用户名: 密码: 验证码:
SBA-15复合材料物化及发光性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用微波辅助水热合成(MAHS)方法和水热法成功地合成出了SBA-15介孔分子筛。这两种方法都是采用聚乙二醇-嵌段-聚丙二醇-嵌段-聚乙二醇(EG_(20)PG_(40)EG_(20))作为模板剂,采用正硅酸四乙酯作为硅源。采用本研究的微波水热辅助合成方法合成介孔SBA-15分子筛仅需要125min,而采用常规的水热合成方法则需要花费72h,采用本实验方法较常规水热合成法快34倍。本研究采用粉末X-射线衍射分析(Powder X-rayDiffraction,XRD)、傅立叶转换红外光谱(Fourier Transform Infrared Spectroscopy,FT-IR)、氮气吸附-解吸附技术、透射电镜(Transmission Electron Microscopy,TEM)、扫描电镜(Scanning Electron Microscopy,SEM)等表征手段对所制备的SBA-15分子筛材料的各种性质进行了深入的研究。粉末X-射线衍射分析的结果表明,采用微波辅助水热方法合成的SBA-15分子筛的衍射峰峰位和采用常规水热合成方法合成的SBA-15分子筛的衍射峰峰位是一致的,这说明采用该方法已经成功的合成了SBA-15分子筛。氮气吸附-解吸附实验的结果显示,采用微波辐照5 min方法合成的SBA-15分子筛(FS)的孔道直径是6.49nm,而采用微波辐照30min方法所合成的SBA-15分子筛(TS)的孔道直径是7.40nm。扫描电镜结果表明,所采用微波水热合成法所合成的SBA-15分子筛呈现针状晶体结构,对于FS样品来说晶粒的长度大约是100μm,对于TS样品来说晶粒的长度大约是64μm。对于FS样品来说晶粒直径是4.5μm,而对于TS样品来说晶粒直径大约是3.6μm。实验结果证明,采用微波水热辅助合成方法可以使体系受热均匀,加热速度快,从而使合成SBA-15分子筛的速度快,提高了生产效率,降低了能源的消耗,也降低了生产成本。
     在本研究中,La_2O_3成功地组装到了SBA-15介孔孔道中。本研究采用了三种方法将客体材料La_2O_3组装到主体SBA-15介孔分子筛材料中,第一种方法是液相移植法;第二种方法是直接固体热扩散法;第三种方法是微波辅助合成法。然后,采用化学分析、粉末X-射线衍射分析(XRD)、傅立叶变换红外光谱分析(FT-IR)、氮气吸附-解吸附分析、透射电镜分析(TEM)、扫描电镜分析(SEM)、紫外-可见固体扩散漫反射吸收光谱分析,发光性质研究等和激光激发光致发光光谱(PL)等手段对所制得的主-客体纳米复合材料的各种性质和性能进行了分析。La_2O_3组装到主体材料的孔道后,分子筛骨架保持完整,仍然具有较高的有序性。La_2O_3主要分布在分子筛的纳米孔道中,所制得的主-客体纳米复合材料具有发光特性。通过所制备的主-客体纳米复合材料样品的紫外-可见固体扩散漫反射吸收光谱的吸收峰发生了蓝移现象,可以认定La_2O_3已经组装到SBA-15分子筛孔道中,并且材料表现出了量子尺寸效应和量子限域效应,说明La_2O_3已经组装到了SBA-15分子筛的孔道中。从发光光谱可知,SBA-15分子筛本身是不发光的,组装了客体La_2O_3之后的复合材料却出现了发光现象,这说明:La_2O_3已经组装到了SBA-15分子筛中,而且制得的主-客体纳米复合材料显示出发光性质,并且发光强度较纯的La_2O_3材料高出1倍,该材料具有用作发光材料的潜力。从材料的激光激发荧光光谱可以看到,固相法合成的(SBA-15)-La_2O_3样品(SS),以La_2O_3为镧源微波法合成的(SBA-15)-La_2O_3样品(MWSS),以La(NO_3)_3为镧源微波法合成的(SBA-15)-La_2O_3样品(MWNS)以及液相法合成的(SBA-15)-La_2O_3样品(LS)的发光强度要较La_2O_3及La_2O_3(wt 5%)的机械混合物强得多。对于在532nm附近的发光峰来说,SS样品的峰强度是La_2O_3的8倍,是La_2O_3(wt 5%)的机械混合物的11倍,MWSS样品的峰强度是La_2O_3的6倍,是La_2O_3(wt 5%)的机械混合物的8倍,MWNS样品的峰强度是La_2O_3的3倍,是La_2O_3(wt 5%)的机械混合物的4倍,LS样品的峰强度是La_2O_3的5倍,是La_2O_3(wt 5%)的机械混合物的7倍。
     在本研究中,制备了介孔SBA-15分子筛,然后将其用作尼莫地平药物的载药系统,来运载尼莫地平,并且采用各种表征手段对制备材料的性质进行了表征,对该体系对尼莫地平药物的缓释作用进行了评价。尼莫地平向介孔SBA-15分子筛孔道中的组装过程是将尼莫地平先溶解在一种适当的溶剂中制得相应的尼莫地平溶液,然后将该溶液和SBA-15分子筛粉末混合搅拌一定时间得到目的产物。本研究对尼莫地平药物从SBA-15分子筛孔道中向模拟体液(SBF)中的释放过程进行了模拟监控,研究了载药体系的缓释作用。实验结果显示,尼莫地平药物的释放速率为12h~13h释放.50%,各个样品都是在24h~25h全部释放。而且,从释放曲线可以看到药品的释放过程非常平缓。此外,本研究在将尼莫地平药物向SBA-15分子筛中组装之前,先对SBA-15分子筛外表面进行了硅烷化处理,该过程采用的硅烷试剂有苯基三甲氧基硅烷和三甲基氯硅烷等。进行硅烷化处理的目的是为了消除分子筛外表面上的硅羟基,从而减小尼莫地平嫁接到分子筛外表面的可能性,为此,本研究在SBA-15分子筛脱模板前进行了硅烷化处理,然后再去除模板。采用化学分析、粉末X-射线衍射分析(XRD)、傅立叶变换红外光谱分析(FT-IR)、氮气吸附-解吸附技术、透射电子显微镜(TEM)和扫描电子显微镜(SEM)等表征方法,对制备材料的性质进行了研究。结果表明,本研究所描述的方法适合于尼莫地平药物的运载,为尼莫地平药物的负载找到了一个新的载体,同时也提高了尼莫地平药物药效。
SBA-15 molecular sieve has been successfully synthesized by a microwave-assisted hydrothermal synthesis(MAHS) method and hydrothermal synthesis method,using poly (ethylene glycol)-block-poly(propyl glycol)-block-poly(ethylene glycol)(EG20PG40EG20) as a template.The synthesis of SBA-15 molecular sieve by MAHS method only needs 125 min and synthesis is more than 34 times faster than that by the conventional hydrothermal synthesis method.Powder X-ray diffraction(XRD),Fourier transform infrared spectroscopy (FT-IR),nitrogen adsorption-desorption technique,transmission electron microscopy(TEM) and scanning electron microscopy(SEM) were used to characterize the materials.The powder X-ray diffraction results showed that the structures of the SBA-15 molecular sieves correspond to that by the hydrothermal method.The nitrogen adsorption-desorption results showed that the average pore diameter of the SBA-15 molecular sieve synthesized by MAHS method was 6.49 for microwave-assisted synthesis of SBA-15 molecular sieve in 5 min(FS) sample and 7.40 nm for microwave-assisted synthesis of SBA-15 molecular sieve in 30 min(TS) sample.The scanning electron microscopy results showed that the primary particles of the samples presented acicular crystals,crystals longness was 100μm for FS sample and 64μm for TS sample,crystals diameter was 4.5μm for FS sample and 3.6μm for TS sample,respectively.The use of microwave radiation can transfer energy uniformly and quickly,and complete the syntheses of SBA-15 molecular sieve within a short time.
     Lanthanum oxide was incorporated into SBA-15 mesoporous molecular sieve via liquid-phase grafting,thermal diffusion,and microwave-assisted synthesis methods.A series of characterizations including powder X-ray diffraction(XRD),chemical analysis,Fourier transform infrared spectroscopy(FT-IR),nitrogen adsorption-desorption technique, transmission electron microscopy(TEM),scanning electron microscopy(SEM),solid state diffuse reflection absorption spectra,fluorescence spectra and photoluminescence(PL) spectra were used to characterize the prepared materials.The results showed that in the prepared host-guest(SBA-15)-La_2O_3 materials the frameworks of the host molecular sieve kept intact and its structures were kept highly ordered.The incorporated lanthanum oxide located inside the pores of the SBA-15.The prepared host-guest composite materials showed the properties of luminescence.From the solid state diffuse reflection absorption spectra of the host-guest(SBA-15)-La2O_3 materials,the blue-shift phenomenon of the spectra can be ascribed to the stereoconfinement of the pores of the SBA-15 and quantum size effect is clearly associated with the nanosize of La_2O_3.The solid state diffuse reflectance absorption spectra prove that La_2O_3 has been successfully trapped in the channels of the SBA-15 molecular sieve.From the luminescence spectra of the materials,there are no phenomena of luminescence of the host SBA-15 molecular sieve.However,for the prepared (SBA-15)-La_2O_3 composite materials,the phenomena of luminescence appeared.The luminescent intensities of the(SBA-15)-La_2O_3 materials samples are about 2 times of bulk La_2O_3.They have the potentiality as luminescent materials.From the PL spectra of the samples,the luminescent intensities of SS(Solid thermal diffusion),MWSS(Microwave La_2O_3 diffusion),MWNS(Microwave La(NO_3)_3 diffusion) and LS(Liquid phase grafting) samples are much higher than those of bulk La_2O_3 and the mechanical mixture of SBA-15 and La_2O_3(5 wt%).For the peaks which locate near 532 nm,the luminescent intensities of SS sample is about 8 times of bulk La_2O_3 and 11 times of the mechanical mixture of SBA-15 and La_2O_3(5 wt%),the luminescent intensities of MWSS sample is about 6 times of bulk La_2O_3 and 8 times of the mechanical mixture of SBA-15 and La_2O_3(5 wt%),the luminescent intensities of MWNS sample is about 3 times of bulk La_2O_3 and 4 times of the mechanical mixture of SBA-15 and La_2O_3(5 wt%),the luminescent intensities of LS sample is about 5 times of bulk La_2O_3 and 7 times of the mechanical mixture of SBA-15 and La_2O_3 (5 wt%),respectively.
     In this study,mesoporous SBA-15 molecular sieve was prepared to evaluate its application as nimodipine drug delivery system.The nimodipine was doped inside the pores of SBA-15 by contacting a solution of the nimodipine in an appropriate solvent with the porous solid,and the drug release process from the matrix into a simulated body fluid(SBF) solution has been studied.The results showed that the release effect of nimodipine was 50% in 12 h~13 h,100%in 24 h~25 h,and followed by a very slow release pattern.The surface of SBA-15 was functionalized with phenyltrimethoxysilane or trimethylchlorosilane before calcination.Chemical analysis,powder X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FT-IR),nitrogen adsorption-desorption technique,transmission electron microscopy(TEM) and scanning electron microscopy(SEM) were used to characterize the materials.The approaches described in this thesis provide methods for carry of nimodipine and improve effect of nimodipine.
引文
[1]Eckert J,Holzer J C,Krill C E.Mechanically driven alloying and grain size changes in nanocrystalline Fe-Cu powders [J],J.Appl.Phys.,1993,73(6):2794-2796
    [2]牟季美,张立德.纳米复合材料发展趋势[J],物理,1996,25(1):31-36
    [3]王一中,董华,于鼎声.尼龙6/凹凸棒土纳米级复合材料的合成[J],合成树脂及塑料,1997,14(2):16-18
    [4]张立德.超微粉体制备与应用技术[M],北京:中国石化出版社,2001,526-530
    [5]徐国财,张立德.纳米复合材料[M],北京:化学工业出版社,2002,70-71
    [6]张志琨,崔作林.纳米技术与纳米材料[M],北京:国防工业出版社,2002,220-224
    [7]翟庆洲,于辉,张晓霞等.纳米技术[M],北京:兵器工业出版社,2005,386
    [8]徐如人,庞文琴.无机合成与制备化学[M],北京:高等教育出版社,2001,415
    [9]徐如人,庞文琴,屠昆岗著.沸石分子筛的结构与合成[M],长春:吉林大学出版社,1987,1
    [10]王绪绪,陈旬,徐海兵等.沸石分子筛的表面改性技术进展[J],无机化学学报,2002,18(6):541-549
    [11]王巍,胡伟华,翟庆洲等.近年来分子筛研究的某些进展[J],长春理工大学学报,2003,26(1):35-38
    [12]王水利,葛岭梅,杨建利.纳米沸石的合成及其影响因素[J],纳米科技,2005,(3):8-13
    [13]Rao P,Prasad R U,Leon Y,Matsudata M.Synthesis BEA by dry gel conversion and its characterization[J],Microp.Hesop.Mater.,1998,21:305-313
    [14]翟庆洲,裘式纶,肖丰收.纳米材料研究进展Ⅰ[J],化学研究与应用,1998,10(3):226-235
    [15]Ozin G.A,Kuperman A,Stein A.Advanced Zeolite Materials Science[J],Angew.Chem.,1989,101(3):373-374
    [16]Ozin G A,Ozkair S.Zeolates:a coordination chemistry view of metal-ligand bonding in zeolite guest-host inclusion compounds[J],Chem.Mater.,1992,4(3):511-521
    [17]Stucky G D,Mac Dongall J E.Quantum confinement and host/guest chemistry:probing a new dimension[J].Science,1990,274:669-671
    [18]Kenneth J,Balkus J,Khanmamedova A K,et al.Oxidation catalyzed by zeolite ship-in-a-bottle complexes[J],Appl.Catal.A:General,1996,143:159-173
    [19]邹静,罗钟玲,江志裕等.CXN天然沸石的研究Ⅳ.新型LiCl/H-STI主-客体材料的湿敏性能研究[J],化学学报,2001,59(6):862-866
    [20]白妮,张萍,郭阳红等.脂溶性金属酞菁衍生物在介孔分子筛中的封装及其催化性质研究[J],高等学校化学学报,2001,22(8):1275-1278
    [21]夏家荣,朱建华,淳远等.微波法研制催化降解亚硝胺的ZrO_2/NaY沸石新材料[J],化学学报,2001,59(8):1196-1200
    [22]颜学武,韩小伟,曹毅等.微波法研制碱土金属氧化物负载型MCM-48碱性介孔材料[J],无机化学学报,2002,18(11):1101-1106
    [23]魏一伦,曹毅,朱建华等.MgO/SBA-15固体碱介孔材料的研制[J],无机化学学报,2003,19(3):233-239
    [24]徐庆红,赵志新,李连生等.5,10,15,20-四羟基苯基卟啉醋酸钴在Si-MCM-41中瓶中造船法组装及表征[J],高 等学校化学学报,2001,22(5):727-730
    [25]张文华,施剑林,陈航榕等.Ti在介孔氧化硅MCM-41中的液相移植[J],无机材料学报,2001,(?):87-92
    [26]郑珊,高濂,郭景坤等.TiO2在MCM-41内表面单层及双层分散的结构表征[J],无机材料学报,(?),16(1):98-102
    [27]郑珊,高濂,郭景坤.纳米Au团族在氧化钛修饰的介孔分子筛MCM—41中的组装[J],无机材料学报,2002,17(2):332-336
    [28]张立德,牟季美.纳米材料和纳米结构[M],北京:科学出版社,2001,355-376
    [29]Davis M E.Ordered porous materials for emerging applications[J],Nature,2002,417:813-821
    [30]武兵,林健.微波加热技术在无机材料研究中的应用[J],新技术新工艺(热加工技术),2004,(?)31-33
    [31]Gedye R N,Smith F,Westaway K,et al.The use of microwave ovens for rapid organic synthesis[(?)rahedron Lett.,1986,27(3):279-281
    [32]金钦汉.微波化学[M].北京:科学出版社,1999,1-5,30-33,94-117.
    [33]Mingos D M P,Baghurst D R.Application of microwave dielectric heating to synthetic problems in(?)mistry[J].Chem.Soc.Rev.,1991,20(1):41-47.
    [34]李金树,张建福.微波技术在化学合成中的应用[J],石化技术,2002,(3):178-183.
    [35]谭长水,李大光,李秀艳等.微波在无机合成中的应用[J],无机盐工业,2003,35(4):48-(?)3.
    [36]杨伯伦,贺拥军.微波加热在化学反应中的应用进展[J],现代化工,2001,21(4):8-12.
    [37]王继业,许赤兵,宋会花等.微波加热在无机固相反应中的应用[J],河北师范大学学报(自),2(?)28(4):396-400
    [38]Zhu J J,Zhu J M,Liao X H,et al.Rapid synthesis of nanocrystalline SnO_2 powders by microwav(?)heatir(?)ethod[J],Mater.Lett.,2002,53:12-19
    [39]Zhu J J,Zhao M G,Xu J Z,et al.Preparetion of CdS and ZnS nanoparticles using microwave i(?)adiat(?)],Mater.Lett.,2001,47:25-29.
    [40]Shi S H,Hwang J Y.Microwave-assisted wet chemical synthesis:advantages,significance,a(?)steps to industrialization[J],J.Miner.Mater.Character.Eng.,2003,2(2):101-110
    [41]Chu P,Dwyer F G,Vartuli J C.Crystallization method employing microwave[P],US:1988,4778(?)666
    [42]Chu P,Dwyer F G,Clark V J.Crystallization of zeolites using microwave radiation[P],EP:1990.358(?)
    [43]Cresswell S L,Parsonag J R,Riby P G,et al.Rapid synthesis of magnesium aluminophosphate-5 b(?)icrowave dielectric heating[J],J.Chem.Soc.Dalton Trans.,1995,2(2):2315-2316
    [44]Jhung S H,Lee J H,Yoon J,et al.Selective crystallization of CoAPO-34 and VAPO-5 molecular(?)es under microwave irradiation in an alkaline or neutral condition[J],Micropor.Mesopor.Mater.,2005,80:147-(?)52
    [45]郭守杰,高俊斌,孙桂大等.SAPO-11分子筛的微波合成与表征[J],石油化工高等学校学报,2006(?)(1):44-47
    [46]Heyden H V,Mintova S,Bein T.AlPO-18 nanocrystals synthesized under microwave irradiation[(?)J.M(?)Chem..2006.16:514-518
    [47]宋天佑,徐家宁,徐文国等.微波辐射法合成NaX分子筛[J],高等学校化学学报,1992,13(10):120(?)210
    [48]Han Y,Ma H,Qiu S L,et al.Preparation of zeolite A membranes by microwave heating[J],Micropor.Mesopor.Mater.,1999,30(2):321-326
    [49]Bonaccorsi L,Proverbio E.Microwave assisted crystallization of zeolite A from dense gels[J],J.Cryst.Growth,2003,247(3-4):555-562
    [50]程志林,晁自胜,万惠霖.微波诱导快速合成纳米NaY分子筛[J],物理化学学报,2003,19(6):487-491
    [51]李伟,陶克毅,李赫.微波技术在分子筛催化剂中的应用[J],石油化工,1999,27:691-694.
    [52]徐晓春,杨维慎,刘杰等.微波场中NaA型分子筛膜的快速合成[J],科学通报,2000,45(8):835-837
    [53]Xu X C,Bao Y,Song C S,et al.Microwave-assisted hydrothermal synthesis of hydroxy-sodalite zeolite membrane[J],Micropor.Mesopor.Mater.,2004,75(1):173-181
    [54]Kim D S,Chang J S,Hwang J S,et al.Synthesis of zeolite beta in fluoride media under microwave irradiation[J],Micropor.Mesopor.Mater.,2004,68(1):77-82
    [55]马骏,王海彦,田彦文等.微波辐射法制备纳米级β-沸石[J],硅酸盐通报,2006,25(1):10-12
    [56]Cristian B,Scott M A.Microwave-driven zeolite-guest systems show athermal effects from nonequilibrium molecular dynamics[J],J.Am.Chem.Soc.,2002,124:6250-6251
    [57]徐如人,庞文琴.分子筛与多孔材料化学[M],北京:科学出版社,2004,2-10
    [58]Zhao D Y,Feng J L,Huo Q S,et al.Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300angstrom pores[J],Science,1998,279:548-552
    [59]Zhao D Y,Huo Q S,Feng J L,et al.Nonionic triblock and diblock copolymer and oligomeric mesoporous silica structures[J],J.Am.Chem.Soc.,1998,120(24):6024-6036
    [60]Zholobenko V L,Khodakov A Y,Durand D.Synchrotron X-ray-diffusion studies of the preparation of SBA-15materials[J],Micropor.Mesopor.Mater.,2003,66:297-302
    [61]Jun S,Joo S H,Ryoo R,et al.Synthesis of new nanoporous carbon with hexagonally ordered mesostructure[J],J.Am.Chem.Soc.,2000,122(43):10712-10715
    [62]姜燕,郭万林,台国安.微波加热在有序介孔材料研究中的进展[J],材料导报,2005,19(4):24-27
    [63]Kresge C T,Leonowicz M E,Roth W J.Ordered mesoporous molecular sieves synthesized by a liquidcrystal ternplate mechanism[J],Nature,1992,359:710-716
    [64]Park S E,Kim D S,Chang J S.Synthesis of MCM-41 using microwave heating with ethylene glycol[J],Catal.Today,1998,44(4):301-303
    [65]许磊,王公慰,魏迎旭等.MCM一41介孔分子筛合成研究(Ⅱ)微波辐射合成法[J],催化学报,1999,20(3):251.255
    [66]Song M G,Kim J Y,Cho S H,et al.Rapid synthesis of mesoporous silica by an accelerated microwave radiation method[J],Korean J.Chem.Eng.,2004,21(6):1224-1230
    [67]姚云峰,张迈生,杨燕生.纳米介孔分子筛MCM-41的微波辐射合成法[J],物理化学学报,2001,17(12):1117-1119
    [68]张迈生,姚云峰,杨艳生.XRD粉末衍射法研究全微波合成MCM-41介孔分子筛[J],无机化学学报,2000,16(1):119-122
    [69]张青山,张辉淼,郭炳南.以双亲表面活性剂为模板全微波辐射合成介孔分子筛MCM-48[J],北京理工大学学 报,2003,23(3):394-397
    [70]Oberhagemann U,Jeschke M,Papp H.Synthesis of highly ordered boron-containing B-MCM-41 and pure silica MCM-41[J],Micropor.Mesopor.Mater.,1999,33:165-172
    [71]张扬健,赵杉林,孙桂大等.W-MCM-48中孔分子筛的微波合成与表征[J],催化学报,2000,21(4):345-349
    [72]张扬健,赵杉林,孙桂大等.Mo-MCM-48中孔分子筛微波合成的研究[J],化学学报,2001,59(6):820-825
    [73]陶涛,姜廷顺,王忠华等.微波法合成Co-MCM-41介孔分子筛[J],非金属矿,2006,29(1):37-39
    [74]Kang K K,Park C H,Ahn W S.Microwave preparation of a titanium-substituted mesoporous molecular sieve[J].Catal.Lett.,1999,59:45-49
    [75]Newalkar B L,Komameni S,Katsuki H.Rapid synthesis of mesoporous SBA-15 molecular sieve by a microwave-hydrothermal process[J],Chem.Commun.,2000,2389-2390
    [76]Newalkar B L,Komarneni S.Simplified synthesis of micropore-free mesoporous silica,SBA-1 5,under microwave-hydrothermal conditions[J],Chem.Comm.,2002,(16):1774-1777
    [77]Newalkar B L,Komameni S.Control over microporosity of ordered microporous-mesoporous silica SBA-15framework under microwave-hydrothermal conditions:effect of salt addition[J],Chem.Mater.,2001,13(12):4573-4576
    [78]Celer E B,Mietek J.Temperature-programmed microwave-assisted synthesis of SBA-15 ordered mesoporous silica[J],J.Am.Chem.Soc.,2006,128(51):7359-7362
    [79]Hwang Y K,Chang J S,Kwon Y U,et al.Microwave synthesis of cubic mesoporous silica SBA-16[J],Micropor.Mesopor.Mater.,2004,68:21-27
    [80]Newalkar B L,Olanrewaju J,Komameni S.Direct synthesis of titanium-substituted mesoporous SBA-15 molecular sieve under microwave-hydrothermal conditions[J],Chem.Mater.,2001,13:552-556
    [81]Newalkar B L,Olanrewaju J,Komarneni S.Microwave-hydrothermal synthesis and characterization of zirconium substituted SBA-15 mesoporous silica[J],J.Phys.Chem.B,2001,105:8356-8359
    [82]Newalkar B L,Komarneni S,Turaga U T,et al.Synthesis and characterization ofPSU-1,a novel cagelike mesoporous silica[J],J.Mater.Chem.,2003,13(7):1710-1713
    [83]周荣飞,刘丹,顾逸等.微波加热法快速合成T型分子筛[J],无机化学学报,2006,22(9):1719-1722
    [84]Zhang G Y,Jiang X,Wang E.Tubular graphite cones[J],Science,2003,300(5618):472-474
    [85]Yao Y F,Zhang M S,Shi J S,et al.Encapsulation of fluorescein into MCM-41 mesoporous molecular sieve by a sol-gel method[J],Mater.Lett.,2001,48:44-47
    [86]He J,Yang X B,Evans D G,et al.New methods to remove organic templates from porous materials[J],Mater.Chem.Phys.,2002,77:270-274
    [87]Tian B Z,Liu X Y,Zhao D Y,et al.Microwave assisted template removal of siliceous porous materials[J],Chem.Comm.,2002,11:1186-1190
    [88]Park B G,Guo W P.Cui X G,et al.Preparation and characterization of organo-modified SBA-15 by using polypropylene glycol as a swelling agent[J],Micropor.Mesopor.Mater.,2003,66:229-238.
    [89]高波,朱广山,傅学奇等.介孔分子筛SBA-15中α-胰凝乳蛋白酶组装及催化活性研究[J],高等学校化学学报,2003,24(6):1100-1102
    [90] Salis A, Meloni D, Ligas S, et al. Physical and chemical adsorption of mucor javanicus lipase on SBA-15 mesoporous silica, synthesis, structural characterization, and activity performance[J], Langmuir, 2005,21(12): 5511-5516
    [9I]Miyahara M, Vinu A, Arig K. Adsorption myoglobin over mesoporous silica molecular sieves: Pore size effect and pore-filling model[J], Mater. Sci. Eng.: C. 2007, 27(2): 232-236
    [92] Chong A S M, Zhao X S. Functionalized nanoporous silicas for the immobilization of penicillin acylase[J], Appl. Surf.Sci., 2004,237(3): 398-404
    [93] Sousa A, Sousa E M B. Ordered mesoporous silica carrier system applied in nanobiothecnology[J], Braz. Arch. Bio.Tech., 2005, 48(Special): 243-250
    [94] Lee J W, Cho D L, Wang G S, et al. Application of mesoporous MCM-48 and SBA-15 materials for the separation of biochemicals dissolved in aqueous solution[J], Korean J. Chem. Eng., 2004,21(1): 246-251
    [95] Mar(?)a V R, Luisa R G, Isabel L B, et al. Revisiting silica based ordered mesoporous materials: medical applications[J],J. Mater. Chem., 2006,16(1): 26-31
    [96] Amila A R, Munoz B, Pariente J P,et al. Mesoporous MCM-41 as drug host system[J], J. Sol-Gel Sci. Tech., 2003,26:1199-1202
    [97] Charnay C, Begu S, Tourne-Peteilh C, et al. Inclusion of ibuprofen in mesoporous templated silica:drug loading and release property[J], Europ. J. Pharm. Biopharm., 2004, 57: 533-540
    [98] Horcajada P, Ramila A, Perez-Pariente J, et al. Influence of pore size of MCM-41 matrices on drug delivery rate[J],Micropor. Mesopor. Mater., 2004,68: 105-109
    [99] Doadrio A L, Sousa E M B, Doadrio J C, et al. Mesoporous SBA-15 HPLC evaluation for controlled gentamicin drug delivery[J], J. Control. Release, 2004,97: 125- 132
    [100] Vallet-Regi M, Doadrio J C, Doadrio A L, et al. Hexagonal ordered mesoporous material as a matrix for the controlled release of amoxicillin[J], Solid State Ionics, 2004,172: 435-439
    [101]曲凤玉,朱广山, 裘式纶等. 水溶性药物巯甲丙脯酸/Si-MCM-41 载药[J],高等学校化学学报, 2004, 25(12):2195-2198
    [102] Lehto V P, Heikkil(?) K V, Paski J, et al. Use of thernoanalytical methods in quantification of drug load in mesoporous silicon microparticles [J], J. Therm. Anal. Calorimetry, 2005, 80: 393-397
    [103] Zhu Y F, Shi J L, ShenW H, et al. Preparation of novel hollow mesoporous silica spheres and their sustained-release property[J], Nanotechnology, 2005,16: 2633-2638
    [104] Kim H J, Ann J E, Haam S J, et al. Synthesis and characterization of mesoporous Fe/SiO_2 for magnetic drug targeting[J], J. Mater. Chem., 2006,16(9): 1617-1621
    [105] Doadrio J C, Sousa E M B, Isabel I B, et al. Functionalization of mesoporous materials with long alkyl chains as a strategy for controlling drug delivery pattern[J], J. Mater.Chem., 2006, 16(3): 462-466
    [106] Kim J Y, Lee J E, Lee J W, et al. Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals[J], J. Am. Chem. Soc, 2006, 128 (3): 688 -689
    [107] Pasqua L, Flaviano T, Rosario A, et al. Preparation of bifunctional hybrid mesoporous silica potentially useful for drug targeting[J], Micropor. Mesopor. Mater., 2007,103(1-3): 166-173
    [108]Zhu Y F,Shi J L.A mesoporous core-shell structure for pH-controlled storage and release of water-soluble drug[J],Microporous.Mesoporous Mater.,2007,103(1-3):243-249
    [109]Zhu S M,Zhou H S,Hibino M,et al.Metallic ruthenium incorporation in the porous structure of SBA-15 using a sonochemical method[J],J.Mater.Chem.,2003,13:1115-1118
    [110]孙锦玉,赵东元.“面包圈”状高有序度大孔介孔分子筛SBA-15的合成[J],高等学校化学学报,2000,21(1):21-23
    [111]Stevens W J J,Lebeau K,Mertens M,et al.Investigation of the morphology of the mesoporous SBA-16 and SBA-15materials[J],J.Phys.Chem.B,2006,110(18):9183-9187
    [112]王丽敏,范杰,屠波等.以廉价国产化试剂合成大孔径高度有序介孔氧化硅分子筛[J],催化学报,2002,18(10):1053-1056
    [113]Newalkar B L,Choudary N V,Turaga U T,et al.Potential adsorbent for light hydrocarbon separation role of SBA-15framework porosity[J],Chem.Mater.,2003,15(6):1474-1479
    [114]Wang X G,Cheng S F.Direct synthesis and catalytic reactivity of highly ordered large-pore methylaminopropyl-functionalized SBA-15 materials[J],Austra.J.Chem.,2005,58(7):507-510
    [115]Luan Z H,Hartmann M,Zhao D Y,et al.Alumination and ion exchange of mesoporous SBA-15 molecular sieves[J],Chem.Mater.,1999,11(6):1621-1627
    [116]Li W J,Huang S J,Liu S B,et al.Influence of the Al source and synthesis of ordered Al-SBA-15 hexagonal particles with nanostairs and terraces[J],Langmuir,2005,21(5):2078-2085
    [117]吴淑杰,黄家辉,吴通好等.Al-SBA-15介孔分子筛的合成、表征及其在苯酚叔丁基化反应中的催化性能[J],催化学报,2006,27(1):9-14
    [118]奇晶瑶,强亮生,杜茂松等.Al-SBA-15介孔分子筛的制备及表征[J],稀有金属材料与工程,2007,36(1):534-537
    [119]Li C L,Wang Y Q,Guo Y L,et al.Synthesis of highly ordered,extremely hydrothermal stable SBA-15/Al-SBA-15under the assistance of sodium chloride[J],Chem.Mater.,2007,19(2):173-178
    [120]朱金华,沈伟,徐华龙等.水热一步法合成Ti-SBA-15分子筛及其催化性能研究[J],化学学报,2003,61(2):202-207
    [121]Zhang W H,Lu J Q,Han B,et al.Direct synthesis and characterization of titanium-substituted mesoporous molecular sieve SBA-15[J],Chem.Mater.,2002,14:3413-3421
    [122]Wu P,Tatsumi T.Postsynthesis,characterization,and catalytic properties in alkene epoxidation of hydrothermally stable mesoporous Ti-SBA-15[J],Chem.Mater.,2002,14:1657-1664
    [123]Li G,Zhao X S.Characterization and photocatalytic properties of titanium-containing mesoporous SBA-15[J],Ind.Eng.Chem.Res.,2006,45(10):3569-3573
    [124]Orlov A,Zhai Q Z,Klinowski J.Photocatalytic properties of the SBA-15 mesoporous silica molecular sieve modified with titanium[J],J.Mater.Sci.,2006,41(8):2187-2193
    [125]Melero J A,Iglesias J,Arsuaga J M,et al.Synthesis and catalytic activity of organic-inorganic hybrid Ti-SBA-15materials[J],J.Mater.Chem.,2007,17(2):377-385
    [126]陆安慧,Schmidt W,Sch(u|")th F.结构有序、双重孔隙中孔炭材料的合成与表征[J],新型碳材料,2003,18(3):181-185
    [127]翟庆洲,王巍镧(Ⅲ)对SBA-15分子筛改性研究[J],无机材料学报,2004,19(5):1212-1216
    [128]Coutinho D,Acevedo A O,Dieckmann G R,et al.Molecular imprinting of mesoporous SBA-15 with chiral ruthenium complexes[J],Micropor.Mesopor.Mater.,2002,54:297-302
    [129]Minoru S,Yoshiyuki S,Makoto O.Luminescence of tris(2,2'-bipyridine)ruthenium(Ⅱ) cations([Ru(bpy)_3]~(2+))adsorbed in mesoporous silicas modified with sulfonated phenethyl group[J],J.Phys.Chem.B,2007,111(30):8836-8841
    [130]Su F B,Lu L,Lee F Y,et al.Thermally reduced ruthenium nanoparticles as a highly active heterogeneous catalyst for hydrogenation of monoaromatics[J],J.Am.Chem.Soc.,2007,129(46):14213-14223
    [131]Li H X,Zhang F,Wan Y,et al.Homoallylic alcohol isomerization in water over an immobilized Ru(Ⅱ)organometallic catalyst with mesoporous structure[J],J.Phys.Chem.B,2006,110(45):22942-22946
    [132]Worboys L M,Edwards P P,Anderson P A.Silver nanowires:inclusion in and extrusion from a mesoporous template[J],Chem.Commun.,2002,2894-2895
    [133]Zhu W P,Han Y C,An L J.Silver nanoparticles synthesized from mesoporous Ag/SBA-15 composites[J],Micropor.Mesopor.Mater.,2005,80(1-3):221-226
    [134]Gu C W,Chia P A,Zhao X S.Doping of europium in the pores of surface-modified SBA-15[J],App.Surf.Sci.,2004,237:387-392
    [135]Fernandes A,Dexpert G J,Gteizes A,et al.Grafting luminescent metal-organic species into mesoporous MCM-41silica from europium(Ⅲ) tetramethylheptanedionate,Eu(thd)_3[J],Micropor.Mesopor.Mater.,2005,83(1-3):35-46
    [136]Zhang Z T,Dai S,Blom D A,et al.Synthesis of ordered metallic nanowires inside ordered mesoporous materials through electroless deposition[J],Chem.Mater.,2002,14:965-968
    [137]Krawiec P,Kockrick E,Simon P,et al.Platinum-catalyzed template removal for the in situ synthesis of MCM-41supported catalysts[J],Chem.Mater.,2006,18(11):2663-2669
    [138]Feng K,Zhang R Y,Wu L Z.Photooxidation of olefins under oxygen in platinum(Ⅱ) complex-loaded mesoporous molecular sieves[J],J.Am.Chem.Soc.,2006,128(45):14685-14690,
    [139]Chao K J,Chang Y P,Chen Y C,et al.Morphology of nanostructured platinum in mesoporous materials-effect of solvent and intrachannel surface[J],J.Phys.Chem.,2006,110(4):1638-1646
    [140]Konya Z,Puntes V F,Kiricsi I,et al.Nanocrystal templating of silica mesoporous with tunable pore sizes[J],Nano.Lett.,2002,2(8):907-910
    [141]Asefa T,Lennox R B.Synthesis of gold nanoparticles via electroless deposition in SBA-15[J],Chem.Mater,2005,17(10):2481-2483
    [142]Zhou L H,Hu J,Xie S H,et al.Dispersion of active Au nanoparticles on mesoporous SBA-15 materials[J],Chin.J.Chem.Eng.,2007,15(4):507-511
    [143]Nikolay P,Norbert S,Thomas B.Gold electroless reduction in nanosized channels of thiol-modified SBA-15material[J],J.Phys.Chem.B,2005,109(21):10737-10743
    [144]Mukaddes C,Burcu A,Aysen Y.et al.Synthesis and characterization of Co-Pb/SBA-15 mesoporous catalysts[J],Turk.J.Phys.,2005,29:287-293
    [145]Song H,Rioux R M,Hoefelmeyer J D,et al.Hydrothermal growth of mesoporous SBA-15 silica in the presence of PVP-stabilized Pt nanoparticles:synthesis,characterization,and catalytic properties[J],J.Am.Chem.Soc.,2006,128(9):3027-3037
    [146]Antonio B F,Teresa A C.Mesoporous carbons with graphitic structures fabricated by using porous silica materials as templates and iron-impregnated polypyrrole as precursor[J],J.Mater.Chem..2005,15:2-7
    [147]Wang S Z,Choi D G,Yang S M.Incorporation of CdS nanoparticles inside ordered mesoporous silica SBA-15 via ion exchange[J],Adv.Mater.,2002,14(18):1311-1314
    [148]Zhu K K,Yue B,Xie S H,et al.Preparation and characterization of divanadium pentoxide nanowires inside SBA-15channels[J],Chin.J.Chem.,2004,22(1):33-37
    [149]张雪峥,乐英红,高滋.SBA-15负载氧化铁催化剂上乙酸选择加氢制乙醛[J],高等学校化学学报,2003,24(1):121-124
    [150]Zhu K K,Yue B,Zhou W Z,et al.Preparation of three-dimensional chromium oxide porous single crystals templated by SBA-15[J],Chem.Commun.,2003,98-99
    [151]Yue H Y,Zheng B,Yue Y H,et al.Characterization and dehydrogenation activity of SBA-15 and HMS supported chromia catalysts[J],Chin.J.Chem.,2002,20(11):1192-1198
    [152]Calum D,Wuzong Z,Robert P H.Formation mechanism of porous single-crystal Cr_2O_3 and Co_3O_4 templated by mesoporous silica[J],Chem.Mater.,2006,18(13):3088-3095
    [153]Sauer J,Marlow F,Spliethoff B,et al.Rare earth oxide coating of the walls of SBA-15[J],Chem.Mater.,2002,14(1):217-224
    [154]Landau M V,Vradman L,Wang X G,et al.High loading TiO_2 and ZrO_2 nanocrystals ensembles inside the mesopores of SBA-15:preparation,texture and stability[J],Micropor.Mesopor.Mater.,2005,78(2-3):117-129
    [155]Zhu K K,Ma Z N,Zou Y,et al.Mesoporous VO_x-SbO_x/SBA-15 synthesized by a two-stage grafting method and its characterization[J],Chem.Commun.,2001,2552-2553
    [156]Golosovsky I V,Mirebeau I,Elkaim E,et al.Structure ofMnO nanoparticles embedded into channel-type matrices[J],J.Eur.Phys.B,2005,.47:55-62
    [157]Wang Y M,Wu Z Y,Wei Y L,et al.In situ coating metal oxide on SBA-15 in one-pot synthesis[J],Micropor.Mesopor.Mater.,2005,84(1-3):127-136
    [158]张雪峥,乐英红,高滋.PW/SBA-15负载型催化剂的性能研究[J],高等学校化学学报,22(7):1169-1172
    [159]Wang Z Y,Zhang F X,Yang Y L,et al.Facile Postsynthesis of Visible-Light-Sensitive Titanium Dioxide/Mesoporous SBA-15[J],Chem.Mater.,2007,19(13):3286-3293
    [160]Jiang Q,Wu Z Y,Wang Y M,et al.Fabrication of photoluminescent ZnO/SBA-15 through directly dispersing zinc nitrate into the as-prepared mesoporous silica occluded with template[J],J.Mater.Chem.,2006,16(8):1536-1542
    [161]Lopes I,Hassan E N,Guerba H,et al.Size-induced structural modifications affecting Co_3O_4 nanoparticles patterned in SBA-15 silicas[J],Chem.Mater.,2006,18(25):5826-5828
    [162]Friedrich H,Sietsma J R A,Petra E.J,et al.Measuring Location,Size,Distribution,and Loading of NiO Crystallites in Individual SBA-15 Pores by Electron Tomography[J],J.Am.Chem.Soc.,2007,129(33):10249-10254
    [163]He J,Song Z H,Ma H,et al.Formation of a mesoporous bioreactor based on SBA-15 and porcine pancreatic lipase by chemical modification following the uptake of enzymes[J],J.Mater.Chem.,2006,16(21):4307-4315,
    [164]Hudson S,Magner E,Cooney J,et al.Methodology for the immobilization of enzymes onto mesoporous materials[J],J.Phys.Chem.B,2005,109(41):19496-19506
    [165]Hartmann M.Ordered mesoporous materials for bioadsorption and Biocatalysis[J],Chem.Mater.,2005,17(18):4577-4593
    [166]韩宇,肖丰收.由沸石纳米粒子自组装制备具有高催化活性中心和水热稳定的新型介孔分子筛材料[J],催化学报,2003,24(2):149-158
    [167]高峰,赵建伟,张松等.中孔分子筛SBA-15作为液相色谱固定相以及在巯基化合物分离中的应用[J],高等学校化学学报,2002,23(8):1494-1497
    [168]沈健,袁兴东,孙明珠等.介孔分子筛SBA-15-SO_3H催化合成油酸甲酯[J],燃料化学学报,2003,31(2):167-170
    [169]武宝萍,袁兴东,亓玉台等.介孔分子筛P-SBA-15催化合成十一碳烯酸异丙酯[J],石油化工,2003,32(11):937-940
    [170]杨晓勇,沈健,袁兴东等.介孔分子筛负载磷钨酸酸式铯盐催化合成十一碳烯酸异丙酯[J],石油化工,2004,33(12):1155-1159
    [171]姚成漳,张新荣,王路存等.高效甲醇水蒸气重整制氢的SBA-15改性的Cu/ZnO/Al_2O_3催化剂[J],化学学报,2006,64(3):269-272
    [172]涂彩华,王爱琴,郑明远等.一种新的高活性CO氧化催化剂Ag/SBA-15[J],催化学报,2005,26(8):631-633
    [173]周丽绘,鲜跃仲,周宇艳等.金复合介孔SBA-15吸附血红蛋白在H_2O_2电催化反应中的应用[J],化学学报,2005,63(23):2117-2120
    [174]Lee J W,Jin S M,wang Y S,et al.Simple synthesis of mesoporous carbon with magnetic nanoparticles embedded in carbon rods[J],Carbon,2005,43:2536-2543
    [175]Gierszal K P,Kim T W,Ryoo R,et al.Adsorption and structural properties of ordered mesoporous carbons synthesized by using various carbon precursors and ordered siliceous P6mm and Ia3hd mesostructures as templates[J],J.Phys.Chem.B,2005,109:23263-23268
    [176]郭卓,朱广山,辛明红等.同孔径的介孔碳分子筛对VB_(12)的吸附性质研究[J],高等学校化学学报,2006,27(1):9-12
    [177]Su F B,Zeng J H,Bao XY,et al.Preparation and characterization of highly ordered graphitic mesoporouscarbon as a Pt catalyst support for direct methanol fuel cells[J],Chem.Mater.,2005,17:3960-3967
    [178]Quintanilla D P,Hierro I D,Fajardo M,et al.Preparation of 2-mercaptobenzothiazole-derivatized mesoporous silica and removal of Hg(Ⅱ) from aqueous solution[J],J.Environ.Monit.,2006,8:214-222
    [179]Hofmann T,Wallacher D,Huber P,et al.Small-angle x-ray diffraction of Kr in mesoporous silica:Effects of microporosity and surface roughness[J],Phy.Rev.B,2005,72(6):4122-4129
    [180]王蓟,宁永强,任大翠等.硅基发光材料研究进展[J],微纳电子技术,2002.(8):18-21
    [181]曾刚,杨宏春,阮成礼等.硅基发光材料研究进展[J],压电与声光,2004,26(4):296-300
    [182]Canham L T.Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers[J],Appl Phys Lett,1990,57(10):1046-1048
    [183]鲍希茂,宋海智.硅基发光材料研究进展[J],材料研究学报,1997.11(6):601-611
    [184]Chiodini N,Meinardi F,Morazzoni F,et al.Ultraviolet photoluminescence of porous silica[J],Appl Phys Lett,2000,76(22):3209-3211
    [185]Lehman V,Gosele U.Porous silicon formation:A quantum wire effect[J],Appl Phys Lett,1991,58(8):856-858
    [186]Snders G D.Chang Y C.Theory of optical properties of quantum wires in porous silicon[J],phys ReV B,1992,45(15):9202-9213
    [187]Ren S Y.Lightly doped t-J three-leg ladders:Ananalog for the underdoped cuprates[J],Phys Rev B,1997,55(7):4665-4669
    [188]Xue F S,Bao X M,Yan F.A model of quantum confined state modified by surface potential in porous silicon[J],J Appl phys,1997,81(7):3175-3180
    [189]朱美芳,陈国,许怀哲等.镶嵌在氧化硅薄膜中纳米晶硅的可见光荧光谱与发光机制的研究[J],物理学报,1997,46(8):1645-1651
    [190]宋海智,鲍希茂.Si注入热生长SiO的光致发光激发谱与光电子能谱[J],半导体学报,1997,18(11):820-824
    [191]李晓微,金为群.稀土发光材料的研究与展望[J].中国材料科技与设备,2007,(2):20-22
    [192]苏文斌,谷学新,邹洪等.稀土元素发光特性及其应用[J],稀土研究,2001,12(4):55-59
    [193]Wegh R T,Donker H,Oskam K D,et al.Visible quan-tum cutting in LiGdF4:Eu3 through downeonversion[J],Science,1999,238(5440):663-665
    [194]孙蓉,刘军,康明等.高温固相法制备CaCO_3:Eu,K~+红色荧光粉的研究[J],西南科技大学学报,2008,23(3):8-12
    [195]李向阳,许金通,汤英文等.GaN基紫外探测器及其研究进展[J],红外与激光工程,2006,3S(3):276-280
    [196]白木子荫.稀土发光材料的发光原理与应用[J],灯与照明,2002,26(6):48-51
    [197]Xu X C,Yang W S,Liu J,et al.Synthesis of NaA zeolite membrane from clear solution[J],Micropor.Mesopor.Mater.,2001,43(3):299-311
    [198]Xu X C,Yang W S,Liu J,et al.Synthesis of a highpermeance NaA zeolite membrane by microwave heating[J],Adv.Mater.,2000.12(3):195-198
    [199]Xu X C,Yang W S,Liu J,et al.Synthesis of NaA zeolite membrane by microwave heating[J],Sep.Purfi.Technol.,2001,25(3):241-249
    [200]Komarneni S,Roy R,Li Q H.Microwave-hydrothermal synthesis of ceramic powders[J],Mat.Res.Bull.,1992,27(12):1393-1405
    [201]Girnus I,Jancke K,Vetter R,et al.Large AIPO_4-5 crystals by microwave heating[J],Zeolites,1995,15(1):33-39
    [202]Wu C G,Bein T.Microwave synthesis of molecular sieve MCM-41[J],Chem.Commun.,1996,(8):925-926
    [203]Arafat A,Jansen J C,Ebaid A R,et al.Microwave preparation of zeolite Y and ZSM-5[J],Zeolites,1993,13(2):162 -165
    [204] Park M, Komameni S. Rapid synthesis of AIPO_4-11 and cloverite by microwave hydrothermal processing [J],Micropor. Mesopor. Mater., 1998,20 (1): 39 - 44
    [205] Cundy C S. Microwave techniques in the synthesis and modification of zeolite catalysts [J], Collect. Czech. Chem.Commun., 1998,63(11): 1699-1723
    [206] Park S E, Hwang Y K, Kim D S, et al. Supramolecular interactions and morphology control in microwave synthesis of nanoporous materials[J], Catal. Surve. Asia, 2004,8(2): 90-110
    [207] Newalkar B L, Komarneni S, Katsuki H. Rapid synthesis of mesoporous SBA-15 molecular sieve by a microwave-hydrothermal process[J], Chem. Comm., 2000, (23): 2389-2390
    [208] Voort P V D, Ravikovitch P I, Jong K P D, et al. Plugged hexagonal templated silica: a unique micro- and mesoporous composite material with internal silica nanocapsules[J], Chem. Commun., 2002, (9): 1010-1011
    [209] Brunauer S, Emmett P H, Teller E. Adsorption of gases in multimolecular layers [J], J. Am. Chem. Soc. 1938. 60(2):309-319
    [210] Barrett E P, Joyner L G, Halenda P P. The determination of pore volume and area distributions in porous substances I : computations from nitrogen isotherms [J], J. Am. Chem. Soc, 1951, 73(1): 373-380
    [211] Yu S Y, Wang L P, Chen B, et al. Assembly of heteropoly acid nanoparticles in SBA-15 and its performance as an acid catalyst[J], Chem. Eur. J., 2005,11(13): 3894-3898
    [212] IUPAC. Reporting physisorption data for gas/solid systems[J], Pure. Appl. Chem., 1957,87: 603-606
    [213] Kim T W, Ryong R, Michal K, et al. Tailoring the pore structure of SBA-16 silica molecular sieve through the use of copolymer blends and control of synthesis temperature and time[J], J. Phys. Chem. B, 2004,108:11480-11489
    [214] Kruk M, Jaroniec M. Determination of mesopore size distributions from argon adsorption data at 77 K [J], J. Phys.Chem. B, 2002,106(18): 4732-4739
    [215] Kurk M, Jaroniec M, Chang H K, et al. Characterization of the porous structure of SBA-15[J], Chem. Mater., 2000,12(7): 1961-1968
    [216] Symons M C R. Water structure and reactivity [J], Acc. Chem. Res. 1981,14(6): 179-187
    [217] Corma A. From microporous to mesoporous molecular sieve materials and their use in catalysis[J], Chem. Rev., 1997,97(6): 2373 -2420
    [218] Clark J H. Green chemistry: challenges and opportunities[J], Green Chem., 1999,1(1): 1-4
    [219] Weckhuysen B M, Rao R R, Pelgrims J, et al. Synthesis, spectroscopy and catalysis of [Cr(acac)_3] complexes grafted onto MCM-41 materials: formation of polyethylene nanofibres within mesoporous crystalline aluminosilicates[J], Chem.Eur. J., 2000, 6( 16): 2960 - 2970
    [220] Ciesla U, Schuth F. Ordered mesoporous materials[J], Micropor. Mesopor. Mater. 1999, 27(2): 131-149
    [221] Maria C A S, Zhao X S. Functional ized nanoporous silicas for the immobilization of penicillin acylase[J]. Appl. Sur.Sci., 2004, 237:398-404
    [222] Chen W, Joly A Q, Kowalchuk C M, et al. Structure, luminescence, and dynamics of Eu_2O_3 nanoparticles in MCM-41[J],J.Phys.Chem.B.,2002,106(28):7034-7041
    [223]Li H R,Lin J,Fu L S,Guo J F.Phenanthroline-functionalized MCM-41 doped with europium ions[J],Micropor.Mesopor.Mater.[J],2002,55(1):103-107
    [224]Matos J R,Mercuri L P,Mietek J,et al.Synthesis and characterization of europium-doped ordered mesoporous silicas[J],J.Mater.Chem.,2001,11(10):2580-2586
    [225]Froba M,Kohn R,Bouffaud G,et at.Fe_2O_3 nanoparticles within mesoporous MCM-48 silica:in situ formation and characterization[J],Chem.Mater.,1999,11(10):2858-2865
    [226]Choudhary V R,Jana S K,Kiran B P.Kinetic modeling of chemical reactions,modeling and simulation of reactors,gallium and indium based catalysts for friedel-crafts type reactions[J],J.Catal.,2000,192:257
    [227]Han Y J,Kim J M,Stucky G D.Preparation of noble metal nanowires using hexagonal mesoporous silica SBA-15[J],Chem.Mater.,2000,12(8):2068-2069
    [228]Fukuoka A,Sakarnoto Y,Guan S,et al.Novel Templating synthesis of necklace-shaped mono-and bimetallic nanowires in hybrid organic-inorganic mesoporous material[J],J.Am.Chem.Soc.,2001,123(14):3373-3374
    [229]Coleman N R B,Morris M A,Spalding T R,et at.The formation of dimensionally ordered silicon nanowires within mesoporous silica[J],J.Am.Chem.Soc.,2001,123(1):187-188
    [230]Zheng S,Gao L,Zhang Q H,et al.Synthesis,characterization and photocatalytic properties of titania-modified mesoporous silicate MCM-41[J],J.Mater.Chem.,2000,10(3):723-728
    [231]Morey M S,Stucky G D,Schwarz S,et al.Isomorphic substitution and postsynthesis incorporation of zirconium into MCM-48 mesoporous silica[J],J.Phys.Chem.B,1999,103(12):2037-2041
    [232]Lohse U,Bertram R,Jancke K,et al.Acidity of aluminophosphate structures,part 2-incorporation of cobalt into CHA and AFI by microwave synthesis[J],J.Chem.Soc.,1995,91(7):1163-1172
    [233]Girnus I,Jancke K,Vetter R,et al,Large AlPO_4-5 crystals by microwave heating[J],Zeolites,1995,15(1):33-39
    [234]Bharat L N,Sridhar K,Hiroaki K.Rapid synthesis of mesoporous SBA-15 molecular sieve by a microwave-hydrothermal process[J],Chem.Commun.,2000,2389-2390
    [235]Bharat L N,Johnson O L,Sridhar K.Direct synthesis of titanium-substituted mesoporous SBA-15 molecular sieve under microwave-hydrothermal conditions[J],Chem.Mater.,2001,13(2):552-557
    [236]胡伟华,王巍,翟庆洲等.对乙酰基偶氮伸分光光度法测定分子筛中的镧[J],光谱实验室,2002,19(4):434-436
    [237]翟庆洲,金永哲.硅钼蓝光度法测定沸石分子筛中的硅[J],光谱实验室,1998,15(3):82-84
    [238]Vradman L,Landau M V,Kantorovich D,et al.Evaluation of metal oxide phase assembling mode inside the nanotubular pores of mesostructured silica[J],Micropor.Mesopor.Mater.,2005,79(1-3):307-318
    [239]Corine T P,Brunel D,Begu S,et al.Synthesis and characterisation of ibuprofen-anchored MCM-41 silica and silica gel[J],New J.Chem.,2003,27(10):1415-1418
    [240]Corine T P,Lerner D A,Charnay C,et al.The potential of ordered mesoporous silica for the storage of drugs:the example ofa pentapeptide encapsulated in a MSU-Tween 80[J],Chem.Phys.Chem.,2003,4(3):281-283
    [241]Van Der Voort P,Ravikovitch P I.De Jong K P.Plugged hexagonal templated silica:a unique micro-and mesoporous composite material with internal silica nanocapsules[J],Chem.Commun.,2002,1010-1011
    [242] Fisher K A, Huddersman K D. Joan Taylor M. Comparison of micro- and mesoporous inorganic materials in the uptake and release of the drug model fluorescein and its analogues[J], Chem. Eur. J.. 2003,9(23): 5873
    [243] Lai C Y, Trewyn B G, Jeftinija D M, et al. A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules[J], J.Am. Chem. Soc, 2003,125(15): 4451 - 4459
    [244] Mal N K, Fujiwara M, Tanaka Y. Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica[J], Nature, 2003,421: 350-353
    [245] Mal N K, Fujiwara M, Tanaka Y, et al. Photo-switched storage and release of guest molecules in the pore void of coumarin-modified MCM-41[J], Chem. Mater., 2003,15(17): 3385-3394
    [246] Zhu Y F, Shi J L, Li Y S, et al. Hollow mesoporous spheres with cubic pore network as a potential carrier for drug storage and its in vitro release kinetics [J], J. Mater. Res., 2005,20(1): 54-61
    [247] Zeng W, Qian X F, Zhang Y B, et al. Organic modified mesoporous MCM-41 through solvothermal process as drug delivery system [J], Mater. Res. Bull., 2005,40(5):766-772
    [248] Vallet M R, Ramila A, Rea R P, et al. A new property of MCM-41: drug delivery system [J], Chem. Mater.. 2001,13(2): 308-311
    [249] Ramila A, Munoz B, Pariente J P, et al. Mesoporous MCM-41 as drug host system [J], J. Sol-Gel Sci. Tech., 2003. 26:1199-1202
    [250] Mercedes T, Begona M, Begona C, et al. Evaluation of the cytogenetic damage induced by the antihypertensive drug nimodipine in human lymphocytes [J], Mutagenesis, 2001,16(4): 345-351
    [251] Deyo R A, Straube K T, Disterhoft J F. Nimodipine facilitates associative learning in aging rabbits[J], Science, 1989,243(4892): 809-811
    [252] Srn G C, Frca S A, Frca P S, et al. Perioperative nimodipine and postoperative analgesia [J], Anesth Analg. 2006,102:504-508
    [253] Wellmann H., Rathousky J., Wark M., Zukal A., Schulz-Ekloff G..Formation of CdS nanoparticles within functionalized siliceous MCM-41[J], Micropor. Mesopor. Mater., 2001, 44-45 (3): 419-425.
    [254] Kokubo T, Kushitani H, Sakka S, et al. Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W [J], J. Biomed. Mater. Res. 1990, 24(6): 721 -734
    [255] Munoz B, Ramila A, Diaz I, et al. MCM-41 organic modification as drug delivery rate regulator [J], Chem. Mater.2003,15(2): 500-503
    [256] 秦宗会,谭容. 曙红Y褪色光度法则定尼莫地平[J], 分析化学, 2006,34(7): 1050-1051
    [257] Sousa A, Sousa E M B. Optimization of drying process of Zea Mays malt to use as alternative source of amylolytics enzymes[J], Brazil. Arch. Bio. Tech., 2005, 48(2): 243-246
    [258] Duong.D. D. Adsorption analysis: equilibria and kinetics[M], World Scientific Publishing Co. Pte. Ltd. 1998, London:84.
    [259] Celer E B, Kruk M, Zuzek Y, et al. Hydrothermal stability of SBA-15 and related ordered mesoporous silicas with plugged pores[J], J. Mater. Chem., 2006,16 (27): 2824-2833.
    [260]Zhang F Q,Yan Y,Yang H F.et al.Understanding Effect of Wall Structure on the Hydrothermal Stability of Mesostructured Silica SBA-15[J],J.Phys.Chem.B.2005.109(18):8723-8732.
    [261]Yang L B,Fassihix A R.Zero-order release kinetics from a self-correcting floatable asymmetric configuration drug delivery,systemxd[J],J.Pharm.Sci.,1996.85(2):170-173.
    [262]Fassihi A R,Ritschel W A.Multiple-layer,direct-compression,controlled-release system:In vitro and in vivo evaluation[J],J.Pharm.Sci.,1993,82(7):750-754.
    [263]Colombo P.Swelling-controlled release in hydrogel matrices for oral route[J],Adv.Drug.Del.Rev.,1993,11(1-2):37-57.
    [264]Zhao L Z,Yan X X,Zhou X F,et al.Mesoporous bioactive glasses for controlled drug release[J],Micropor.Mesopor.Mater.,2008,109(1-3):210-213.
    [265]Song S M,Wang Z L,Li W B.Physical Chemistry[M],Beijing:Higher Education Publish.House.,1993,219-231.
    [266]Kanezashi M,Abraham J O,Lin Y S,et al.Gas permeation through DDR-type zeolite membranes at high temperatures[J],AIChE J.,2008,54(6):1478-1486
    [267]Chen Q W,Zhu D L,Zhu C,et al.A way to obtain visible blue light emission in porous silicon[J],Appl.Phys.Lett.,2003,82(7):1018-1020
    [268]Kimura T,Yokoi A,Horiguchi H,et al.Electrochemical Er doping of porous silicon and its room-temperature luminescence at~1.54μm[J],Apple.Phys.Lett.,1994,65(8):983-985
    [269]Filippov V V,Pershukevich P P,Kuznetsova V V,et al.Photoluminescence excitation properties of porous silicon with and without Er~(3+)-Yb~(3+)-containing complex[J],J.Lumin.,2002,99(3):185-195
    [270]彭爱华,谢二庆,姜宁等.稀土(Tb,Gd)掺杂多孔硅的光致发光性能研究[J],物理学报,2003,52(7):1792-1796
    [271]彭爱华,谢二庆,贾昌文等.稀土掺杂多孔硅的蓝光发射[J],物理学报,2004,53(5):1562-1566
    [272]Gao F,Lu Q Y,Zhao D Y,et al.Controlled synthesis of semiconductor PbS nanocrystals and nanowires inside mesoporous silica SBA-15 phase[J],Nano.Lett.,2001,1(12):743-748
    [273]Liu H Q,Wang L L,Huang W Q,et al.Preparation and luminescence properties of nanocrystalline La_2O_3:Eu phosphor[J],Mater.Lett.,2007,61(10):1968-1970
    [274]Wei Z G.Sun L D,Liao C S,et al.Fluorescence intensity and color purity improvement in nanosized YBO_3:Eu[J],Appl.Phys.Lett.,2002,80(8):1447-1449.
    [275]李建宇.稀土发光材料及其应用[M],北京:化学工业出版社,2003,154-160
    [276]Anastasiadou T,Loukatzikou L A,Costa C N,et al.Understanding the Synergistic Catalytic Effect between La_2O_3and CaO for the CH_4 Lean De-NO_x Reaction:Kinetic and Mechanistic Studies[J],J.Phys.Chem.B,2005,109(28):13693-13703
    [277]Liu H Q,Wang L L,Huang W Q,et al.Preparation and luminescence properties of nanocrystalline La_2O_3:Eu phosphor[J],Mater.Lett.,2007,61(10):1968-1970
    [278]Chang J J,Xiong S,Peng H S,et al.Site selective excitation in La_2O_3:Eu~(3+) nanoparticles[J],J.Lumin.,2007,122-123:,844-846
    [279]程国安.硅中稀土掺杂层的光致发光研究及其关键问题[J],光谱学与光谱分析,2005,2(3):351-355
    [280]薛舫时.多孔硅中的电子激发态及其光谱研究[J],半导体学报,1997,18(3):161-168
    [281]马义.掺杂稀土离子发光动力学模型[J],物理学报,1999,48(7):1361-1366
    [282]Zhang L.Fluorescence mechanisms of Tm~(3+)-and Yb~(3+)/Tm~(3+)doped AlF_3-based fluoride glass[J],Chin.Phys.B,2001.10(1):58-64
    [283]Chen X B,Sawanobori N,Nie Y X.Blue cooperative up-conversion luminescence of Yb~(3+)ions in oxyfluoride glass excited by 960 nm laser[J],Chin.Phys.B,2001,10(6):564-567
    [284]You H,Fang J F,Xuan Y.Highly efficient red electroluminescence from stacked organic light-emitting devices based on a europium complex[J],Mater.Sci.Eng.B,2006,131(1-3):252-255.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700