用户名: 密码: 验证码:
化学性肝损伤及肝癌的代谢组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝脏是机体最重要的代谢器官之一,而化学性肝损伤是引发多种肝脏疾病的重要始动环节。因此,针对化学性肝损伤的发病机制以及药物干预效应的研究,对慢性肝病的防治具有十分重要的意义。
     动物实验是研究化学诱导急性肝损伤发病机制的必经之路,在研究肝脏疾病发病机制及抗肝脏疾病药物的过程中,选择有科学性、实用性、重现性的肝损伤动物模型的意义亦十分重要。在肝损伤的实验研究中,四氯化碳(CCl4)诱导的化学性肝损伤和酒精性肝损伤模型是比较常见的两种动物模型。本课题将利用建立的代谢组学方法,分别对两种肝损伤模型动物的代谢特征开展研究,并利用代谢组学方法对药物干预效应进行评价。同时,在动物模型研究的基础上,本课题进一步尝试利用代谢组学方法,对临床原发性肝癌(PLC)患者的代谢特征进行分析,探索将代谢组学方法应用于临床疾病机制研究的新思路。
     本课题首先建立了基于色谱质谱联用技术的肝组织的代谢组学研究方法。在此基础上,重点考察了CCl4及酒精诱导的急性肝损伤大鼠尿液及肝组织的代谢谱变化,并从代谢水平观察甘利欣对CCl4诱导化学性肝损伤的保护作用及其机制。同时,在整体代谢水平上分析了临床肝癌病人与正常对照人群的代谢谱差异。本课题的主要内容和结果如下:
     1.建立了基于氯甲酸乙酯衍生化(ECF)的气相色谱质谱联用(GC/MS)分析以及基于三甲基硅烷(TMS)衍生的气相色谱飞行时间质谱(GC/TOFMS)分析的肝组织代谢组学研究方法。针对前者的分析特点,采用高氯酸乙醇两步提取法提取肝组织中的小分子内源性代谢物,后者采用氯仿/甲醇/水的混合溶剂进行两步提取。两种分析方法均经方法学验证表明重复性好、灵敏度高、精密度高,适用于肝组织的快速、高通量检测。
     2.采用ECF衍生、GC/MS分析的代谢组学研究方法,尝试着从整体代谢水平上考察大鼠在CCl4诱导急性肝损伤过程中尿液及肝组织中内源性小分子代谢物谱的变化,并观察甘利欣预防性给药对CCl4诱导急性肝损伤的保护作用。结合多维统计方法,发现肝损伤大鼠尿液和肝组织样本中小分子内源性代谢物发生了明显变化,并找到使得正常组和模型组区分开的相关差异性代谢物,且尿液和肝组织样本代谢谱所提供的信息相互补充,经初步分析CCl4诱导的急性肝损伤与三羧酸循环、部分氨基酸代谢等高度相关。
     3.以酒精诱导的大鼠急性肝损伤模型为研究对象,采用ECF衍生、GC/MS分析的代谢组学研究方法检测了大鼠尿液及肝组织中内源性小分子代谢物谱的模式变化情况,结果发现蛋氨酸代谢、三羧酸循环及脂肪酸代谢等代谢通路变化与酒精诱导的急性肝损伤密切相关。且模型组大鼠尿液及肝组织中部分代谢物的变化趋势与CCl4诱导的急性肝损伤大鼠的相类似。
     4.分别采用ECF衍生尿液的GC/MS及TMS衍生血清的GC/TOFMS方法,对肝癌患者和正常对照人群的尿液及血液进行代谢组学研究,尝试为肝癌诊断以及肝癌的病理机制理解寻找新的切入点。研究结果发现,正常人与肝癌患者尿液和血液的代谢谱均有分离趋势,进一步利用监督的正交偏最小方差判别分析(OPLS-DA)方法能
     清晰地观察到肝癌患者与正常对照之间尿液和血液代谢轮廓的差异,通过对代谢网络变化的分析发现了与肝癌临床病理相关的代谢通路――能量代谢、苯丙氨酸、色氨酸、糖代谢以及一些其它的氨基酸代谢的变化。
     本课题在建立肝组织代谢组学方法的基础上,应用传统药理学指标与代谢组学研究所揭示的生物化学变化相结合的方法,为CCl4及酒精诱导的大鼠急性肝损伤的机制研究及药物药效作用的整体评价提供新的思路和视野;并且发现代谢组学技术在肝癌的早期诊断甚至分期上有很大的潜力,可以为临床诊断提供科学依据,非常值得进行深入一步的研究。
The liver is the largest and most metabolically complex organ in humans. It plays a major role in metabolism and has a number of functions in the body, including glycogen storage, decomposition of red blood cells, plasma protein synthesis, and detoxification. So it is important to investigate the disorder of metabolisms in liver disease. Acute liver injury is the beginning of the liver diseases emerging, developing to the liver function failure at last. It is therefore of vital importance to investigate the pathogenesy and alternative measures of acute liver injury.
     It is well known that the mouse model of acute liver injury has been shown to be very useful for investigating the mechanism of various kinds of liver diseases and evaluating the drugs for hepatitis. Several animal models of liver injury, such as carbon tetrachloride (CCl4), alcoholic induced injury liver, have been widely used in both pathological and pharmacological studies. On the basis of the animal experiment, we try to find feasible method to research the mechanism of liver cancer from a new angle. Liver cancer, generally means primary liver cancer (PLC), is one of the most common malignant tumors of liver representing one of the most serious human cancerous problems in the world. PLC represents the fifth leading deaths among the cancer worldwide, and the second in China. As a multi-factorical and polygenic condition, PLC has complex molecular mechanisms which are not well understood by biomedical scientists and pathologists. Metabonomics as a novel methodology arising from the postgenomics era will help us to explore the mechanism study of liver injury and liver diseases.
     In this study, we try to establish extraction and chromatography in hyphenation with mass spectrometry metabonomic technologies to investigate metabolic variations of the liver tissue samples. Meanwhile, we investigate metabolic variations in PLC patients, alcoholic-induced acute liver injury rats, CCl4-induced acute liver injury rats and the protective effect of diammonium glycyrrihizinate on CCl4-induced liver injury rats using metabonomic study.
     We have developed a simple and reliable analytical assay for low-molecular-weight metabolites in liver tissue samples. The ethyl chloroformate (ECF) derivatization, GC/MS-based and the trimethylsilylation (TMS) derivatization, Gas chromatography time-of-flight mass spectrometry (GC/TOFMS)-based liver tissue metabonomic analysis method was optimized, respectively. Perchloric acid and ethonal extraction of liver tissue sample is suit to the GC/MS analysis and chloroform/methanol/water system is in favour of GC/TOFMS analysis. The two method validations revealed a wide linearity range, good repeatability and acceptable recovery rate for the proposed method.
     Combination with biochemistry and histological research, we used ECF derivatization and GC/MS-based metabonomic analysis of urines and liver tissue samples to visualize significant alterations in metabolite expression patterns as a result of CCl4-induced metabolic responses. The in-depth study of these metabolite alterations also allowed several major metabolic pathways, such as the tricarboxylic acid (TCA) cycle and some amino acid metabolism, were closely associated with CCl4 toxicity. Meanwhile, we attempt to investigate the protective actions of diammonium glycyrrihizinate to CCl4-induced liver injury with the metabonomic analysis. It will help make for the whole appraisal of the medicine.
     Establishing the acut alcoholic liver injury model of rats, we used ECF derivatization and GC/MS-based metabonomic technique to observe the metabolite expression pattern change in the urines and liver tissue samples. The results above could offer a feasible method to understand the mechanism of alcoholic liver injury and provide the basis for further research of alcoholic liver disease. The similar separation results were obtained with urine and liver tissue metabolic profiles. After identification of metabolites significantly varied in the model rats, energy metabolism, methionine metabolism and some other amino acids metabolism were associated with alcoholic-induced acute liver injury.
     Urinary and serumal metabolite profiling of PLC patients investigated using derivatized GC/MS in conjunction with modern multivariate statistical techniques revealed drastic biochemical changes as evidenced by fluctuations of metabolites. After identification of urine metabolites significantly varied in the PLC patients, energy metabolism, tyrosine metabolism were associated with PLC morbidity. The similar separation results of serum metabomomics were obtained with urine metabolic profiles, which were carried to indicate that the increased levels of histidine and glycine, and the decreased level of alanine, serine, lysine, phenylalanine and tryptophane.
     These results suggests that our metabonomics method may play an important role in exploring the mechanism of CCl4 or alcohol-induced liver injury, evaluating pharmacodynamic action of medicine for acute liver injury, and digging the great potential of urine or serum metabolic profile in PLC diagnosis. Meanwhile, the tissue metabonomics provide a unique perspective of localized metabolic information to metabonomics research.
引文
1.刘文有,乙型肝炎流行病学研究概况.应用预防医学2006, 12, (S), 12-14.
    2.王吉耀,现代肝病治疗一理论与进展.上海医科大学出版社1999, 12, 2.
    3.中华医学会肝脏病学分会脂肪肝和酒精性肝病学组,酒精性肝病诊断标准.中华肝脏病杂志, 2003, 11, 72.
    4. Diehl, A. M., Liver disease in alcohol abusers: clinical perspective. Alcohol 2002, 27, (1), 7-11.
    5.庄辉, ALD的流行病学.中华肝脏病杂志, 2003, 11, (11), 698.
    6. Mann, R. E.; Smart, R. G.; Govoni, R., The epidemiology of alcoholic liver disease. Alcohol Res Health 2003, 27, (3), 209-19.
    7. Sussman, S.; Dent, C. W.; Skara, S.; de Calice, P.; Tsukamoto, H., Alcoholic liver disease (ALD): a new domain for prevention efforts. Subst Use Misuse 2002, 37, (14), 1887-904.
    8.薛发轩,张.,张慧芬,武汉地区8183例肝硬化患者分析.肝脏2000, 5, (2), 99-100.
    9.王炳元,吴作艳,酒精性肝病的研究现状.现代医药卫生2002, 18, (1), 1-2.
    10. Hagymasi, K.; Tulassay, Z., [Epidemiology, risk factors and molecular pathogenesis of primary liver cancer]. Orv Hetil 2008, 149, (12), 541-8.
    11. http://www.cancer.gov/cancertopics/types/liver/.
    12.陈建国,肝癌的病因及预防研究新进展.肿瘤防治杂志2003, 10, (11), 1121-1125.
    13. (AJCC), A. J. C. o. C., AJCC Cancer staging mannal. 5th ed Newyork: Lippincott-Raven 1997, 97-101.
    14. Robotin, M. C.; George, J.; Supramaniam, R.; Sitas, F.; Penman, A. G., Preventing primary liver cancer: how well are we faring towards a national hepatitis B strategy? Med J Aust 2008, 188, (6), 363-5.
    15. Omer, R. E.; Verhoef, L.; Van't Veer, P.; Idris, M. O.; Kadaru, A. M.; Kampman, E.; Bunschoten, A.; Kok, F. J., Peanut butter intake, GSTM1 genotype and hepatocellular carcinoma: a case-control study in Sudan. Cancer Causes Control 2001, 12, (1), 23-32.
    16. Yu, M. W.; Chang, H. C.; Liaw, Y. F.; Lin, S. M.; Lee, S. D.; Liu, C. J.; Chen, P. J.; Hsiao, T. J.; Lee, P. H.; Chen, C. J., Familial risk of hepatocellular carcinoma among chronic hepatitis B carriers and their relatives. J Natl Cancer Inst 2000, 92, (14), 1159-64.
    17. Hitzfeld, B. C.; Hoger, S. J.; Dietrich, D. R., Cyanobacterial toxins: removal during drinking water treatment, and human risk assessment. Environ Health Perspect 2000, 108 Suppl 1, 113-22.
    18. http://emice.nci.nih.gov/mouse_models/organ_models/hema_models.
    19.贾继东,尹珊珊,原发性肝癌的早期诊断与防治.新医学2003, 34, (5), 289.
    20.李勇,原发性肝癌的早期诊断.安徽卫生职业技术学院学报2005, 4, (6), 29.
    21. Parks, R. W.; Garden, O. J., Liver resection for cancer. World J Gastroenterol 2001, 7, (6), 766-71.
    22. Ringe, B.; Pichlmayr, R.; Wittekind, C.; Tusch, G., Surgical treatment of hepatocellular carcinoma: experience with liver resection and transplantation in 198 patients. World J Surg 1991, 15, (2), 270-85.
    23. Iwatsuki, S.; Starzl, T. E.; Sheahan, D. G.; Yokoyama, I.; Demetris, A. J.; Todo, S.; Tzakis, A. G.; Van Thiel, D. H.; Carr, B.; Selby, R.; et al., Hepatic resection versus transplantation for hepatocellular carcinoma. Ann Surg 1991, 214, (3), 221-8; discussion 228-9.
    24. Poon, R. T.; Ngan, H.; Lo, C. M.; Liu, C. L.; Fan, S. T.; Wong, J., Transarterial chemoembolization for inoperable hepatocellular carcinoma and postresection intrahepatic recurrence. J Surg Oncol 2000, 73, (2), 109-14.
    25. Okuda, H.; Nakanishi, T.; Takatsu, K.; Saito, A.; Hayashi, N.; Watanabe, K.; Magario, N.; Yokoo, T.; Naraki, T., Measurement of serum levels of des-gamma-carboxy prothrombin in patients with hepatocellular carcinoma by a revised enzyme immunoassay kit with increased sensitivity. Cancer 1999, 85, (4), 812-8.
    26. Shiraki, K.; Takase, K.; Tameda, Y.; Hamada, M.; Kosaka, Y.; Nakano, T., A clinical study of lectin-reactive alpha-fetoprotein as an early indicator of hepatocellular carcinoma in the follow-up of cirrhotic patients. Hepatology 1995, 22, (3), 802-7.
    27. Li, D.; Mallory, T.; Satomura, S., AFP-L3: a new generation of tumor marker for hepatocellular carcinoma. Clin Chim Acta 2001, 313, (1-2), 15-9.
    28. Nicholson, J. K.; Connelly, J.; Lindon, J. C.; Holmes, E., Metabonomics: a platform for studying drug toxicity and gene function. Nat Rev Drug Discov 2002, 1, (2), 153-61.
    29. German, J. B.; Bauman, D. E.; Burrin, D. G.; Failla, M. L.; Freake, H. C.; King, J. C.; Klein, S.; Milner, J. A.; Pelto, G. H.; Rasmussen, K. M.; Zeisel, S. H., Metabolomics in the opening decade of the
    21st century: building the roads to individualized health. J Nutr 2004, 134, (10), 2729-32.
    30.严士海,朱萱萱,代谢组学在疾病诊断中的应用研究进展.现在中西医结合杂志2007, 16, (5), 711-712.
    31. Taylor, J.; King, R. D.; Altmann, T.; Fiehn, O., Application of metabolomics to plant genotype discrimination using statistics and machine learning. Bioinformatics 2002, 18 Suppl 2, S241-8.
    32. van der Greef, J.; Stroobant, P.; van der Heijden, R., The role of analytical sciences in medical systems biology. Curr Opin Chem Biol 2004, 8, (5), 559-65.
    33. Goodacre, R.; Vaidyanathan, S.; Dunn, W. B.; Harrigan, G. G.; Kell, D. B., Metabolomics by numbers: acquiring and understanding global metabolite data. Trends Biotechnol 2004, 22, (5), 245-52.
    34.郭宾,戴仁科,代谢组学及其研究策略和分析方法进展.中国卫生检验杂志2007, 17, (3), 554.
    35. Goodacre, R., Making sense of the metabolome using evolutionary computation: seeing the wood with the trees. J Exp Bot 2005, 56, (410), 245-54.
    36. Stanley, E. G., H-NMR spectroscopic and chemometric studies on endogenous physiological variation in rats. Ph D thesis ,London :University of London 2002, 43.
    37. Kell, D. B., Metabolomics and systems biology: making sense of the soup. Curr Opin Microbiol 2004, 7, (3), 296-307.
    38.陈慧梅,代谢组学及其研究方法和应用.肾脏病于透析肾移植杂志14, (1), 59-64.
    39. Lenz, E. M.; Wilson, I. D., Analytical strategies in metabonomics. J Proteome Res 2007, 6, (2),
    443-58.
    40. Plumb, R. S.; Johnson, K. A.; Rainville, P.; Smith, B. W.; Wilson, I. D.; Castro-Perez, J. M.; Nicholson, J. K., UPLC/MS(E); a new approach for generating molecular fragment information for biomarker structure elucidation. Rapid Commun Mass Spectrom 2006, 20, (13), 1989-94.
    41. Crockford, D. J.; Lindon, J. C.; Cloarec, O.; Plumb, R. S.; Bruce, S. J.; Zirah, S.; Rainville, P.; Stumpf, C. L.; Johnson, K.; Holmes, E.; Nicholson, J. K., Statistical search space reduction and two-dimensional data display approaches for UPLC-MS in biomarker discovery and pathway analysis. Anal Chem 2006, 78, (13), 4398-408.
    42. Harada, K.; Fukusaki, E.; Kobayashi, A., Pressure-assisted capillary electrophoresis mass spectrometry using combination of polarity reversion and electroosmotic flow for metabolomics anion analysis. J Biosci Bioeng 2006, 101, (5), 403-9.
    43. Soga, T., Capillary electrophoresis-mass spectrometry for metabolomics. Methods Mol Biol 2006, 358, 129-38.
    44. Smith, C. A.; Want, E. J.; O'Maille, G.; Abagyan, R.; Siuzdak, G., XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem 2006, 78, (3), 779-87.
    45. Idborg, H.; Zamani, L.; Edlund, P. O.; Schuppe-Koistinen, I.; Jacobsson, S. P., Metabolic fingerprinting of rat urine by LC/MS Part 2. Data pretreatment methods for handling of complex data. J Chromatogr B Analyt Technol Biomed Life Sci 2005, 828, (1-2), 14-20.
    46. Jonsson, P.; Johansson, E. S.; Wuolikainen, A.; Lindberg, J.; Schuppe-Koistinen, I.; Kusano, M.; Sjostrom, M.; Trygg, J.; Moritz, T.; Antti, H., Predictive metabolite profiling applying hierarchical multivariate curve resolution to GC-MS data--a potential tool for multi-parametric diagnosis. J Proteome Res 2006, 5, (6), 1407-14.
    47.刘昌孝,代谢组学在中药现代化研究中的意义.中草药2004, 35, (6), 601-605.
    48.黄玉荣,魏广力,龙红,等,钩藤多动合剂的药效作用及用代谢物组学方法研究其生化机制.中草药2005, 36, (3), 398-402.
    49. Watkins, S. M.; Reifsnyder, P. R.; Pan, H. J.; German, J. B.; Leiter, E. H., Lipid metabolome-wide effects of the PPARgamma agonist rosiglitazone. J Lipid Res 2002, 43, (11), 1809-17.
    50.刘欢,韩.,代谢组学及其在肝脏疾病研究中的应用进展.实用肝脏病杂志2008, 11, (1), 59-61.
    51. Dumas, M. E.; Barton, R. H.; Toye, A.; Cloarec, O.; Blancher, C.; Rothwell, A.; Fearnside, J.; Tatoud, R.; Blanc, V.; Lindon, J. C.; Mitchell, S. C.; Holmes, E.; McCarthy, M. I.; Scott, J.; Gauguier, D.; Nicholson, J. K., Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc Natl Acad Sci U S A 2006, 103, (33), 12511-6.
    52. Yap, I. K.; Clayton, T. A.; Tang, H.; Everett, J. R.; Hanton, G.; Provost, J. P.; Le Net, J. L.; Charuel, C.; Lindon, J. C.; Nicholson, J. K., An integrated metabonomic approach to describe temporal metabolic disregulation induced in the rat by the model hepatotoxin allyl formate. J Proteome Res 2006, 5, (10), 2675-84.
    53. Heijne, W. H.; Lamers, R. J.; van Bladeren, P. J.; Groten, J. P.; van Nesselrooij, J. H.; van Ommen, B., Profiles of metabolites and gene expression in rats with chemically induced hepatic necrosis. Toxicol Pathol 2005, 33, (4), 425-33.
    54. Schoonen, W. G.; Kloks, C. P.; Ploemen, J. P.; Horbach, G. J.; Smit, M. J.; Zandberg, P.; Mellema, J. R.; Zuylen, C. T.; Tas, A. C.; van Nesselrooij, J. H.; Vogels, J. T., Sensitivity of (1)H NMR analysisof rat urine in relation to toxicometabonomics. Part I: dose-dependent toxic effects of bromobenzene and paracetamol. Toxicol Sci 2007, 98, (1), 271-85.
    55. Yang, J.; Xu, G.; Zheng, Y.; Kong, H.; Pang, T.; Lv, S.; Yang, Q., Diagnosis of liver cancer using HPLC-based metabonomics avoiding false-positive result from hepatitis and hepatocirrhosis diseases. J Chromatogr B Analyt Technol Biomed Life Sci 2004, 813, (1-2), 59-65.
    56. Yang, Y.; Li, C.; Nie, X.; Feng, X.; Chen, W.; Yue, Y.; Tang, H.; Deng, F., Metabonomic studies of human hepatocellular carcinoma using high-resolution magic-angle spinning 1H NMR spectroscopy in conjunction with multivariate data analysis. J Proteome Res 2007, 6, (7), 2605-14.
    57. Feng, B.; Wu, S.; Lv, S.; Liu, F.; Chen, H.; Yan, X.; Li, Y.; Dong, F.; Wei, L., Metabolic profiling analysis of a D-galactosamine/lipopolysaccharide-induced mouse model of fulminant hepatic failure. J Proteome Res 2007, 6, (6), 2161-7.
    58. Yu, K.; Sheng, G.; Sheng, J.; Chen, Y.; Xu, W.; Liu, X.; Cao, H.; Qu, H.; Cheng, Y.; Li, L., A metabonomic investigation on the biochemical perturbation in liver failure patients caused by hepatitis B virus. J Proteome Res 2007, 6, (7), 2413-9.
    59. Yang, J.; Zhao, X.; Liu, X.; Wang, C.; Gao, P.; Wang, J.; Li, L.; Gu, J.; Yang, S.; Xu, G., High performance liquid chromatography-mass spectrometry for metabonomics: potential biomarkers for acute deterioration of liver function in chronic hepatitis B. J Proteome Res 2006, 5, (3), 554-61.
    60.杨小玲,气相色谱衍生试剂的研究进展.中国科技信息2005, 7, 25.
    61. Fraser, A. D.; Bryan, W.; Isner, A. F., Urinary screening for midazolam and its major metabolites with the Abbott ADx and TDx analyzers and the EMIT d.a.u. benzodiazepine assay with confirmation by GC/MS. J Anal Toxicol 1991, 15, (1), 8-12.
    62. Matsunaga, S.; Kawamura, K., Determination of alpha- and beta-hydroxycarbonyls and dicarbonyls in snow and rain samples by GC/FID and GC/MS employing benzyl hydroxyl oxime derivatization. Anal Chem 2000, 72, (19), 4742-6.
    63. Fiehn, O.; Kopka, J.; Trethewey, R. N.; Willmitzer, L., Identification of uncommon plant metabolites based on calculation of elemental compositions using gas chromatography and quadrupole mass spectrometry. Anal Chem 2000, 72, (15), 3573-80.
    64. A, J.; Trygg, J.; Gullberg, J.; Johansson, A. I.; Jonsson, P.; Antti, H.; Marklund, S. L.; Moritz, T., Extraction and GC/MS analysis of the human blood plasma metabolome. Anal Chem 2005, 77, (24), 8086-94.
    65. Qiu, Y.; Su, M.; Liu, Y.; Chen, M.; Gu, J.; Zhang, J.; Jia, W., Application of ethyl chloroformate derivatization for gas chromatography-mass spectrometry based metabonomic profiling. Anal Chim Acta 2007, 583, (2), 277-83.
    66. Husek, P., Urine organic acid profiling by capillary gas chromatography after a simple sample pretreatment. Clin Chem 1997, 43, (10), 1999-2001.
    67. Husek, P., Smooth Esterification of Di- and Tricarboxylic Acids with Methyl and Ethyl Chloroformates in Gas Chromatographic Profiling of Urinary Acidic Metabolites. Chromatographia 2003, 58, (9-10), 623-630.
    68. Husek, P., Quantitation of Amino Acids as Chloroformates-A Return to Gas Chromatography Quantitation of Amino Acids and Amines by Chromatography 2005, 70, 2-38.
    69. Haberhauer-Troyer, C.; Alvarez-Llamas, G.; Zitting, E.; Rodriguez-Gonzalez, P.; Rosenberg, E.; Sanz-Medel, A., Comparison of different chloroformates for the derivatisation of seleno amino acids for gas chromatographic analysis. J Chromatogr A 2003, 1015, (1-2), 1-10.
    70. Hoizey, G.; Kaltenbach, M. L.; Dukic, S.; Lamiable, D.; Millart, H.; D'Arbigny, P.; Vistelle, R., Pharmacokinetics of gacyclidine enantiomers in plasma and spinal cord after single enantiomer administration in rats. Int J Pharm 2001, 229, (1-2), 147-53.
    71. Husek, P., Alkyl chloroformates in sample derivatization strategies for GC analysis. Review on a decade use of the reagents as esterifying agents. Current pharmaceutical analysis 2006, 2, (1), 23-43.
    72. Tao, X., Liu, YM, Wang, YH, Qiu, YP, Lin, JC, Zhao, AH, Su, MM, Jia, W, GC-MS with ethyl chloroformate derivatization for comprehensive analysis of metabolites in serum and its application to human uremia. Analytical and Bioanalytical Chemistry accepted.
    73. Lin, J. C.; Su, M. M.; Wang, X. Y.; Qiu, Y. P.; Li, H. K.; Hao, J.; Yang, H. Z.; Zhou, M. M.; Yan, C.; Jia, W., Multiparametric Analysis of Amino Acids and Organic Acids in Rat Brain Tissues Using GC/MS. Journal of Seperation Science acceped.
    74. Muldoon, M. T.; Buckley, S. A.; Deshpande, S. S.; Holtzapple, C. K.; Beier, R. C.; Stanker, L. H., Development of a monoclonal antibody-based cELISA for the analysis of sulfadimethoxine. 2. Evaluation of rapid extraction methods and implications for the analysis of incurred residues in chicken liver tissue. J Agric Food Chem 2000, 48, (2), 545-50.
    75. Serkova, N.; Jacobsen, W.; Niemann, C. U.; Litt, L.; Benet, L. Z.; Leibfritz, D.; Christians, U., Sirolimus, but not the structurally related RAD (everolimus), enhances the negative effects ofcyclosporine on mitochondrial metabolism in the rat brain. Br J Pharmacol 2001, 133, (6), 875-85.
    76. Jensen, S.; Haggberg, L.; Jorundsdottir, H.; Odham, G., A quantitative lipid extraction method for residue analysis of fish involving nonhalogenated solvents. J Agric Food Chem 2003, 51, (19), 5607-11.
    77. Tyagi, R. K.; Azrad, A.; Degani, H.; Salomon, Y., Simultaneous extraction of cellular lipids and water-soluble metabolites: evaluation by NMR spectroscopy. Magn Reson Med 1996, 35, (2), 194-200.
    78. Beckonert, O.; Monnerjahn, J.; Bonk, U.; Leibfritz, D., Visualizing metabolic changes in breast-cancer tissue using 1H-NMR spectroscopy and self-organizing maps. NMR Biomed 2003, 16, (1), 1-11.
    79. Denkert, C.; Budczies, J.; Kind, T.; Weichert, W.; Tablack, P.; Sehouli, J.; Niesporek, S.; Konsgen, D.; Dietel, M.; Fiehn, O., Mass spectrometry-based metabolic profiling reveals different metabolite patterns in invasive ovarian carcinomas and ovarian borderline tumors. Cancer Res 2006, 66, (22), 10795-804.
    80. Weckwerth, W.; Wenzel, K.; Fiehn, O., Process for the integrated extraction, identification and quantification of metabolites, proteins and RNA to reveal their co-regulation in biochemical networks. Proteomics 2004, 4, (1), 78-83.
    81. Li, H.; Ni, Y.; Su, M.; Qiu, Y.; Zhou, M.; Qiu, M.; Zhao, A.; Zhao, L.; Jia, W., Pharmacometabonomic phenotyping reveals different responses to xenobiotic intervention in rats. J Proteome Res 2007, 6, (4), 1364-70.
    82. Wiley, J. E. J., A User's Guide to Principal Components 2003.
    83. Zaikin, V. G.; Halket, J. M., Review: derivatization in mass spectrometry-6. Formation of mixed derivatives of polyfunctional compounds. Eur J Mass Spectrom (Chichester, Eng) 2005, 11, (6),
    611-36.
    84. Serkova, N.; Fuller, T. F.; Klawitter, J.; Freise, C. E.; Niemann, C. U., H-NMR-based metabolic signatures of mild and severe ischemia/reperfusion injury in rat kidney transplants. Kidney Int 2005, 67, (3), 1142-51.
    85. Halket, J. M.; Zaikin, V. G., Derivatization in mass spectrometry--1. Silylation. Eur J Mass Spectrom (Chichester, Eng) 2003, 9, (1), 1-21.
    86. Cloarec, O.; Dumas, M. E.; Trygg, J.; Craig, A.; Barton, R. H.; Lindon, J. C.; Nicholson, J. K.; Holmes, E., Evaluation of the orthogonal projection on latent structure model limitations caused by chemical shift variability and improved visualization of biomarker changes in 1H NMR spectroscopic metabonomic studies. Anal Chem 2005, 77, (2), 517-26.
    87.长尾由纪子,叶.,赖小平,实验性肝损伤模型建立的初步探讨.广西中医药2006, 29, (3), 47-49.
    88. Wernerman, J.; Luo, J. L.; Hammarqvist, F., Glutathione status in critically-ill patients: possibility of modulation by antioxidants. Proc Nutr Soc 1999, 58, (3), 677-80.
    89.魏涌,医学生物化学(3版).北京:世界图书出版社1998, 202~203.
    90. Fancy, S. A.; Beckonert, O.; Darbon, G.; Yabsley, W.; Walley, R.; Baker, D.; Perkins, G. L.; Pullen, F. S.; Rumpel, K., Gas chromatography/flame ionisation detection mass spectrometry for the detection of endogenous urine metabolites for metabonomic studies and its use as a complementary tool to nuclear magnetic resonance spectroscopy. Rapid Commun Mass Spectrom 2006, 20, (15), 2271-80.
    91. Beutler, E., Nutritional and metabolic aspects of glutathione. Annu Rev Nutr 1989, 9, 287-302.
    92. Nowak, A.; Libudzisz, Z., Influence of phenol, p-cresol and indole on growth and survival of intestinal lactic acid bacteria. Anaerobe 2006, 12, (2), 80-4.
    93. Rechner, A. R.; Smith, M. A.; Kuhnle, G.; Gibson, G. R.; Debnam, E. S.; Srai, S. K.; Moore, K. P.; Rice-Evans, C. A., Colonic metabolism of dietary polyphenols: influence of structure on microbial fermentation products. Free Radic Biol Med 2004, 36, (2), 212-25.
    94. Stella, C.; Beckwith-Hall, B.; Cloarec, O.; Holmes, E.; Lindon, J. C.; Powell, J.; van der Ouderaa, F.; Bingham, S.; Cross, A. J.; Nicholson, J. K., Susceptibility of Human Metabolic Phenotypes to Dietary Modulation. J Proteome Res 2006, 5, (10), 2780-2788.
    95. Selmer, T.; Andrei, P. I., p-Hydroxyphenylacetate decarboxylase from Clostridium difficile. A novel glycyl radical enzyme catalysing the formation of p-cresol. Eur J Biochem 2001, 268, (5), 1363-72.
    96. Berger, M. L.; Bhatt, H.; Combes, B.; Estabrook, R. W., CCl4-induced toxicity in isolated hepatocytes: the importance of direct solvent injury. Hepatology 1986, 6, (1), 36-45.
    97. Day, C. P., Pathogenesis of steatohepatitis. Best Pract Res Clin Gastroenterol 2002, 16, (5), 663-78.
    98. Denke, M. A.; Grundy, S. M., Comparison of effects of lauric acid and palmitic acid on plasma lipids and lipoproteins. Am J Clin Nutr 1992, 56, (5), 895-8.
    99. Boll, M.; Weber, L. W.; Becker, E.; Stampfl, A., Pathogenesis of carbon tetrachloride-inducedhepatocyte injury bioactivation of CCI4 by cytochrome P450 and effects on lipid homeostasis. Z Naturforsch [C] 2001, 56, (1-2), 111-21.
    100. Weber, L. W.; Boll, M.; Stampfl, A., Hepatotoxicity and mechanism of action of haloalkanes: carbon tetrachloride as a toxicological model. Crit Rev Toxicol 2003, 33, (2), 105-36.
    101.黄欣;龚益飞;虞科;程翼宇,基于气相气谱-质谱的代谢组学方法研究四氯化碳致小鼠急性肝损伤.分析化学2007, 35, (12), 1736-1740.
    102. Nanji, A. A.; Sadrzadeh, S. M.; Yang, E. K.; Fogt, F.; Meydani, M.; Dannenberg, A. J., Dietary saturated fatty acids: a novel treatment for alcoholic liver disease. Gastroenterology 1995, 109, (2), 547-54.
    103.闫明,吕瑞娟,贾晓青,孟繁立,高脂血症性脂肪肝大鼠血清游离脂肪酸的变化及意义.山东医药2001, 41, (15), 6-7.
    104. Delzenne, N. M.; Hernaux, N. A.; Taper, H. S., Lack of protective effect of menhaden oil supplementation on rat liver steatosis induced by a carbohydrate-rich diet. Food Chem Toxicol 1998, 36, (7), 555-61.
    105. Keppler, D., Leukotrienes: biosynthesis, transport, inactivation, and analysis. Rev Physiol Biochem Pharmacol 1992, 121, 1-30.
    106.陈龙,毛鑫智,花生四烯酸代谢物与肝损伤.中国病理生理杂志1999, 15, (12), 1149-1152.
    107.陈龙,王丙云,毛鑫智, CCl4诱发肝损伤过程中血浆几种花生四烯酸代谢物和激素水平动态变化的研究.中国病理生理杂志2000, 16, (9), 858-860.
    108.鲍建民,多不饱和脂肪酸的生理功能及安全性.中国食物与营养2006, 1, 45-46.
    109. Cerra, F. B.; McMillen, M.; Angelico, R.; Cline, B.; Lyons, J.; Faulkenbach, L.; Paysinger, J., Cirrhosis, encephalopathy, and improved results with metabolic support. Surgery 1983, 94, (4), 612-9.
    110.姜秋芬,刘慧敏,肝硬化与肝癌患者血浆游离氨基酸水平分析.氨基酸和生物资源1998, 20, (3), 32-34.
    111. Morgan, M. Y.; Marshall, A. W.; Milsom, J. P.; Sherlock, S., Plasma amino-acid patterns in liver disease. Gut 1982, 23, (5), 362-70.
    112.冯小平,蒋滢,黄美英,急性肝损伤大鼠模型的血浆氨基酸代谢变化模式.氨基酸杂志1994, 1, 17-19.
    113. Rosen, H. M.; Yoshimura, N.; Hodgman, J. M.; Fischer, J. E., Plasma amino acid patterns in hepatic encephalopathy of differing etiology. Gastroenterology 1977, 72, (3), 483-7.
    114.刘惠媛,石裕明.,早期大剂量甘利欣治疗重型肝炎26例临床观察.中西医结合肝病杂志2000, 10, (2), 11.
    115.杨丽蓉,徐晓玉,甘利欣的药理作用临床应用.中国医院用药评价与分析2003, 3, (3), 191-192.
    116. Fernandez, V.; Videla, L. A., Effect of acute and chronic ethanol ingestion on the content of reduced glutathione of various tissues of the rat. Experientia 1981, 37, (4), 392-4.
    117. Castillo, T.; Koop, D. R.; Kamimura, S.; Triadafilopoulos, G.; Tsukamoto, H., Role of cytochrome P-450 2E1 in ethanol-, carbon tetrachloride- and iron-dependent microsomal lipid peroxidation. Hepatology 1992, 16, (4), 992-6.
    118. French, S. W.; Morimoto, M.; Reitz, R. C.; Koop, D.; Klopfenstein, B.; Estes, K.; Clot, P.; Ingelman-Sundberg, M.; Albano, E., Lipid peroxidation, CYP2E1 and arachidonic acid metabolism in alcoholic liver disease in rats. J Nutr 1997, 127, (5 Suppl), 907S-911S.
    119. Porta, E. A., Dietary modulation of oxidative stress in alcoholic liver disease in rats. J Nutr 1997, 127, (5 Suppl), 912S-915S.
    120. Dupont, I.; Lucas, D.; Clot, P.; Menez, C.; Albano, E., Cytochrome P4502E1 inducibility and hydroxyethyl radical formation among alcoholics. J Hepatol 1998, 28, (4), 564-71.
    121. Cravo, M. L.; Gloria, L. M.; Selhub, J.; Nadeau, M. R.; Camilo, M. E.; Resende, M. P.; Cardoso, J. N.; Leitao, C. N.; Mira, F. C., Hyperhomocysteinemia in chronic alcoholism: correlation with folate, vitamin B-12, and vitamin B-6 status. Am J Clin Nutr 1996, 63, (2), 220-4.
    122. Bleich, S.; Spilker, K.; Kurth, C.; Degner, D.; Quintela-Schneider, M.; Javaheripour, K.; Ruther, E.; Kornhuber, J.; Wiltfang, J., Oxidative stress and an altered methionine metabolism in alcoholism. Neurosci Lett 2000, 293, (3), 171-4.
    123. Parkin, D. M.; Bray, F.; Ferlay, J.; Pisani, P., Global cancer statistics, 2002. CA Cancer J Clin 2005, 55, (2), 74-108.
    124. Bruix, J.; Sherman, M.; Llovet, J. M.; Beaugrand, M.; Lencioni, R.; Burroughs, A. K.; Christensen, E.; Pagliaro, L.; Colombo, M.; Rodes, J., Clinical management of hepatocellular carcinoma. Conclusions of the Barcelona-2000 EASL conference. European Association for the Study of the Liver. J Hepatol 2001, 35, (3), 421-30.
    125.黄洁夫,腹部外科学.北京:人民卫生出版社2001, 1127-1136.
    126. Brindle, J. T.; Antti, H.; Holmes, E.; Tranter, G.; Nicholson, J. K.; Bethell, H. W.; Clarke, S.; Schofield, P. M.; McKilligin, E.; Mosedale, D. E.; Grainger, D. J., Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics. Nat Med 2002, 8, (12), 1439-44.
    127. Yang, J.; Xu, G.; Zheng, Y.; Kong, H.; Wang, C.; Zhao, X.; Pang, T., Strategy for metabonomics research based on high-performance liquid chromatography and liquid chromatography coupled with tandem mass spectrometry. J Chromatogr A 2005, 1084, (1-2), 214-21.
    128. Fukuda, H.; Ebara, M.; Okuyama, M.; Sugiura, N.; Yoshikawa, M.; Saisho, H.; Shimizu, R.; Motoji, N.; Shigematsu, A.; Watayo, T., Increased metabolizing activities of the tricarboxylic acid cycle and decreased drug metabolism in hepatocellular carcinoma. Carcinogenesis 2002, 23, (12), 2019-23.
    129. Schrocksnadel, K.; Wirleitner, B.; Winkler, C.; Fuchs, D., Monitoring tryptophan metabolism in chronic immune activation. Clin Chim Acta 2006, 364, (1-2), 82-90.
    130.虞颂庭,翁铭庆; 286., l.,生物医学工程的基础与I临床.天津:科学技术出版社1988, 284-286.
    131. Kano, T.; Nagaki, M.; Takahashi, T.; Ohnishi, H.; Saitoh, K.; Kimura, K.; Muto, Y., Plasma free amino acid pattern in chronic hepatitis as a sensitive and prognostic index. Gastroenterol Jpn 1991, 26, (3), 344-9.
    132. Mider, G. B., Some aspects of nitrogen and energy metabolism in cancerous subjects: a review. Cancer Res 1951, 11, (11), 821-9.
    133. Watanabe, A.; Higashi, T.; Sakata, T.; Nagashima, H., Serum amino acid levels in patients with hepatocellular carcinoma. Cancer 1984, 54, (9), 1875-82.
    134.沈耕荣,晨振辉,赵国明,色氨酸代谢异常在肝昏迷发病机制中的地位.国外医学消化疾病分册1984, 4, (4), 195-197.
    135. Yoshida, K.; Hirayama, C., Clinical evaluation of serum levels of tryptophan in hepatobiliary disease. Clin Chim Acta 1980, 101, (2-3), 235-40.
    136. Schroecksnadel, K.; Winkler, C.; Fuith, L. C.; Fuchs, D., Tryptophan degradation in patients with gynecological cancer correlates with immune activation. Cancer Lett 2005, 223, (2), 323-9.
    137.王红,赵桂兰,李安信,孙素云,陈仁敦,实验性急性肝衰竭时的氨基酸代谢.营养学报1989, 11, (4), 337-342.
    138. Mans, A. M.; Biebuyck, J. F.; Shelly, K.; Hawkins, R. A., Regional blood-brain barrier permeability to amino acids after portacaval anastomosis. J Neurochem 1982, 38, (3), 705-17.
    139.叶胜龙,汤钊猷,刘华,原发性肝癌患者血浆氨基酸含量的改变.中华肿瘤杂志1987, 4, 1875-1882.
    140. Bartlett, D. L.; Stein, T. P.; Torosian, M. H., Effect of growth hormone and protein intake on tumor growth and host cachexia. Surgery 1995, 117, (3), 260-7.
    141.胡放,胃癌患者癌区动、静脉游离氨基酸差值分析.中华消化杂志1992, 12, 211-213.
    142.师锦波,申虹,李亚刚,耿瑞华,于世梅,黄显利,罗元平,庞国良,气相色谱-质谱法检测肝癌脂肪酸的研究.中华肝胆外科杂志1998, 4, (1), 17-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700