hybrid organic-inorganic gels[J].J.Non-Cryst.Solids,1992,147/148:1-12.
    [139]Kusakabe K,Yoneshige S,Morooka S.Separation of benzene/cyclohexane mixtures using polyurethane-silica hybrid membranes[J].J.Membr.Sci.,1998,149(1):29-37.
    [140]Kim J H,Lee Y M.Gas permeation properties of poly(amide-6-b-ethylene oxide)-silica hybrid membranes[J].J.Membr.Sci.,2001,193(2):209-225.
    [141]Smaihi M,Schrotter J C,Lesimple C,et al.Gas separation properties of hybrid imide-siloxane copolymers with various silica contents[J].J.Membr.Sci.,1999,161(1/2):157-170.
    [142]Morikawa A,Iyoku Y,Kakimoto M A.Preparation of Silica-Containing Polyvinylpyrrolidone Films by Sol-Gel Process[J].Polym.J.,1992,24(7):689-692.
    [143]Morikawa A,Iyoku Y,Kakimotoet M A,et al.Preparation of a New Class of Polyimide-Silica Hybrid Films by Sol-Gel Process[J].Polymer J.,1992,24(1):107-113.
    [144]Sfoca M L,Yoshida I V P,Nunes S P.Organic-inorganic membranes prepared from polyether diamine and epoxy silane[J].J.Membr.Sci.,1999,159(1/2):197-207.
    [145]Kurauchi T,Okada A,et al.Ube Industries[J].SAE Technical Paper Ser,1991,910584.
    [146]Ahmad Z,Sarwar M I,Mark J E.Chemically bonded silica-polymer composites from linear and branched polyamides in a sol-gel process[J].J.Mater.Chem.,1997,7:259-263.
    [147]Lan T,Pinnavaia T J.Clay-Reinforced Epoxy Nanocomposites[J].Chem.Mater,1994,6(12):2216-2219.
    [148]Schubert U,Hubsing N,Lorenz A.Hybrid Inorganic-Organic Materials by Sol-Gel Processing of Organofunctional Metal Alkoxides[J].Chem.Mater.,1995,7:2010-2027.
    [149]Nass R,Arpac E,Glaubitt W,et al.Modeling of ORMOCER coatings by processing[J].J.Non-Cryst.Solids,1990,121:370-374.
    [150]Kasemann R,Schmidt H.Coatings for Mechanical and Chemical Protection Based on Organic-Inorganic Sol-Gel Nanocomposites[J].New J.Chem.,1994,18:1117-1123.
    [151]Levy D,Einhorn S,Vinir D.process for the preparation of photochromic information-recording materials:synthesis properties,mechanisms[J].J Non-Cryst.Solids,1989,113:137-145.
    [152]叶辉,姜中宏.有机染料掺杂的凝胶基质的制备及其性能[J].材料研究学报,1999,13(1):68-72.
    [153]Colvin V L,Schlamp M C,Alivisatos.A P.Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer[J].Nature,1994,370:354
    [154]Kuwabata S,Takahashi N,Hirao S,et al.Light image formations on deprotonated polyaniline films containing titania particles[J].Chem Mater,1993,5:437.
    [155]Ruiz-Hitzky E.Conducting polymers intercalated in layered solids[J].Adv Mater,1993,5:334.
    [156]Chikara Ohtsuki,-Toshiki Miyazaki,Masao Tanihara.Development of bioactive organic-inorganic hybrid for bone substitute[J].Materials Science and Engineering,2002,22:27-34.
    [157]曹惠,戴礼兴,左葆齐.丝蛋白在生物医学领域中应用的研究进展[J].丝绸,2005,(6):48-51.
    [158]邹国林,周祥,郑忠亮.蛋白质结构研究技术的发展[J].信阳农业高等专科学校校报,2003,4:1-3.
    [159]钟诚,分子动力学模拟蛋白质在固液界面的吸附[D],天津:天津大学.2004.
    [160]Berendsen H J C.Bio-Molecular Dynamics studies Comes of Age[J].Science,1996,271:954-955.
    [161]刘康栋,赵建龙.蛋白质芯片技术进展[J].中国生物工程杂志,2004,24(12): 48-52.
    [162]白功健,胡兴周.聚合物的表面光接枝改性[J].高分子通报,1995(1):27-33.
    [163]Wribkeski D A,Cash D,Hermes R E.Surface modification of PEU by chemical infusion and graft polymerization[J].Progress in Biomedical Polymers.Plenum Press,1990(2):193-195.
    [164]孙彦.蛋白质离子交换吸附平衡理论研究[D].天津:天津大学.2003.
    [165]Shukla A A,Sunasara K M,Rupp R G.Hydrophobic displacement chromatography of proteins[J].Biotechnol.Being,2000,68(6):672-680.
    [166]Biericher A,Paul A,Tinnefeld P,et al.Controlled three-dimensional immobilization of biomolecules on chemically patterned surfaces[J].Journal of Biotechnology,2004,112:97-107.
    [167]Velayudhan.A.Studies in Non-linear Chromatography[D],New Haven:Yale University,CT,1990.
    [168]Brooks C A,Cramer S M.Steric mass-action ion exchange:displacement profiles and induced salt gradients[J].AICHE J.,1992,38(12):1969-1978.
    [169]Per Rigler,Wolf-Peter Ulrich and Horst Vogel Controlled Immobilization of Membrane Proteins to Surfaces for Fourier Transform Infrared Investigations[J]Longmuir,2004.20:7901-7903.
    [170]MacBeath G,Schreiber S L.Printing proteins as microarrays for high-throughput function determination[J].Science,2000,289:1760-1763.
    [171]Ziauddin M,Sabatini D M.Microarrays of cell expressing defined cDNAs[J].Nature,2001,411:107-110.
    [172]Tempgn M F,Stoll D,Schrenk M,et al.Protein microarray technology[J].Trends Biotechnol.,2002,20:160-166.
    [173]许松伟,姜忠义,吴洪,黄淑芳.溶胶-凝胶生物包囊化物的制备与特性[J].化学进展,2004,16(3):443-449.
    [174]李军,伊敏,刘宁,哈鸿飞.PET纤维上SuMA的紫外光接枝及对蛋白质的固定化[J].北京大学学报(自然科学版),1998,34(6):746-751.
    [175]Li Jun,Yi Min,Ha Hongfei.Applicat ion of Sepharose and Sephadex Modified by Means of Radiation Grafting in Separation of Biomolecules[J].Radiat.Phys.Chem.,1995,46(4/6):847-850.
    [176]Margel S,Beitler U,Ofarim M.Polyacrolein Microsphere as a New Tool in Cell Biology[J].J.Cell Sci.,1982,56:157-175.
    [177]Tarcha P J,Misun D,Finley D,et al.Polymer Latexes:Preparation,Characterization and Applications[J].ACS Sump.Ser.,1992,492:347-352.
    [178]黄嘉,乐以伦,郑昌琼.血浆蛋白质在生物材料表面吸附时的Vorman效应[J]生物医学工程学杂志 1999(3):26.
    [179]Elwing H,Astealth A,Ivarsson B,et.al,Proteins at interfaces[J].ACS Symposium Series 1987,(343):468-488.
    [180]曹书霞,赵玉芬.分子吸收光谱在生物大分子研究中的应用[J].光谱学与光谱分析,2004,24(10):355-356.
    [1] Niazov T, Pavlov V, Xiao Y, Gill R, Willner I. DNAzyme-Functionalized Au Nanoparticles for the Amplified Detection of DNA or Telomerase Activity[J]. Nano Letts, 2004, 4: 1683.
    
    [2] Itoh H, Tahara A, Naka K, Chujo Y. Photochemical Assembly of Gold Nanoparticles Utilizing the Photodimerization of Thymine[J]. Langmuir, 2004, 20: 1972.
    [3] Connolly S, Cobbe S, Fitzmaurice D. Effects of Ligand-Receptor Geometry and Stoichiometry on Protein-Induced Aggregation of Biotin-Modified Colloidal Gold[J]. J. Phys. Chem. B, 2001, 105: 2222.
    [4] Gai P L, Roper R, White M G. Recent advances in nanocatalysis research[J]. Current Opinion in Solid State and Materials Science, 2002,6: 401.
    [5] Schultz D A. Plasmon resonant particles for biological detection[J]. Current Opinion in Biotechnology, 2003,14: 13.
    [6] Iacopino D, Ongaro A, Nagle L, et al., Imaging the DNA and nanoparticle components of a self-assembled nanoscale architecture[J]. Nanotechnology 2003,14: 447.
    [7] Cerofolini G F, Ferla G. Toward a hybrid micro-nanoelectronics[J]. J. anoparticle Res., 2002, 4: 185.
    [8] TAN En-zhong, FANG Yan. The Study of Optical Absorption Spectra of Nanoscale Colloidal Gold[J]. 光散射学报, 2005, 17 (1): 90 - 92.
    [9] Giersig M, Mulvaney P. Preparation of ordered colloid monolayers by electrophoretic deposition[J]. Langmuir, 1993, 9: 3408.
    [10] Colvin V L, Goldstein A N, Alivisatos A P. Semiconductor nanocrystals covalently bound to metal surfaces with self-assembled monolayers[J]. J. Am.Chem. Soc., 1992,114: 5221.
    
    [11] Fendler J H. Self-Assembled Nanostructured Materials[J]. Chem. Mater., 1996, 8:1616.
    
    [12] Freeman R G, Grabar K C , Allison K J, et al. Self-Assembled Metal Colloid Monolayers: An Approach to SERS Substrates[J]. Science, 1995,267: 1629.
    [13] Grabar K C, Freeman R G, Hommer M B, et al. Preparation and Characterization of Au Colloid Monolayers[J]. Anal. Chem., 1995, 67: 735.
    [14] Doron A, Katz E, Willner I. Organization of Au Colloids as Monolayer Films onto ITO Glass Surfaces: Application of the Metal Colloid Films as Base Interfaces To Construct Redox-Active Monolayers[J]. Langmuir, 1995, 11:1313.
    [15] Chumanov G, Sokolov K, Gregory B W, et al. Colloidal metal films as a substrate for surface-enhanced spectroscopy[J]. J. Phys. Chem., 1995, 99: 9466.
    [16] Wang Jian, Zhu Tao, Tang M, et al. Fabricating Surface Enhanced Raman Scattering (SERS)-Active Substrates by Assembling Colloidal Au Nanoparticles with Self-Assembled Monolayers[J]. Jpn. J. Appl. Phys., 1996, 35B: L 1381.
    [17] Zhu T, Yu H Z, Wang J, et al. Two-Dimensional Surface Enhanced Raman Mapping of Differently Prepared Gold Substrates with Azobenzene Self-Assembled Monolayer[J]. Chem. Phys. Lett., 1997, 265: 334.
    [18] Zhu Tao, Zhang X, Wang Jian, et al. Assembling colloidal Au nanoparticles with functionalized self-assembled monolayers[J]. Thin Solid Films, 1998, 327/ 329:595.
    [19] Fu Xiaoyi, Mu Tao, Wang Jian, Zhu Tao, Liu Zhongfan. pH-Dependent Assembling of Gold Nanoparticles on p-Aminothiophenol Modified Gold Substrate[J]. Acta Physico-Chimica Sinica, 1998, 14: 968.
    [20] Wang Jian, Zhu Tao, Song Jia Qing, et al. Gold nanoparticulate film bound to silicon surface with self-assembled monolayers[J]. Thin Solid Films, 1998, 327/ 329: 591.
    
    [21] 杨鹏.新型有面有机光化学反应,表面功能化及2D/3D 微纳结构制造[D].北京:北京化工大学, 2006.
    [22] Frens G. Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions[J]. Nature Phys. Sci., 1973, 241: 20.
    [23] Chen W, McCarthy T J. Layer-by-Layer Deposition: A Tool for Polymer Surface Modification[J]. Macromolecules, 1997, 30: 78-86.
    [24] Bee T G, McCarthy T J. Surface modification of poly(chlorotrifluoroethylene): introduction of reactive carboxylic acid functionality [J]. Macromolecules, 1992, 25: 2093-2098.
    [1] Huang H, Orler B, Wilkes G L. Ceramers: Hybrid Materials Incorporating Polymeric/Oligomeric Species with Inorganic Glasses by a Sol Gel Process. 2. Effect of Acid Content on the Final Properties[J]. Polym. Bull., 1985,14:557-564.
    
    [2] Baud C G, Benmalek M, Besse J P, et al. Characterization and adhesion study of thin alumina coatings sputtered on PET[J]. Thin Solid Films, 1995, 270 (1/2): 230-236.
    [3] Oyama T, Yamada T. Light absorbing wide-band AR coatings on PET films by sputtering[J]. Vacuum. 2000, 59(2/3): 479-483.
    [4] Breme F, Buttstaedt J, Emig G. Electrical resistance of Ti—B—Al—O thin films deposited by r.f. magnetron sputtering[J]. Thin Solid Films, 2000, 377/378: 772-755.
    [5] Lintelo H, Lippens P. Control of crystallographic and magnetic texture in dc-magnetron sputtered Co-Cr on flexible PET substrate[J]. Thin Solid Films, 1998, 317 (1/2): 290-293.
    [6] Lange J, Wyser Y. Recent innovations in barrier technologies for plastic packaging-a review[J]. Packag. Technol. Sci., 2003, 16(4): 149-158.
    [7] Kulkarni S S, Tambe S M, Kittur A A, et al. Preparation of novel composite membranes for the pervaporation separation of water-acetic acid mixtures[J]. J. Membr. Sci. 2006, 285: 420-431.
    [8] Yang Y N, Wang P. Preparation and characterizations of a new PS/TiO2 hybrid membranes by sol-gel process[J]. Polymer, 2006, 47(8): 2683-2688.
    [9] Deluca N W, Elabd Y A. Polymer electrolyte membranes for the direct methanol fuel cell: A review[J]. J. Polym. Sci. Part B: Polym. Phys., 2006, 44(16): 2201.
    [10] Xu T W. Ion exchange membranes: State of their development and perspective[J]. J. Membr. Sci., 2005, 263(1/2): 1-29.
    
    [11] Klein L C, Daiko Y, Aparicio M, et al. Methods for modifying proton exchange membranes using the sol-gel process[J]. Polymer, 2005,46(12): 4504-4509.
    
    [12] Wu C M, Xu T W, Gong M, et al. Synthesis and characterizations of new negatively charged organic-inorganic hybrid materials: Part II. Membrane preparation and characterizations[J]. J. Membr. Sci., 2005, 247(1/2): 111-118.
    [13] Philipp G, Schmidt H. New materials for contact lenses prepared from Si- and Ti-alkoxides by the sol-gel process[J]. J. Non-Cryst.Solids., 1984, 63(1/2): 283-292.
    [14] David B. Mitzi. Thin-Film Deposition of Organic-Inorganic Hybrid Materials [J]. Chem. Mater., 2001, 13: 3283-3298.
    [15] Remenar J. F, Hawker C. J, Hedrick J. L, Kim S. M, Miller R. D, Nguyen C, Trollsas M, Yoon D. T. Templating Nanopores into Poly(Methylsilsesquioxane): New Low-Dielectric Coatings Suitable for Microelectronic ApplicationsMat[J]. Res. Soc. Symp. Proc.1998, 511, 69.
    [16] Hiroyuki Tetsuka, Yue Jin Shan, Keitaro Tezuka, et al. Transparent amorphous conductive Cd-In-Sb-O thin films for flexible devices[J]. Vacuum. 2006, 80(9): 1038-1041.
    [17] Artukovic E, Kaempgen M, Hecht D S, Roth S, Grulner G. Transparent and Flexible Carbon Nanotube Transistors[J]. Nano Letts., 2005, 5: 757.
    [18] Helmut Schmidt, Herbert Wolter. Organically modified ceramics and their applications[J]. J. Non-Cryst.Solids., 1990,121(1/3): 428-435.
    [19] Sellinger A, Weiss P M, Nguyen A, et al. Continuous self-assembly of organic-inorganic nanocomposite coatings that mimic nacre[J]. Nature, 1998, 394: 256.
    [20] Inagaki S, Guan S, Ohsuna T, et al. An ordered mesoporous organosilica hybrid material with a crystal-like wall structure[J]. Nature, 2002, 416: 304.
    
    [21] Tigelaar D M, Meador M A B, Kinder J D, et al. New APTES Cross-Linked Polymers from Poly(ethylene-oxide)s and Cyanuric Chloride for Lithium Batteries[J]. Macromolecules, 2006, 39: 120.
    [22] Tsuru K, Aburatani Y, Yabuta T, Hayakawa S, Ohtsuki C, Osaka A, Synthesis and In Vitro Behavior of Organically Modified Silicate Containing Ca Ions [J]. J. Sol-Gel Sci. Technol. 2001, 21: 89-96.
    [23] Shchipunov Y A, Karpenko T Y. Hybrid Polysaccharide-Silica Nanocomposites Prepared by the Sol-Gel Technique [J]. Langmuir, 2004, 20: 3882.
    [24] Moszner N, Salz U. New developments of polymeric dental composites[J]. Prog. Polym. Sci., 2001, 26(4): 535-576.
    [25] Tadashi Uragami, Kenji Okazaki, Hiroshi Matsugi, Takashi Miyata. Structure and Permeation Characteristics of an Aqueous Ethanol Solution of Organic-Inorganic Hybrid Membranes Composed of Poly(vinyl-alcohol) and Tetraethoxysilane[J]. Macromolecules. 2002, 35: 9156-9163.
    [26] Goo-Dae Kim, Dong-A. Lee, Ji-Woong Moon, Jae-Dong Kim, Ji-Ae Park, Synthesis and applications of TEOS/PDMS hybrid material by the sol-gel process[J]. Appl.Organometal.Chem. 1999, 13(5): 361-372.
    [27] Jean-Michel Widmaier, Gabriela Bonilla. In situ synthesis of optically transparent interpenetrating organic/inorganic networks [J]. Polym. Adv. Technol., 2006, 17(9/10): 634-640.
    [28] Canto C F, Prado L A S A, Radovanovic E, et al. Organic-inorganic hybrid materials derived from epoxy resin and polysiloxanes: Synthesis and characterization [J]. Polymer Engineering and Science. 2008, 48(1): 141-148.
    [29] Mingna Xiong, Shuxue Zhou, Bo You, Limin Wu. Trialkoxysilane-capped acrylic resin/titania organic-inorganic hybrid optical films prepared by the sol-gel process [J]. J Polym Sci Part B: Polym Physics, 2005, 43(6):637-649.
    [30] Tian D, Dubois P H, Jerome R. Biodegradable and biocompatible inorganic-organic hybrid materials. I. Synthesis and characterization [J]. J Polym Sci Part A: Polym Chem, 1997, 35(11): 2295-2309.
    [31] Wu K H, Chang T C, Wang Y T, et al. Organic-inorganic hybrid materials. I. Characterization and degradation of poly(imide-silica) hybrids[J]. Journal of Polymer Science: Part A: Polymer Chemistry, 1999, 37(13): 2275-2284.
    [32] Zi-kang Zhu, Yong Yang, Jie Yin, et al. Preparation and properties of organosoluble polyimide/silica hybrid materials by sol-gel process [J]. Journal of Applied Polymer Science, 1999, 73(14): 2977-2984.
    [33] Nandi M, Conklin J A, Salviati J L, Sen A. Molecular level ceramic/polymer composites. 1. Synthesis of polymer-trapped oxide nanoclusters of chromium and iron [J]. Chem. Mater., 1990, 2: 772.
    [34] Morikawa A, Iyoku Y, Kakimoto M, Imai Y. Preparation of New Polyimide-Silica Hybrid Materials Via the Sol-Gel Process [J]. J Mater Chem. 1992, 2, 679.
    [35] Kioul A, Mascia L. Compatibility of polyimide-silicate ceramers induced by alkoxysilane silane coupling agents [J]. J. Non-Cryst. Solids, 1992, 175(2/3): 169-186.
    [36] Giulio Malucelli, Aldo Priola, Ezio Amerio, et al. Surface and barrier properties of hybrid nanocomposites containing silica and PEO segments [J]. Journal of Applied Polymer Science, 2007, 103(6): 4107-4115.
    
    [37] Atsushi Shimojima, Yoshiyuki Sugahara, Kazuyuki Kuroda. Synthesis of Oriented Inorganic-Organic Nanocomposite Films from Alkyltrialkoxysilane- Tetraalkoxysilane Mixtures [J]. J. Am. Chem. Soc, 1998, 120: 4528-4529.
    [38] Atsushi Shimojima, Noritaka Umeda, Kazuyuki Kuroda. Synthesis of Layered Inorganic-Organic Nanocomposite Films from Mono-, Di-, and Trimethoxy(alkyl)silane-Teframethoxysilane Systems [J]. Chem. Mater., 2001, 13:3610-3616.
    [39] Srikanth Singamaneni, Michael E McConney, Melburne C Lemieux, et al. Polymer-Silicon Flexible Structures for Fast Chemical Vapor Detection [J]. Adv. Mater., 2007, 19(23): 4248-4255.
    [40] Lian Wang, Myung-Han Yoon, Antonio Facchetti, et al. Flexible Inorganic/Organic Hybrid Thin-Film Transistors Using All-Transparent Component Materials [J]. Adv. Mater., 2007,19(20): 3252- 3256.
    [41] Ulrike Schulz, Peter Munzert, Norbert Kaiser. Surface modification of PMMA by DC glow discharge and microwave plasma treatment for the improvement of coating adhesion [J]. Surface and Coatings Technology, 2001,142/144: 507-511.
    [42] Timothy M. Long, Shaurya Prakash, Mark A. Shannon, Jeffrey S. Moore, Water-Vapor Plasma-Based Surface Activation for Trichlorosilane Modification of PMMA[J]. Langmuir. 2006, 22: 4104-4109.
    [43] Peixin Zhu, Makoto Teranishi, Junhui Xiang, et al. A novel process to form a silica-like thin layer on polyethylene terephthalate film and its application for gas barrier [J]. Thin Solid Films, 2005, 473(2): 351-356.
    [44] Susumu Sawada, Yoshitake Masuda, Peixin Zhu, et al. Micropatterning of Copper on a Poly(ethylene terephthalate) Substrate Modified with a Self-Assembled Monolayer[J], Langmuir. 2006, 22: 332-337.
    [45] B. Singh, J. Bouchet, G. Rochat, Y. Leterrier, J.-A. E. Manson, P. Fayet. Ultra-thin hybrid organic/inorganic gas barrier coatings on polymers[J]. Surface and Coatings Technology, 2007, 201(16/17):7107-7114.
    [46] Dirk Vangeneugden, Sabine Paulussen, Olivier Goossens, et al. Aerosol-Assisted Plasma Deposition of Barrier Coatings using Organic-Inorganic Sol-Gel Precursor Systems [J]. Chem. Vap. Deposition. 2005, 11(11/12): 491-496.
    [47] Peng Yang, Jianyuan Deng, Wantai Yang. Confined Photo-catalytic Oxidation: A Fast Surface Hydrophilic Modification Method for Polymeric Materials [J]. Polymer, 2003, 44: 7157-7164.
    [48] Watanabe T, Kitamura A, Kojima E, et al. Photocatalytic Purification and Treatment of Water and Air[J], Elsevier, 1993, pp. 747-756.
    [49] Mills A, Hunte S L. An overview of semiconductor photocatalysis [J]. J. Photochem. Photobiol. A: Chemistry, 1997: 108, 1-35.
    [50] Kubota, S.i U. Deposition mechanism of oxide thin films on self-assembled organic monolayers [J]. J. Appl. Polym. Sci., 1995, 56: 25-31.
    [51] Bergbreiter D E, Zhou J. Deposition mechanism of oxide thin films on self-assembled organic monolayers [J]. J. Polym. Sci., 1992, 30: 2049-2053.
    
    [52] Wang R, Hashimoto K, Fujishima A, et al. Light-induced amphiphilic surfaces [J]. Nature, 1997, 388: 431-432.
    [53] Machida M, Norimoto K, Watanabe T, et al. The effect of SiO2 addition in super-hydrophilic property of TiO2 photocatalyst [J]. J. Mater. Sci., 1999, 34(11): 2569-2574.
    [54] Suresh C, Ameta, et al. Hydrophilicity of TiO2 films prepared by liquid phase deposition [J]. J. Indian. Chem. Soc, 1999, 76: 281-287.
    [55] Kovtyukhova N I, Martin B R, Mayer T S, et al. Layer-by-layer self-assembly strategy for template synthesis of nanoscale devices [J]. Materials Science and Engineering C, 2002, 19: 255-262.
    [56] Narazaki A, Kawaguchi Y, Tsunetomo K, et al. Formation of a TiO Micronetwork on a UV-Absorbing SiO-Based Glass Surface by Excimer Laser Irradiation [J]. Chem. Mater. 2005,17: 6651-6655.
    [57] Park J H, Kim S, Bard A J. Novel Carbon-Doped TiO Nanotube Arrays with High Aspect Ratios for Efficient Solar Water Splitting [J]. Nano. Lett. 2006, 6: 24-28.
    
    [58] Morand R, Lopez C, Augustynski J, et al. Photoelectrochemical Behavior in Low-Conductivity Media of Nanostructured TiO Films Deposited on Interdigitated Microelectrode Arrays[J]. J. Phys. Chem. B, 2002, 106: 7218-7224.
    [59] Zuruzi A S, MacDonald N C. Facile Fabrication and Integration of Patterned Nanostructured TiO2 for Microsystems Applications [J]. Adv. Funct. Mater. 2005, 15:396-401.
    [60] Sukharev V, Wold A, Dwight K, et al. Photoassisted decomposition of salicylic acid on TiO2 and Pd/TiO2 films [J]. J. Solid State Chem. 1995, 119: 339.
    
    [61] Gratzel M. A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films [J]. Nature 1992, 353: 737.
    [62] Tian Z R, Voigt J A, Xu H, et al. Large Oriented Arrays and Continuous Films of TiO-Based Nanotubes [J]. J. Am. Chem. Soc. 2003, 125: 12384-12385.
    [63] Peng Yang, Min Yang, Shengli Zou, Jingyi Xie and Wantai Yang, Positive and negative TiO2 micropatterns on organic polymer substrates [J]. J.Am.Chem.Soc. 2007, 129: 1541-1552.
    [64] Linsebigler A L, Lu G, Yates J T Jr. Photocatalysis on TiO Surfaces: Principles, Mechanisms, and Selected Results [J]. Chem. Rev. 1995, 95: 735-758.
    
    [65] Liu S, Chen A. Coadsorption of Horseradish Peroxidase with Thionine on TiO2 Nanotubes for Biosensing [J]. Langmuir, 2005, 21: 8409-8413.
    [66] Carbone R, Marangi I, Milani P, et al. China International Conference on Nanoscience and Technology (ChinaNANO2005) 2005 [C], June 9-11, China, Technical Program, p.18.
    [1]钟春英,彭蓉,彭建新,等.蛋白质芯片技术[J].生物技术通报,2004,(2):34-37.
    [2]Angenendt P,Glokler J,Mushy D,et al.Toward optimized antibody microarrays:a comparison of current microarray support materials[J].Anal.Biochem.,2002,309(2):253-260.
    [3]彭仁.用蛋白质芯片检测功能肽[J].食品科学,2005,26(8):545-546.
    [4]Thomas Kodadek.Protein microarrays:prospects and problems[J].Chemistry and Biology,2001,(8):105-115.
    [5]Zammatteo N,Jeanmart L,Hamels S,et al.Comparison between different strategies of covalent atttachment of DNA to glass surfaces to build DNA microarrays[J].Anal.Biochem.,2000,280(1):143-150.
    [6]屈海云,王海涛,黄懿,等.有机玻璃微流控芯片表面的蛋白质固定化及应用研究[J].高等学校化学学报,2004,25,Suppl.59-60.
    [7]McCormick R M,Nelson R J,Alonso-Amigo M G,et al.Microchannel Electrophoretic Separations of DNA in Injection-Molded Plastic Substrates[J].Anal Chem,1997,69(14):2626-2630.
    [8]刘康栋,赵建龙.蛋白质芯片技术进展[J].中国生物工程杂志,2004,24(12):48-52.
    [9]MacBeath G,Schreiber S L.Printing proteins as microarrays for high-throughput function determination[J].Science,2000,289:1760-1763.
    [10]Ziauddin M,Sabatini D M.Microarrays of cell expressing defined cDNAs[J].Nature,2001,411:107-110.
    [11]Tempgn M F,Stoll D,Schrenk M,et al.Protein microarray technology[J].Trends Biotechnol.,2002,20:160-166.
    [12]赵洪池,刘莲英,杨万泰.BOPP膜表面化学键组装制备多层膜[J].北京化工大学学报,2006,33(4):30-33.
    [1]McCormick R M,Nelson R J,Alonso-Amigo M G,et al.Microchannel Electrophoretic Separations of DNA in Injection-Molded Plastic Substrates[J].Anal.Chem.,1997,69,2626-2630.
    [2]屈海云,王海涛,黄懿,等.有机玻璃微流控芯片表面的蛋白质固定化及应用研究[J],高等学校化学学报,2004,25(Suppl):59-60.
    [3]Uchida E,Iwata H,Ikada Y,Surface structure of poly(ethylene terephthalate) film grafted with poly(methacrylic acid)[J].Polymer,2000,41:3609-3614.
    [4]卞晓锴,陆晓峰,施柳青.蛋白质超滤过程及超滤膜的表面该性研究现状[J].膜科学与技术,2001,21(4):46-51.
    [5]Knetsch M L,Aldenhoff Y B,Schraven M,et al.Human endothelial cell attachment and proliferation on a novel vascular graft prototype[J].J Biomed Mater Res A 2004,71(4):615-624.
    [6]Hun D K,Park K D,Ryu G H,et al.Plasma protein adsorption to sulfonated poly(ethylene oxide)-grafted polyurethane surface[J].J Biomed Mater Res,1996,30(1):23-30.
    [7]Pieracci J,Crivello J V,Belfort G.Photochemical modification of 10kDa polyethersulfone ultrafiltration membranes for reduction of biofouling[J].J Membr Sci,1999,156(2):223-240.
    [8]Kato K,Sano S,Ikada Y.et al.Protein adsorption onto ionic surfaces[J].Colloids Surfaces B:Biointerfaces,1995,4(4):221-230.
    [9]赵明媚,潘君,李永刚,等.一种可阻止非特异性蛋白质吸附的新型聚乳酸材料——聚乙二醇接枝聚乳酸[J].高分子材料科学与工程,2007,23(3):231-234.
    [10]计剑,沈家骢.十八烷基聚氧乙烯表面空间结构和蛋白质吸附行为研究[J].高等学校化学学报,2004,25(3):580-584.
    [11]李伯刚,康云清,尹光福,等.类金刚石薄膜成分变化对蛋白吸附的影响[J].生物医学工程学杂志,2004,21(2):193-195.
    [12]YANG Wan-Tai(杨万泰),YANG Peng(杨鹏).One method for polymer surface modification,CN 021256640[P],2003-01-01.
    [13]Yang P,Deng J Y,Yang W T.Confined photo-catalytic oxidation:a fast surface hydrophilic modification method for polymeric materials[J].Polymer,2003,44:7157-7164.
    [14]赵洪池,刘莲英,杨万泰.BOPP膜表面化学键组装制备多层膜[J].北京化工大学学报,2006,33(4):30-33.
    [1] Hermanson G T. Bioconjugate techniques. Academic Press: San Diego, 1996; p 137-145.
    [2] Griffin M, Casadio R, Bergamini C M. Transglutaminases: nature's biological glues[J]. Biochem. J. 2002, 368: 377-396.
    [3] Josten A, Meusel M, Spener F, Haalck, L. Enzyme immobilization via microbial transglutaminase: a method for the generation of stable sencing surfaces[J]. J. Mol. Catal. B-Enzym. 1999, 7: 57-66.
    [4] Love J C, Estroff L A, Kriebel J, et al. Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology[J]. Chem. Rev. 2005,195: 1103-1169.
    [5] Gao Y F, Koumoto K. Bioinspired Ceramic Thin Film Processing: Present Status and Future Perspectives[J]. Cryst. Growth Des. 2005, 5(5): 1983-2017.
    [6] Uyama Y, Kato K, Ikada Y. Surface Modification of Polymers by Grafting[J]. Adv. Polym. Sci. 1998, 137: 1-39.
    [7] Hoffman A S. Surface modification of polymers: physical, chemical, mechanical and biological methods[J]. Macromol. Symp. 1996, 101, 443-454.
    
    [8] Bergbreiter D E. Polyethylene surface chemistry[J]. Prog. Polym. Sci., 1994, 19, 529-560.
    [9] Singh R P. Surface grafting onto polypropylene-a survey of recent developments[J]. Prog. Polym. Sci., 1992,17, 251-281.
    [10] Otsuka H, Nagasaki Y, Kataoka K. Self-assembly of poly(ethylene glycol)-based block copolymers for biomedical applications[J]. Curr. Opin. Colloid Interface Sci. 2001, 6(1): 3-10.
    [11] Falconnet D, Csucs G, Grandin H M, et al. Surface engineering approaches to micropattern surfaces for cell-based assays[J]. Biomaterials 2006, 27(16): 3044-3063.
    [12] Prime K L, Whitesides G M. Self-as-sembled organic monolayers: model systems for studying adsorption of proteins at surfaces[J]. Science, 1991, 252: 1164-1167.
    [13] Liu Z M, Tingry S, Innocent C, et al. Modification of micro filtration polypropylene membranes by allylamine plasma treatment: Influence of the attachment route on peroxidase immobilization and enzyme efficiency[J]. Enzyme Microb. Technol. 2006, 39(4): 868-876.
    [14] Hayat U, Tinsley A M, Calder M R, et al. ESCA investigation of low-temperature ammonia plasma-treated polyethylene substrate for immobilization of protein[J]. Biomaterials, 1992, 13(11): 801-806.
    [15] Sano S, Kato K, Ikada Y. Introduction of functional groups onto the surface of polyethylene for protein immobilization[J]. Biomaterials, 1993, 14(11): 817-822.
    [16] Yang P, Deng J Y, Yang W T. Confined Photo-catalytic Oxidation: A Fast Surface Hydrophilic Modification Method for Polymeric Materials[J]. Polymer 2003, 44: 7157-7164.
    [17] Zhao H C, Yang P, Deng J P, et al. Fabrication of a Molecular-Level Multilayer Film on Organic Polymer Surfaces via Chemical Bonding Assembly[J]. Langmuir, 2007,23:1810-1814.
    [18] Sui Y, Zhao J B, Gan S H, et al. Surface-Initiated Ring-Opening Polymerization of Caprolactone from the Surface of PP Film[J]. J. Appl. Polym. Sci. 2007, 105(2): 877-884.
    [19] Yang P, Xie J Y, Yang W T.A Simple Method to Fabricate Conductive Polymer Micropattern on Organic Polymer Substrate[J]. Macro. Rapid Comm. 2006, 27: 418-423.
    [20] Yang P, Yang M, Zou S, Xie J, Yang W T.A Simple Method to Fabricate Wettability-Patterned Surface: Toward Positive and Negative TiO2 Micropattern on a Flexible Polymer Substrate[J]. J. Amer. Chem. Soc. 2007,129: 1541-1552.
    [21] Yang P, Zou S L, Yang W T. Positive and Negative ZnO Micropatterning on Functionalized Polymer Surfaces[J]. Small 2008,4: 1527-1536.
    [22] Substantial knowledge about silanization techniques on inorganic surfaces is available from URL: www.gelest.com.
    [23] Weetall H H. Immobilized enzyme technology[J]. Cereal Foods World, 1976, 21: 581-587.
    [24] Monsan P, Puzo G, Mazarguil H. Etude du mecanisme d'etablissement des liaisons glutaraldehyde-proteines[J]. Biochimie, 1975, 57(11/12): 1281-1292.
    [25] Monsan P. Optimization of glutaraldehyde activation of a support for enzyme immobilization[J]. J. Molecular Catalysis, 1978, 3(5): 371-384.
    [26] Vandenberg E, Elwing H, Askendal A, et al. Protein immobilization of 3-aminopropyl triethoxy silane/glutaraldehyde surfaces: Characterization by detergent washing[J]. J. Colloid. Inerf. Sci. 1991, 143(2): 327-335.
    [27] Migneault I, Dartiguenave C, Vinh J, et al. Comparison of two glutaraldehyde immobilization techniques for solid-phase tryptic peptide mapping of human hemoglobin by capillary zone electrophoresis and mass spectrometry[J]. Electrophoresis, 2004, 25(9): 1367-1378.
    [28] Schoevaart R, Siebum A, van Rantwijk F, et al. Glutaraldehyde Cross-link Analogues from Carbohydrates[J]. Starch 2005, 57(3/4): 161-165.
    [29] Wine Y, Cohen-Hadar N, Freeman A, et al. Elucidation of the mechanism and end products of glutaraldehyde crosslinking reaction by X-ray structure analysis[J]. Biotech. Bioeng. 2007, 98(3): 711-718.
    [30] Tanriseven A, Olcer Z. A novel method for the immobilization of glucoamylase onto polyglutaraldehyde-activated gelatin[J]. Biochem. Eng. J., 2008, 39(3): 430-434.
    [31] Betancor L, Lopez-Gallego F, Hidalgo A, et al. Different mechanisms of protein immobilization on glutaraldehyde activated supports: Effect of support activation and immobilization conditions[J]. Enzyme Microb. Technol., 2006, 39(4): 877-882.
    [32] Batalla P, Fuentes M, Mateo C, et al. Covalent Immobilization of Antibodies on Finally Inert Support Surfaces through their Surface Regions Having the Highest Densities in Carboxyl Groups[J]. Biomacromolecules, 2008, 9: 2230-2236.
    [33] Lorente G F, Palomo J M, Mateo C, et al. Glutaraldehyde Cross-Linking of Lipases Adsorbed on Aminated Supports in the Presence of Detergents Leads to Improved Performance[J]. Biomacromolecules, 2006, 7: 2610-2615.
    [34] Lopez-Gallego F, Betancor L, Mateo C, et al. Enzyme stabilization by glutaraldehyde crosslinking of adsorbed proteins on aminated supports[J]. J. Biotech., 2005, 119(1): 70-75.
    [35] Spitznagel T M, Jacobs J W, Clark D S. Random and site-specific immobilization of catalytic antibodies[J]. Enzyme Microb. Technol., 1993,15(11): 916-921.
    [36] Walt D R, Agayn V I. The chemistry of enzyme and protein immobilization with glutaraldehyde[J]. Trends in Anal. Chem., 1994, 13(10): 425-430.
    [37] Mateo C, Fernandez-Lorente G, Abian O, et al. Multifunctional Epoxy Supports: A New Tool To Improve the Covalent Immobilization of Proteins. The Promotion of Physical Adsorptions of Proteins on the Supports before Their Covalent Linkage[J]. Biomacromolecules, 2000, 1: 739-45.
    [38] Mateo C, Torres R, Fernandez-Lorente G, et al. Epoxy-Amino Groups: A New Tool for Improved Immobilization of Proteins by the Epoxy Method[J]. Biomacromolecules, 2003,4: 772-777.
    [39] Torres R, Mateo C, Fernandez-Lorente G, et al. A Novel Heterofunctional Epoxy-Amino Sepabeads for a New Enzyme Immobilization Protocol: Immobilization-Stabilization of Galactosidase from Aspergillus oryzae[J]. Biotechnol. Prog., 2003, 19(3): 1056-1060.
    [40] Lopez-Gallego F, Betancor L, Hidalgo A, et al. Optimization of an industrial biocatalyst of glutaryl acylase: Stabilization of the enzyme by multipoint covalent attachment onto new amino-epoxy Sepabeads[J]. J. Biotechnol., 2004, 111(2): 219-227.
    [41] Mateo C, Abian O, Fernandez-Lafuente R, et al. Increase in conformational stability of enzymes immobilized on epoxy-activated supports by favoring additional multipoint covalent attachment[J]. Enzyme Microb. Technol., 2000, 26(7): 509-515.
    [42] Li H L, Fu A P, Xu D S, Guo G L, Gui L L, Tang Y Q. In Situ Silanization Reaction on the Surface of Freshly Prepared Porous Silicon[J]. Langmuir, 2002, 18:3198-3202.
    [43] Mansur H, Orefice R, Pereira M, et al. FTIR and UV-vis study of chemically engineered biomaterial surfaces for protein immobilization[J]. Spectroscopy, 2002, 16: 351-360.
    [44] Chen X F, Guo C L, Zhao N R. Preparation and characterization of the sol-gel nano-bioactive glasses modified by the coupling agent gamma aminopropyltriethoxysilane[J]. Appl. Surf. Sci., 2008, 255(2): 466-468.
    [45] Ojeda M L, Campero A, Lopez-Cortes J G, et al. Covalent binding of a Fischer-type metal carbene in ordered mesoporous MCM-41-functionalized silica[J]. J. Mol. Catal. A-Chem., 2008, 281(1/2): 137-145.
    [46] Chang K C, Lin C Y, Lin H F, et al. Thermally and mechanically enhanced epoxy resin-silica hybrid materials containing primary amine-modifled silica nanoparticles[J]. J. Appl. Polym. Sci. 2008, 108(3): 1629-1635.
    [47] Knaul J Z, Hudson S M, Creber K A M. Crosslinking of chitosan fibers with dialdehydes: Proposal of a new reaction mechanism[J]. J. Polym. Sci. Pt. B-Polym. Phys. 1999, 37(11): 1079-1094.
    [48] Wnorowski A, Yaylayan V A. Monitoring Carbonyl-Amine Reaction between Pyruvic Acid and a-Amino Alcohols by FTIR Spectroscopy-A Possible Route To Amadori Products[J]. J. Agric. Food Chem. 2003, 51: 6537-6543.
    [49] Bui L N, Thompson M, Mckeown N B, et al. Surface modification of the biomedical polymer poly(ethylene terephthalate)[J]. Analyst, 1993, 118(5): 463-474.
    [50] Puleo D A. Activity of enzyme immobilized on silanized Co-Cr-Mo[J]. J. Biomed. Mater. Res. 1995, 29(8): 951-957.
    [51] Neoh K G, Teo H W, Kang E T. Enhancement of Growth and Adhesion of Electroactive Polymer Coatings on Polyolefin Substrates[J]. Langmuir, 1998, 14: 2820-2826.
    [52] Allen G C, Sorbello F, Altavilla C, et al. Macro-, micro- and nano-investigations on 3-aminopropyltrimethoxysilane self-assembly-monolayers[J]. Thin Solid Films, 2005, 483(1/2), 306-311.
    [53] Yang P, Zhang X, Yang B, Zhao H, Chen J C, Yang W T. Facile Preparation of a Patterned, Aminated Polymer Surface by UV-light-induced Surface Aminolysis[J]. Adv. Funct. Mater., 2005, 15: 1415-1425.
    [54] Avny Y, Rebenfeld L. Chemical modification of polyester fiber surfaces by animation reactions with multifunctional amines[J]. J. Appl. Polym. Sci. 1986, 32(3): 4009-4025.
    [55] Lahiri J, Ostuni E, Whitesides G M. Patterning Ligands on Reactive SAMs by Microcontact Printing[J]. Langmuir 1999, 15: 2055-2060.
    [56] Preininger C, Sauer U, Kern W, Dayteg J. Photoactivatable Copolymers of Vinylbenzyl Thiocyanate as Immobilization Matrix for Biochips[J]. Anal. Chem. 2004, 76: 6130-6136.
    [57] Cao T, Wei F. Jiao X, Chen J, Liao W, Zhao X, Cao W. Micropatterns of Protein and Conducting Polymer Molecules Fabricated by Layer-by-Layer Self-Assembly and Photolithography Techniques[J]. Langmuir, 2003,19: 8127-8129.
    [58] Ressine A, Ekstrom S, Marko-Varga G., Laurell T. Macro-/Nanoporous Silicon as a Support for High-Performance Protein Microarrays[J]. Anal. Chem., 2003, 75: 6968-6974.
    [59] Delamarche E, Bernard A, Schmid H, et al. Microfluidic Networks for Chemical Patterning of Substrates: Design and Application to Bioassays[J]. J. Am. Chem. Soc, 1998, 120: 500-508.
    [60] Dontha N, Nowall W B, Kuhr W G. Generation of Biotin/Avidin/Enzyme Nanostructures with Maskless Photolithography[J]. Anal. Chem. 1997, 69: 2619.
    [61] Homola, H B Lu, Yee S S. Dual-channel surface plasmon resonance sensor with spectral discrimination of sensing channels using dielectric overlayer[J]. Electron. Lett. 1999, 35(13): 1105.
    [62] Bernard A, Delamarche E, Schmid H, Michel B, Bosshard H R, Biebuyck H. Printing Patterns of Proteins [J]. Langmuir, 1998, 14: 2225.
    [63] Wayment J R, Harris J M. Controlling Binding Site Densities on Glass Surfaces[J].Anal.Chem.2006,78:7841-7849.
    [64]Ashley Albritton,Garrett Matthews.Deposition of Patterned Glycosaminoglycans on Silanized Glass Surfaces[J].Langmuir,2006,22(7):3228-3234.
    [65]Hyungil Jung,Rajan Kulkarni,C.Patrick Collier.Dip-Pen Nanolithography of Reactive Alkoxysilanes on Glass[J].J.Am.Chem.Sot.,2003,125(40):12096-12097.
    [66]Teruhisa Ichihara,Akada J K,Shuichi Kamei,et al.A Novel Approach of Protein Immobilization for Protein Chips Using an Oligo-Cysteine Tag[J].J.Proteome Res.,2006,5(9):2144-2151.
    [67]Gnther Zeck,Peter Fromherz.Repulsion and Attraction by Extracellular Matrix Protein in Cell Adhesion Studied with Nerve Cells and Lipid Vesicles on Silicon Chips[J].Langmuir,2003,19(5):1580-1585.
    [68]Ibez A J,Alexander Muck,Ale Svato.Metal-Chelating Plastic MALDI(pMALDI)Chips for the Enhancement of Phosphorylated-Peptide/Protein Signals[J].J.Proteome Res.,2007,6(9):3842-3848.
    [69]Thomas Kodadek.Protein microarrays:prospects and problems[J].Chemistry and Biology,2001,(8):105-115.
    [70]Zammatteo N,Jeanmart L,Hamels S,et al.Comparison between different strategies of covalent atttachment of DNA to glass surfaces to build DNA microarrays[J].Anal.Biochem.,2000,280(1):143-150.
    [71]Richard F.Taylor.Protein Immobilization Fundamentals and Applications[M].New York:Marcel Dekker Inc.1991,101-105.
    [72]Hiroshi Muramatsu,Dicks J M,Eiichi Tamiya,et al.Piezoelectric crystal biosensor modified with protein A for determination of immunoglobulins[J].Anal.Chem.,1987,59(23):2760-2763.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700