用户名: 密码: 验证码:
硅烷接枝聚乙烯室温自交联的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚乙烯(PE)具有比重小、易加工成型、绝缘电阻高、介电性能优良等优点。聚乙烯分子无极性、分子间的范德华力较弱,造成聚乙烯与无机物以及极性高分子相容性差、抗热变形能力差、机械强度不高等缺点,限制了聚乙烯的使用。硅烷交联改性是解决这些问题的有效途径之一
     硅烷交联改性可以提高聚乙烯的冲击强度、耐热性能、耐环境应力开裂性能。传统的温水硅烷交联存在交联速度慢、交联不均匀的缺点。本文选用硬脂酸和氧化锌作为产水剂,使硅烷接枝低密度聚乙烯(LDPE)在室温下发生自交联反应。得出以下结论:
     (1)硅烷是交联反应的主要原料之一,选用乙烯基三乙氧基硅烷(A-151)、新型硅烷(HIT-176)、乙烯基三甲氧基硅烷(A-171)、乙烯基-三(2-甲氧基乙氧基)硅烷(ZQ-172)作为硅烷接枝单体,制备的接枝聚乙烯的吸光比R分别为0.424、0.906、0.777、0.730。以硅烷A-151,硅烷HIT-176作为接枝单体制备交联聚乙烯,凝胶含量均超过65%(温度为90℃热水中交联40h)。
     (2)以叔丁基过氧化3,5,5一三甲基己酸酯(TBPMA)为引发剂,接枝料的吸光比R随TBPMA含量的增加而增加,当TBPMA的含量为0.15pbw时,自交联聚乙烯六天后凝胶含量达到70%;选择硬脂酸、氧化锌为产水剂,在催化料中含量分别为1.0pbw、3.5pbw时,自交联聚乙烯的凝胶含量达到46.7%,样品的拉伸强度提高;催化剂含量在1.5pbw~3.0pbw之间,对自交联样品的综合性能的影响不明显;选用硅烷A-151、硅烷HIT-176作为接枝单体,经过6天的自交联反应,DLPE的凝胶含量分别为45%、71%,其中硅烷HIT-176的含量是2.5pbw。
     (3)应用傅里叶变换红外光谱(FTIR)和差示扫描量热法(DSC)研究了聚乙烯硅烷接枝和室温自交联反应。硅烷接枝及自交联反应对LDPE结晶行为有明显的影响:接枝和交联后,LDPE的Avrami指数n在3.8-6.0之间,高于纯LDPE的Avrami指数2.52;Avrami指数随引发剂含量的增加先增加后降低,随催化剂含量的增加而降低;硅烷接枝聚乙烯的结晶动力学速率常数高于纯LDPE的结晶动力学速率常数,而自交联LDPE的结晶动力学速率常数低于纯LDPE的结晶动力学速率常数。
With a low specific weight and easy processing characteristics, polyethylene also has the advantage of high insulation resistance, excellent dielectric properties. Since polyethylene has a weak van der Waals forces between molecules, non-polar chain, so it has a poor compatibility with inorganic matters and polar polymers, poor heat change properties, and its mechanical strength is not high, which limits its applications. Grafting and crosslinking may be the feasible ways to adjust these disadvantages.
     The application of silane crosslinking can improve the performance of polyethylene, such as impact strength, heat resistance and segregation resistance. The polyethylene grafted or crosslinked by silane has disadvantages such as low speed and lack of homogeneity in crosslinking through traditional manners using hot water. In this thesis, self-crosslinked PE at room temperature was prepared through a two-step method by means of stearic acid and zinc oxide to release water. Followings are the main accomplishments:
     (1) Silane is one of the key factors in self-crosslinking. The absorbance ratio of LDPE-g-silane with silane A-151, silane HIT-176, silane A-171 and silane ZQ-172 is 0.424,0.906,0.777 and 0.730, respectively. And the gelation of crosslinked LDPE grafted by silane, which used silane A-151 and silane HIT-176, could surpass 65% after being crosslinked in hot water for 40 hours (at 90 degrees centigrade).
     (2) Silane could be grafted onto PE through TBPMA. The absorbance ratio of self-crosslinked LDPE increased with the content of TBPMA. The gel of self-crosslinked LDPE could surpass 71%. The best content of TBPMA is 0.15pbw; when the content of stearic acid and zinc oxide was 3.5pbw and 1.Opbw, respectively, the self-crosslinked LDPE could have the most amount of gel about 46.7%; Catalyst has litter influence on the performance of self-crosslinked LDPE when the content is 1.5pbw~3.0pbw; The gel of self-crosslinked LDPE which used silane A-151 and silane HIT-176 were 45%, 71%, respectively. The best content of silane HIT-176 is 2.5pbw.
     (3) Both grafted and crosslinked LDPE were studied using FTIR and differential scanning calorimeter (DSC). As a result, the reactions of silane grafting and self-crosslinking have excellent impacts on the change in crystallization behavior,the values of Avrami index(n) of LDPE was 2.52, while increased to 3.8~6.0 when the LDPE was grafted or cross-linked. The values of Avrami index increased to the maximum and then decreased with increasing loading of initiator, while decreased with increasing loading of catalyst. Compared with neat LDPE, the velocity constant of the crystallization of silane grafted LDPE became higher, while that of crosslinked LDPE became smaller.
引文
[1]李镇江.LDPE树脂在电缆工业中的应用[J].金山油化纤,1989,(3):32-35.
    [2]陈贤仁,周国栋,许伟钊.塑铝复合管的性能与应用[J].煤气与热力,1996,16(6):37-39.
    [3]李巧娟,谢大荣.有机硅接枝改性低密度聚乙烯的研究[J].绝缘材料,2004,(1):8-11.
    [4]Fwkwda T. Technological Progress in High-Voltage XLPE Power Cables in Japan-Part [J]. IEEE Electrical Insulation Magazine,1988,4(6):15-20.
    [5]王文广,田雁晨,吕通建.塑料材料的选用[M],北京:化学工业出版社,2007.
    [6]张建耀.交联电缆用LDPE树脂性能及其应用[J].现代塑料加工应用,2005,17(6):8-11.
    [7]张斌,朱武,周科朝,等.工艺参数对自增强HDPE棒材的力学性能和微观结构的影响[J].功能材料,2008,39(1):173-176.
    [8]张宁,李忠恒,陶字,等.长纤维增强聚乙烯复合材料的研究[J].工程塑料应用,2007,35(1):21-25.
    [9]潘宝风,刘军,宋斌,等.SMC晶须增强高密度聚乙烯复合材料的拉伸性能[J].高分子材料科学与工程,2008,24(4):101-104.
    [10]王新鹏,张军.LDPE/POE共混物的结晶行为和力学性能[J].合成树脂及塑料,2009,26(1):10-14.
    [11]杜芹,郭少云,李姜,等.高密度聚乙烯/尼龙6共混物的形态结构对其性能的影响[J].高分子材料科学与工程,2008,24(6):88-91.
    [12]王跃华,陈敏,李长敏,等.低温等离子体技术在无机粉体表面改性中的研究进展[J].材料导报,2008,22(4):34-37.
    [13]蔡长庚.填料的表面处理及其应用[J].铜箔与基材,2000,(5):18-20.
    [14]殷锦捷,王亚鹏.聚乙烯改性的研究进展[J].上海塑料,2006,(3):13-16.
    [15]唐进伟,童身毅.线型低密度聚乙烯固相接枝马来酸酐研究[J].化工科技,2007,15(3):5-8.
    [16]钱军民,李旭祥.国内聚乙烯接枝和交联改性的研究进展[J].合成材脂及塑料,2001,18(3):41-44.
    [17]孙聚华,邹向阳,金永峰,等.氯磺化聚乙烯的合成[J].弹性体,2008,18(2):34-37.
    [18]Zhang W, Chu P K, Ji J H, et al. Antibacterial Properties of Plasma-modified and Triclosan or Bronopol Coated Polyethylene[J]. Polymer,2006,47(3):931-936.
    [19]甄建.我国XLPE电缆料及基础树脂的发展概况[J].合成树脂及塑料,2003,20(6):43-46.
    [20]朱爱荣,曹晓珑.不同交联方式对交联聚乙烯电缆结晶形态影响的研究[J].绝缘材料,2005,(3):38-40.
    [21]Sultan B, Palmlof M. Rubber and Composites Processing and Applications[J]. Platics, 1994,(2):6-10.
    [22]王霞,陈少卿,成霞,等.纳米ZnO对聚乙烯抗紫外光老化的影响[J].电工技术学报,2008,23(10):6-10.
    [23]崔月,李勇智.双峰聚乙烯技术研究进展[J].广东化工,2007,34(8):42-44.
    [24]袁波,李兰军,何波兵,等.茂金属聚乙烯交联研究进展及应用[J].塑料工业,2007,(35):74-76.
    [25]韩雪梅.交联聚乙烯绝缘料在电线电缆中的地位[J].化学与粘合,2008,30(3):53-56.
    [26]Oster G. Crosslinking polyethylene[J]. Journal of Applied Polymer Science,1956, (22): 185-187.
    [27]邓华川,张淑英,张润清,等.HDPE单丝的Υ射线辐射交联改性[J].辐射研究与辐射工艺学报,1999,17(1):1-6.
    [28]李树忠,刘海英,王利聪.Υ射线辐射交联低密度聚乙烯——乙丙共聚物的结构和性能[J].原子能科学技术,1988,22(4):385-391.
    [29]Chen W, Xing K, Li S. The Heat Shrinking Mechanism of Polyethylene Film[J]. Rdiation Physics and Chemistry,1983,22(3-5):593-601.
    [30]宋春雷,张文德,等.用辐射方法制备PCL/玻璃纤维布和PCL/碳纤维布复合材料以及它们的生物降解性研究[J].辐射研究与辐射工艺学报,2002,20(4):246-250.
    [31]刘新民,许春霞,葛涛,杨金平.过氧化物交联聚乙烯的力学性能研究[J].现代塑料加工应用,2003,15(6):14-16.
    [32]刘新民,杨金平,葛涛,等.过氧化物交联低密度聚乙烯电缆护套料的研究[J].塑料,2003,32(3):53-55.
    [33]郭林敏,李珍馥.过氧化物交联聚乙烯管及其专用料性能研究[J].塑料,2002,31(4):69-71.
    [34]鲍文波,马树军,贾振山,等.紫外光辐照交联聚乙烯在电缆行业中的应用及进展[J].电线电缆,2009,(4):4-7.
    [35]唐龙祥,严满清,刘春华,等.紫外光交联聚乙烯的结晶行为[J].应用化学,2009,26(9):1019-1022.
    [36]金可中.一步法硅烷交联聚乙烯管生产线技术[J].化学建材,2000,(3):16-17.
    [37]Wong W K, Varrall D C. Role of molecular structure on the silane crosslinking of polyethylene:the importance of resin molecular structure change during silane grafting [J]. Polymer,1994,35(25):5447-5452.
    [38]Shieh Y T, Liu C M. Silane grafting reactions of LDPE, HDPE, and LLDPE[J]. Journal of Applied Polymer Science,1999,74(14):3404-3411.
    [39]安彦杰,纪春怡,柳春山.LDPE HDPE LLDPE的硅烷接枝反应[J].塑料工业,2005,(33):63-66.
    [40]张建耀,刘少成.硅烷接枝交联HDPE, LLDPE及其共混物的结构研究[J].弹性体,2007,17(4):39-43.
    [41]刘秉志.硅烷交联聚乙烯电缆绝缘料的研制[J].中国塑料,1995,9(5):26-29.
    [42]龚方红,蒋必彪,刘春林,等.硅烷接枝聚乙烯的表征[J].高分子材料科学与工程,2006,22(6):174-176.
    [43]李长明,马岩,吕祖舜,等.硅烷接枝聚乙烯的催化机理与交联动力学研究[J].材料科学与工艺,2007,15(2):237-240.
    [44]龚方红,林明德,汪信,等.乙烯基硅烷在聚乙烯中的传输行为[J].应用化学,2004,21(12):1277-1280.
    [45]Shieh Y T, Liau J S, Chen T K. An investigation of water crosslinking reactions of silane-grafted LDPE [J]. Journal of Applied Polymer Science,2001, (81):186-196.
    [46]Palmlof M, Hjertberg T, Sultan B A, et al. Crosslinking reactions of ethylene vinyl silane copolymers at processing temperatures[J]. Journal of Applied Polymer Science,1991, 5(42):1193-1197.
    [47]Zhow W, Zhu S. ESR study of Peroxide-induced cross-linking of high density polyethylene[J]. Macromolecules,1998, (31):4335-4341.
    [48]AG Andreo Poulos, EM Kampouris. Mechanical properties of crosslinked polyethylene [J]. Journal of Applied Polymer Science,1986, (31):1061-1068.
    [49]Shieh Y T, Liu C M. Silane grafting reactions of LDPE, HDPE, and LLDPE[J]. Journal of Applied Polymer Science,1999, (74):3404-3411.
    [50]Turesanyi B, Fekete E, Pukanszky B, et al. Thermoanal ytical methods in the study of structure/properties relationships of modified and crosslinked linear polyethylene[J]. Journal of Thermal Analysis,1990,(36):1775-1784.
    [51]Hermann U V. preparing thermo-plastic or elastomeric materials for cross-linking of Grafted silane[P]. US Patent,4048129,1977.
    [52]穆肖斌,项华丽,张建萍.室温硅烷交联聚乙烯塑料及其制备方法[P].CN1624038A.
    [1]杨冬麟,史一之,韩宝仁.硅烷交联聚乙烯的研究[J].塑料科技,1978,(3):1-14.
    [2]胡发亭,郭亦崇.聚乙烯交联改性研究进展[J].现代塑料加工应用,2002,14(2):61-64.
    [3]刘新民,崔涛,李琳.交联聚乙烯的应用及技术进展[J].合成树脂及塑料,2003,(20):52-54.
    [4]李巧娟,谢大荣.有机硅接枝改性低密度聚乙烯的研究[J].绝缘材料,2004,(1):8-11.
    [5]杨非,原晓丽,赵瑞等.阻燃硅烷交联聚乙烯在电缆上的应用[J].工程塑料应用,2003,31(5):31-33.
    [6]张勇,谭风洁,吴春霜.硅烷交联聚乙烯管材专用料的研制[J].中国塑料,2004,18(3):36-39.
    [7]陈宝胜.交联电缆的发展状况和硅烷交联的生产工艺[J].电线电缆,1997,(2):17-22.
    [8]段景宽,王秀丽,张广明.硅烷交联HDPE铝塑复合管专用料工艺的研究[J].工程塑料应用,2005,33(1):29-33.
    [9]Shi eh Y T, Tsai T H. Shane grafting reaction of low density polyethylene[J]. Journal of Applied Polymer Science,1998, (69):255-266.
    [10]龚方红,蒋必彪,刘春林,等.硅烷接枝聚乙烯的表征[J].高分子材料科学与工程,2006,22(6):174-176.
    [11]李长明,马岩,吕祖舜,等.硅烷接枝聚乙烯的催化机理与交联动力学研究[J].材料科学与工艺,2007,15(2):237-240.
    [12]甘泉.高强度交联聚乙烯的制备及性能研究[D].上海:上海交通大学,2010.
    [1]Zhow W, Zhu S. ESR Study of Peroxide-induced Cross-linking of High Density Polyethylene[J]. Macromolecules,1998, (31):4335-4341.
    [2]Poulos A G, Kampouris E M. Mechanical Properties of Crosslinked Polyethylene[J]. Journal of applied polymer science,1986,(31):1061-1068.
    [3]Shieh Y T, Liu C M. Silane Grafting Reactions of LDPE, HDPE, and LLDPE [J]. Journal of applied polymer science,1999, (74):3404-3411.
    [4]Turesanyi B, Fekete E, Pukanszky B, et al. Thermoanal Ytical Methods in the Study of Structure/properties Relationships of Modified and Crosslinked Linear Polyethylene[J]. Journal of Thermal Analysis and Calorimetry,1990, (36):1775-1784.
    [5]段予忠,张明连.塑料母料生产及应用技术[M].北京:中国轻工业出版社,1999,4-9.
    [6]迟小云.硅烷交联聚乙烯抗预交联研究[J].当代化工,2008,59-62.
    [7]江平开,程锡圭,等.有机硅弹性胶流变性能的研究[J].高分子材料科学与工程,1996,(6):65.
    [8]王桂林.铝塑复合管技术[J].现代塑料加工应用,1990,(1):63.
    [9]Shieh Y T, Liu C M. Journal of applied polymer science,1999,74,3404.
    [1]Shi eh Y T, Liau J S, Chen T K. An investigation of water crosslinking reactions of silane-grafted LDPE [J]. Journal of applied polymer science,2001,81:186.
    [2]周剑,丁国兰,闻荻江.室温自交联聚丙烯[J].材料科学与工程学报,2008,26(6):914.
    [3]Zhow W, Zhu S. ESR study of Peroxide-induced cross-linking of high density polyethylene[J]. Macromolecules,1998,31:4335.
    [4]Poulos A G, Kampouris E M. Mechanical properties of crosslinked polyethylene[J]. Journal of applied polymer science,1986,31:1061.
    [5]Scot H G. Improvements in or relation to polymers[P]. GB Patent,1286460,1972.
    [6]Shieh Y T, Liu C M. Silane grafting reactions of LDPE, HDPE, and LLDPE[J]. Journal of applied polymer science,1999,74:3404.
    [7]Turesanyi B, Fekete E, Pukanszky B, et al. Thermoanal ytical methods in the study of structure/properties relationships of modified and crosslinked linear polyethylene[J]. Journal of Thermal Analysis and Calorimetry,1990, (36):1775-1784.
    [8]赖有根,邬润德,何军利,等.产水剂对硅烷接枝聚乙烯的交联作用研究[J].塑料工业,2006,34:54-57.
    [9]Ozawa T. Kinetics of non-isothermal crystallization[J]. Polymer,1971, (12):150-158.
    [10]段予忠,张明连.塑料母料生产及应用技术[M].北京:中国轻工业出版社,1999,4-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700