用户名: 密码: 验证码:
硅烷接枝交联聚乙烯的结构与性能及其在纳米复合材料中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用有限差分法模拟了乙烯基硅烷在聚乙烯中的扩散行为;研究了乙烯基硅烷与聚乙烯的熔融接枝反应,根据聚合物弹性理论,研究了硅烷交联聚乙烯的结构与性能,从结晶结构和结晶动力学两个方面研究了硅烷接枝交联聚乙烯的结晶行为,制备并表征了HDPE/nano-SiO_2复合材料和HDPE/SiO_2有机—无机杂化材料,首次系统地研究了硅烷接枝交联聚乙烯的结构与性能及其在纳米复合材料中的应用。
     采用有限差分法建立了数学模型,编制计算机程序模拟了不饱和硅烷在聚乙烯中的扩散行为,得到了硅烷在聚乙烯中传输的扩散系数,并计算出扩散活化能E_D,VTMS在HDPE,LDPE,LLDPE中扩散活化能分别为38.2、24.0和22.0kJ。
     采用FTIR、Raman、NMR和ICP表征了硅烷接枝聚乙烯,FTIR谱图上1170cm~(-1)、1110cm~(-1)、1090cm~(-1)和960cm~(-1)等处出现-Si-O-CH_3的特征吸收峰,激光Raman光谱上,硅烷的散射峰出现在1090cm~(-1),~1H和~(13)C NMR谱图上,-OCH_3的特征峰分别出现在δ为4.25处和68处。采用ICP测得VTMS接枝LLDPE、LDPE和HDPE的接枝率分别为0.671-0.988%、0.349-0.972%和0.254-750%之间。
     按照交联网络状态方程和Mooney-Rivlin方程可以测定交联聚乙烯的交联密度,当凝胶含量相同时,硅烷交联聚乙烯的交联密度大于过氧化物交联聚乙烯。在70℃的二甲苯和沸腾的苯中进行交联物的平衡溶胀试验,也可以证明当凝胶含量相同时,硅烷交联聚乙烯的交联密度大于过氧化物交联聚乙烯。同时测得了LDPE/沸腾苯体系的Huggins参数x1=0.30。
     DSC、XRD和Raman光谱都可以研究接枝和交联反应引起的聚乙烯结晶结构的变化。对于LLDPE,随着硅烷用量的增加,Raman光谱分析表明,硅烷接枝聚乙烯的晶相由57.58%下降到46.99%,非晶相由11.58%上升到16.52%,中间相也由30.84%上升到36.48%。DSC测定的结晶度由40.73%下降到32.02%,XRD测定的结晶度由39.66%下降到32.87%,且结晶的熔点降低,晶粒变小,晶面间距增大,HDPE和LLDPE也有类似的结果。非等温结晶动力学研究表明接枝处理后聚乙烯Avrami指数n基本不变;结晶速率常数Z_c下降;半结晶期t_(12)延长。交联后Z_c进一步下降,t_(12)进一步延长。
     对聚乙烯进行硅烷接枝,对SiO_2进行表面处理,都可以改善HDPE/nano-SiO_2共混体系的相容性,提高复合材料的力学性能。当nano-SiO_2的含量为10%左右时,体系的拉伸强度可提高近30%,并且复合材料的热分解温度提高20℃。
     以PEW为模型化合物,研究了HDPE与TEOS的Sol-Gel反应,在小型密炼机上实施了硅烷接枝聚乙烯与TEOS的Sol-Gel过程,当密炼机的转速以60min~(-1);聚乙烯的接枝单体VTMS的用量应控制在2.0phr以内;水的加入量为前驱体TEOS量的1/5时,可以制得性能较好的HDPE/SiO_2有机-无机杂化材料,当纳米SiO_2含量0.99%时,杂化材料的拉伸强度提高近30%。分解温度由472.17℃提高到476.68℃。FTIR和XPS证实杂化材料中纳米SiO_2与聚乙烯分子链形成了化学键结合。TEM还显示SiO_2粒子以50-100nm的球形分布在杂化材料之中。
The dissertation simulates the diffusion of vinyl-silane in polyethylene employinglimited differentiation and studies the molten graft of the vinyl-silane and polyethylene.The Structure and property of silane grafted and crosslinked polyethylene is also studied interms of the theory of polymer elasticity. The study in the crystallization of silane graftedand crosslinked polyethylene is performed too from the angles of the crystal structure andcrystal dynamics. Both the HDPE/nano-SiO_2 composite and HDPE/nano-SiO_2organic-inorganic hybrid are made and their structures are proved. The structures andproperties of silane grafted and crosslinked polyethylene and its application in polymernanocomposite is studied systematically for the first time in the dissertation.
     The mathematical model is constructed in terms of finite differences. Then the specificcomputer program is compiled to simulate the diffusion of unsaturated silane inpolyethylene and diffusion coefficient is obtained to express the transmission of silane inpolyethylene. The activation energy of diffusion (E_D) can also be calculated. The E_D valuesof VTMS in HDPE, LDPE and LLDPE are 38.2、24.0 and 22.0KJ respectively.
     The existence of silane grafted polyethylene is characterized by FTIR、Raman、NMRand ICP. The particular absorbance peaks of-Si-O-CH_3 are found in FTIR spectrograph at1170cm~(-1)、1110cm~(-1)、1090cm~(-1) and 960cm~(-1). In Raman spectrograph, the scattering peak ofsilane shows up at 1090cm~(-1). The resonance of -OCH_3 group appears atδ=4.25 andδ=68in ~1H and ~(13)C NMR spectrographs. According to ICP, the percentage of VTMS grated toLLDPE, LDPE and HDPE turns out to be between 0.671-0.988%, 0.349-0.972% and0.254-750% respectively.
     The Mooney-Rivlin equation and the network state equation of cross-linked can beapplied to measure the density of cross-linkage of silane cross-linked polyethylene, whichis larger than that of peroxide cross-linked polyethylene when the content of gel is same.The above result can also be proved by the test of equilibrated dissolution and swell ofcross-linked polymer in dimethyl benzene at 70℃and boiled benzene. The parameter ofHuggins x1 in the system of LDPE and boiled benzene can be obtained at the same time,which is 0.31.
     DSC, XRD and Raman laser light scattering can be employed to study the structure change of the crystalline resulted from grafted and cross-linked polyethylene. Based onRaman spectrograph, with increasing amount of silane, the crystalline phase of silanegrafted LLDPE decreases from 57.58% to 46.99%, amorphous phase increases from11.58% to 16.52%, and the mesophase increases from 30.84% to 36.48%. The degree ofcrystallization based on DSC decreases from 40.73% to 32.32%, while XRD result showsthe percentage decreases from 39.66% to 32.87%. Furthermore, the melting point and thesize of the crystal decrease, while the distance between the surfaces of the crystalsincreases. Similar results have also been obtained with HDPE and LDPE. Thenon-isothermal crystallization kinetics indicates that the Avrami Index (n) of graftedpolyethylene barely changes, while the velocity constant of the crystallization (Z_c) dropsand the half-time of the crystallization (t_(12)) lengthens. After the cross-linking, Z_c dropsmore and t_(12) lengthens more.
     Silane grafting to polyethylene and surface treatment of SiO_2 can both improve thecompatibility of HDPE/nano-SiO_2 composite and enhance the mechanics properties of thecomposites. When the amount of nano-SiO_2 is around 10%, the tension strength of thesystem increases by about 30% and the decomposing temperature increases by 20℃.
     PEW is employed as a model compound to study the Sol-Gel reaction of HDPE andTEOS. The Sol-Gel reaction of slane grafted polyethylene and TEOS is performed with asmall banbury mixer. When the amount of grafting monomer VTMS is below 2.0phr andthe added water is 20% of the amount of TEOS, a HDPE/SiO_2 organic-inorganic hybridwith good properties can be made if the banbury mixer runs at 60 min~(-1). The tensionstrength of the hybrid can be improved by 30% and the decomposing temperature isincreased from 472.17℃to 476.68℃when the content of nano-SiO_2 is 0.99%. Both FTIRand XPS results can proved that a chemical bond is formed between nano-SiO_2 and themolecular chain of PE in the hybrid. TEM data also indicates that the SiO_2 particles aredispersed in the hybrid as 50-100 nm spheres.
引文
1. Wendy Weirauch. Middle east operation plan polyethylene expansions [J]. Hydrocarbon Processing, 2003, 82(6): 27.
    2. Kim M. Jackson. World polyethylene manufacture business is counted [J]. Hydrocarbon Processing, 2003, 82(4): 21.
    3. Hompens G K. Polyolefin production technology advance[J], Chemical Week, 2002, 16A(13): 35-36.
    4. Sultan B A, Palmlof M. Advances in Crosslinking Technology [J]. Plastics, Rubber and Composites Processing and Applications. 1994, 21 (2): 65-73.
    5.胡发亭,郭奕崇.聚乙烯交联改性研究进展[J],现代塑料加下应用.2002,14(2):61-64.
    6.张丽叶,刘飞跃,杨波.聚乙烯敏化辐射交联研究进展[J].中国塑料,1999,13(1):10.
    7.左瑞霖,张广成,何宏伟等.聚乙烯的硅烷交联技术进展[J].塑料,2000,29(6):41-46.
    8. Novakovic L. J, Gal O. Sensation radiation crosslinking of polyethylene [J]. Polym Degrad Stab, 1995, 50: 53-58.
    9. Patcl GM. Radiation chemistry of polymer systems [J], J Appl Polym Sci, 1996. 62: 779-783.
    10.郭林敏,李珍馥.过氧化物交联聚乙烯管及专用料性能研究.塑料,2002,31(4):69.
    11. Engcl T. Forging and crosslinking of thermoplastics. Modern PlasLics, 1967, 44(9): 175.
    12. Sen A K, Mukherjee B, Bhattacharyya A S, et al. Kinetics of Silane Grafting and Moisture Crosslinking of Polyethylene and Ethylene Propylene Rubber[J]. J. Appl. Polym. Sci., 1992, 44: 1153-1164.
    13. Kalyanee Sirisinha, Sirinya Chimdist. Comparison of techniques for determining crosslinking in silane-water crosslinked materials [J], Polymer Testing, 2006, 25,(4): 518-526.
    14. Ek, Carl-Gustaf, Hojer, et al. Use of cross-linked polyolefins material in pressure pipes [P]. U.S. Patent, 2001, 6325959.
    15. Scheelen, Andre, Vandevijver et al. Polyethylene pipe [P]. U.S. Patent, 2005, 6904940.
    16.韩宝忠,李长明,彭涛.硅烷交联高密度聚乙烯管材料的研制[J].塑料工业,2001,29(3):18-19.
    17.段景宽,王秀丽,张广明等.硅烷交联HDPE铝塑复合管专用料加工工艺的研究[J].工程塑料应用,2005,33(1):29-33.
    18. Shieh Y T, Liu C M. Silane grafting reactions ofLDPE, HDPE, and LLDPE[J]. Journal of Applied Polymer Science. 1999, 74: 3404-3411.
    19.张键耀,从日新,刘少成等.LDPE.2102 TN00在交联电缆绝缘料中的应用[J].合成树脂及塑料,2004,21(2):38-42.
    20. Shah G B, Fuzail M, Anwar J. Aspects of the crosslinking of polyethylene with vinyl silane[J]. Journal of Applied Polymer Science. 2004, 92: 3796-3803.
    21.龚方红,俞强,李锦春等.LDPE交联物结构的研究[J].高分子材料科学与工程,2000,16(2):140-143.
    22.龚方红,徐建平,俞强等.提高硅烷交联HDPE凝胶含量的探索[J].江苏石油化工学院学报,2000,12(2):4-7.
    23. Sirisinha K, Kawko K. Properties and characterization of filled poly(propylene) composites crosslinked through siloxane linkage[J]. Macromolecular Materials and Engineering, 2005, 290: 128-135.
    24.杨元龙,吕荣侠,郭宝华等.硅烷交联聚丙烯的研究[J].合成树脂及塑料,2000,17(2):6-9.
    25.谢刚,历荣,崔丹等.硅烷交联聚丙烯的研究Ⅰ.引发剂用量、接枝剂用量和反应温度对凝胶率和熔体流动速率的影响[J].黑龙江大学自然科学学报,2002,19(1):99-102.
    26.吕晖辉,刘念才.聚丙烯硅烷接枝水解交联[J].塑料工业,1999,27(3):27-29.
    27. Liu N C, Yao G P, Huang H. Influences of Grafting Formulations and Processing Conditions on Properties of Silane Grafted Moisture Crosslinked Polypropylenes[J]. Polymer, 2000, 41: 4537-4542.
    28.刘学习,戴干策.PP-g-Si对PP/GF的增容作用[J].中国塑料,2004,18(8):44-47.
    29.仇武林,麦堪成,曾汉民.PP-g-Si与KH550对聚丙烯/滑石粉体系的增容效果[J].高分子材料科学与工程,2000,16(5):161-162.
    30. Cartasegna S. Silane-Grafted/Moisture-Curable Ethylene-Propylene Elastomers for the Cable Industry[J]. Rubber Chem. And Technol, 1986, 59(2): 722-739.
    31.王福志,曾学忠,李继涛等.乙丙橡胶电力电缆绝缘一步法硅烷交联工艺[J].电线电缆,2005,(2):22-24.
    32.何江红,谢忠麟.硅烷接枝二元乙丙橡胶对EPDM/MVQ共混物的改性及改性机理探讨[J].橡胶工业,2001,48(1):5-9.
    33. Bambrara J D, Kozma M L, Osterville, et al. Silane-Grafted Materials for Solid and Foam Application[P]. U.S. Patent, 2000, 6103775.
    34. Robert F Hurley, Centerville, John D, et al. Crosslinked Polyolefin Foam [P]. U.S. Patent, 2002, 6350512B1.
    35.闫枫,邱桂学,潘炯玺.POE与EPDM性能的比较[J].弹性体,2004,14(1):10-13.
    36.闫枫,邱桂学,潘炯玺.茂金属聚乙烯弹性体的交联及应用[J].橡胶工业,2004,51(7):440-443.
    37. Jiao C M, Wang Z Z, Gui Z, et al. Silane Grafting and Crossliking of Ethylene-Octane Copolymer[J]. European Polymer Journal, 2005, 41: 1204-1211.
    38. Bounor-Legare V, Ferreira I, Verbois A, et al. New transesterification between ester and alkoxysilane groups: application to ethylene-co-vinyl acetate copolymer crosslinking [J]. Polymer, 2002, 43: 6085-6092.
    39. Yannick Goutille, Christian Carrot, Jean-Charles Majeste, et al. Crosslinking in the melt of EVA using tetrafunctional silane: gel time frorn capillary rheometry[J]. Polymer, 2003, 44: 3165-3171.
    40. Phan, Lien, Farwaha, et al. Coating compositions prepared with an acrylic modified ethylene-vinyl acetate polymer [P]. U.S. Patent, 2001, 6174960.
    41. Yamazaki, Takanori, Watanabe, et al. Strippable semiconductive resin composition and wire and cable[P]. U.S. Patent, 2001, 6284374.
    42. Oriani, Steven R, Karande, et al. Crosslinked foams from blends of ethylene vinyl acetate and ethylene-styrene interpolymers[P]. U.S. Patent, 2000, 6111020.
    43.葛铁军,朱诚实,李军星等.硅烷交联型复合半导电塑料[J].塑料工业,2003,31(1):40-42.
    44. Cesaroni, Anthony Joseph. Thermoplastic polymer propellant compositions [P]. U.S. Patent, 2004, 6740180.
    45.朱晓光,漆宗能.聚合物增韧研究进展[J].材料研究学报.1997,11(6):623-638.
    46. C.Zilg. P. Reichert, F.Dietsche, et al. Plastics and rubher nanocomposites based upon layered silicates[J]. Kunststoffe. 1998, 88(10): 1812-1820.
    47.徐国财,马家举,邢宏龙.纳米粒子及其有机复合材料的复合技术[J].中国科学基金.2001(2):109-112.
    48.徐伟平,黄锐.聚合物/无机纳米粒子复合材料研究进展.[J]中国塑料.1997,11(5):15-22.
    49. Rong MZ, Zhang MQ, Zheng YX, Zeng HM, Walter R, Friedrich K. Structure-property relationships of irradiation grafted nano-inorganic partical filled polypropylene composites [J]. Polymer. 2001, 42: 167-183.
    50. Wu CL, Zhang MQ, Rong MZ, Friedrich K. Tensile performance improvement of low nanoparticles filled-polypropylene composites [J]. Compos Sci Technol. 2002, 62: 1327-1340.
    51. Zhang MQ, Rong MZ, Zhang HB, Friedrich K. Mechanical properties of low nano-silica filled high-density polyethylene composites [J]. Polym Eng Sci. 2003, 43: 490-500.
    52. Zhang MQ, Rong MZ, Pan SL, Friedrich K. Tensile properties of polypropylene filled with nanoscale calcium carbonate particles [J]. Adv Compos Lett. 2002, 11: 293-298.
    53. Rong MZ, Zhang MQ, Zheng YX, Zeng HM, Walter R, Friedrich K.I, Radiation graft polymerization on nano-inorganic particles: an effective means to design polymer based nanocomposites [J]. J Mater Sci Lett. 2000, 19: 1159-1161.
    54. Wang G, Chen XY, Huang R, Zhang L. Nano-CaCO3/polypropylene composites made with ultra-high-speed mixer [J]. J Mater Sci Lett. 2002. 21: 985-986.
    55.徐伟平,黄锐等.纳米级CaCO_3填充HDPE复合材料的研制.[J]中国塑料.1998,12(6):30—34.
    56.黄玉强,张彦奇,华幼卿.LLDPE/纳米SiO_2复合材料的制备与性能研究.[J]中国塑料.2003,17(1):25-29.
    57.乔放,朱晓光,关淑敏,漆宗能,蔡忠龙.硅灰石增韧聚合物的界面粘接判据[J].高分子材料科学与工程.1996,12(6):11-15.
    58. Qiang Fu, GuiHeng Wang, Jiu Shen. Polyethylene Toughened by CaCO_3 Particle: Brittle-Ductile Transition of CaCO_3-Toughened HDPE [J]. J. Appl. Polym. Sci. 1993(49): 673-677.
    59. Chun Lei Wu, Ming Qiu Zhang, Min Zhi Rong, Klaus Friedrich, Silica nanoparticales filled polypropylene: effects of particle surface treatment,matrix ductility and particle species on mechanical performance of the composites [J]. Composites Science and Technology. 2005, 65: 635-645.
    60. Vaia R A, Jandt KD, Kramer E J, et al. Kinetics of Polymer Melt Intercalation [J]. Macromolecules. 1995, 28(24): 8080-8085.
    61. Vaia R A, Giannelis E P. Polymer Melt Intercalation in Organically-Modified Layered Silicates: Model Predictions and Experiment [J]. Macromolecules. 1997, 30(25): 8000-8007.
    62. Richard A. Vaia, Bryan B.Sauer, Oliver K.Tse, Emmanuel P. Glannelis. Relaxations of Confined chains in Polymer Nanocomposites: Glass Transition Properties of Poly(ethylene oxide)Intercalated in Montmorillonite [J]. Polym. Sci. Part B: Polym. Phys. 1997, 35: 59-67.
    63. Heinemann J, Reichert P, Thomson R, Mulhaupt R. Polyolefin nanocomposites formed by melt compounding and transition metal catalyzed ethane homo- and copolymerization in the presence of layered silicates [J]. Macromol Rapid Commun. 1999, 20: 423-30.
    64.王家俊,益小苏.高聚物/无机物插层型纳米复合材料.材料导报.1999,13(3):54-56.
    65.杨红梅,郑强.熔融插层制备聚合物-层状硅酸盐纳米复合材料研究进展[J].功能材料.2003,34(3):235-237.
    66.杨凤,赵海超,张学全,黄葆同,冯之榴.原位聚合制备聚乙烯/蒙脱土(MMT)纳米复合材料的研究[J].高等学校化学学报.2003(4):711-714.
    67.张雷,柳忠阳,胡友良.蒙脱土为载体的茂金属催化剂催化乙烯聚合[J].石油化工.1998(27):890-894.
    68.郭存悦,柳忠阳,徐德民,贺大为,胡有良.粘土/聚烯烃纳米复合材料研究进展[J].应用化学,2001(18)5:351-356.
    69.蔡洪波,张春雨,李海乐,原宇平,董为民,陈斌,张利仁,刘志军,姜明才,张学全.聚乙烯/蒙脱土纳米复合材料结构与力学性能的研究[J].塑料科技.2006(34):9-11.
    70.李德泉,张树平.纳米聚合物复合材料开发与技术[J].甘肃科学学报.2002,14(2):61-65.
    71. C. R. Kagan, D. B. Mitzi, and C. D. Dimitrakopoulos, Organic-Inorganic Hybrid Materials as Semiconducting Channels in Thin-Fihn Field-Effect Transistors [J], Science, 1999, 286(29): 945-947.
    72. Cheetham AK, Rao CN, Feller RK, Structural diversity and chemical trends in hybrid inorganic-organic framework materials [J]. Chem Commun (Camb). 2006 Dec 14; (46): 4780-95.
    73. Yah Gao, Namita Roy Choudhury, Naba Dutta, et al. lonomer-silica hybrids via sol-gel reaction[J]. Polymer, 2005, 46: 4013-4022.
    74. Tomoki Ogoshi, Yoshiki Chujo, Synthesis of Photosensitive Organic-Inorganic Polymer Hybrids by Utilizing Caged Photoactivatable Alkoxysilane [J], Macromolecules, 2004. 37 (16), 5916-5922.
    75. Wendy U. Huynh, Janke J. Dittmer, and A. Paul Alivisatos, Hybrid Nanorod-Polymer Solar Cells [J], Science 2002 295(29): 2425-2427.
    76. Christine J Landry, Bradley K Coltrain, Jefrey A. Wesson. In situ polymerization of tetraethoxysilane in polymers: chemical nature of the interactions [J]. Polymer. 1992, 33(7): 1496
    77. Wilkes G L, Noell J L W, Mohanty D K. The Preparation and Characterization of New Polyether Ketone-Tetraethylorthosilicate Hybrid Glasses by the sol-gel Method [J]. J. Appl. Polym. Sci. 1990, 40: 1177-1194.
    78.张超灿,孙江勤,李曦,李华智.溶胶-凝胶法制备PMMA/SiO_2透明纳米复合材料的研究[J].玻璃钢/复合材料.2000(4):18-20.
    79.张隽,罗胜成,桂琳琳等.PMMA-TiO_2有机无机杂化玻璃的制备与表征[J].物理化学学报.1996,12(4):289~292.
    80.黄智华,邱坤元.溶胶-凝胶法合成甲基丙烯酸甲基/二氧化钛-二氧化硅杂化聚合物材料.[J]高分子学报.1997,4:434.
    81.解廷秀,周重光,冯圣玉.熔胶-凝胶法制备PVC/SiO_2杂化材料及其性能研究[J].应用基础与工程科学学报.1999,7(2):158-162.
    82. Yukio Mizutani, Satoshi Nago. Micropropylene Films Containing Ultrafine Silica Particles [J]. J Appl Poly Sci. 1999(72): 1489-1494.
    83.王际达,林灿昌.用特征线—差分方法模拟含扩散的非线性色谱过程,计算机与应用化学[J],1997,14(1):55.
    84. Zhang S, T; uboi A, Nakata H, lshikawa T. Activity coefficients and diffusivities of solvents in polymers [J]. Fluid Phase Equilibria, 2002, 194-197: 1179-1189.
    85. LIU Oina-Lin. GONG Xiona-Hui. Prediction of mutual diffusion coefficients in polymer solutions using UNIFAC-related activity coefficient model[J]. Comp and Applied Chem, 2003, 20(3): 225.
    86.龚方红,林明德,汪信等.乙烯基硅烷在聚乙烯中的传输行为[J],应用化学,2004,21(6):1277.
    87.白康生.Visual Basic6.0程序设计[M],北京:清华大学出版社,2004.
    88. Rabek, J.F, Auths. WU Shi-kang, QI ZongNeng Trans. Experimental Methods in Polymer Chelnistry[M], Beijing: Science Press, 1987.
    89. Crank. J. The Mathematics of Diffusion[M], 2nd Edn. Oxford Univ. press (Clarendon), London and New York, 1975.
    90.孔祥谦.有限单元法在传热学中的应用[M],北京:科学出版社,1998.
    91. A. Smedberg, T. Hjertberg, B. Gustafsson. Effect of molecular structure and topology on network formation in peroxide crosslinked polyethylene [J]. Polymer 44 (2003) 3395-3405.
    92.冯宁,庞文民,戚嵘嵘.高密度聚乙烯支化类型与密度及结晶度关系的研究[J],中国科学技术大学学报 1999,29:334-340.
    93. Y.T. Shieh, J.S. Liau, T.K. Chen, An investigation of water crosslinking reactions of silane-grafted LDPE [J], J. Appl. Polym. Sci. 81 (2001) 186-196.
    94. A. Smedberg, T. Hjertberg, B. Gustafsson, Effect of molecular structure and topology on network formation in peroxide crosslinked polyethylene [J], Polymer 44 (2003) 3395-3405.
    95. S. Kudla, Silane crosslinking of polyolefins [J], Polimery 47 (2002) 762-768.
    96. Z.Z. Wang, Y. Hu, Z. Gui, R.W. Zong, Halogen-free flame retardation and silane crosslinking of polyethylenes [J], Polym. Test. 22 (2003) 533-538.
    97. G.L.A. Sims, C.S. Sipaut, Crosslinking of polyolefin foams—Ⅰ. Effect of triallyl cyanurate on dicumyl peroxide crosslinking of low-density polyethylene [J], Cell Polym. 20 (2001) 255-277.
    98. Peter G. Pape, Moisture crosslinking process for foamed polymers [J], Journal of Vinyl and Additive Technology 6(2000) 49-52.
    99.何曼君等,高分子物理,上海,复旦大学出版社,1990,329~334,338~340.
    100. T. Ozawa, Kinetics of non-isothermal crystallization [J], Polymer 12 (1971) 150-158.
    101. M.L. Di Lorenzo, C. Silvestre. Non-isothermal crystallization of polymers [J], Prog. Polym. Sci. 24 (1999) 917-950.
    102. C.M.Jiao, Z.Z.Wang, X.M.Liang, Non-isothermal crystallization kinetics of crosslinked polyethylene [J] Polyln. Test. 24 (2005) 71-80.
    103. J.L. Chen, Q. Sun, Y.K. Zou, G. Xue, DSC studies on the melting crystallization of polyethylenes prepared fiom alkanes of varying molecular size [J], Polymer 43 (2002) 6887-6891.
    104. Y.T. Shieh, H.C. Chuang, DSC and DMA studieson silane grafted and water-crosslinked LDPE/LLDPE blends [J], J. Appl. Polym. Sci. 81 (2001) 1808-1816.
    105. M.T.Run, J.G.Gao, Z. Li, Nonisothermal crystallization and melting behavior of mPE/LLDPE/LDPE ternary blends [J], Thennochimica Acta 429 (2005) 171-178.
    106.于逢源,肖汉文,徐冰等.低密度聚乙烯的接枝改性[J],应用化学,2005,22(7):796.
    107. Strobl G R, Hagedorn W. Raman Spectroscopic Method for Determining the Crystallinity of Polyethyene[J] J Polym Sci: Polm. Phys. Ed, 1978, 16(7): 1181.
    108.徐云华,瞿保钧,张裕恒.光交联聚乙烯相结构的拉曼光谱研究[J],化学物理学报 1997,10(2):140-144.
    109.谢侃,张建耀,刘少成.高分子材料科学与工程[J],2006,22(1):127.
    110.庞文民,戚嵘嵘,冯宁等.超高分子量聚乙烯凝胶/结晶膜中链缠结的Raman研究[J],功能高分子学报,1999,12(3):49-52.
    111. Szep A, Anna P, Csontos I, et al. Polymer Degradation and Stability [J], 2004, 85: 1023-1029.
    112. Veres M, Fule M, Toth S, Posik I, Koos M, Toth A, Mohai M, Bertoti I. Thin Solid Films [J], 2005, 482: 211.
    113. Morgan R L, Hill M J, Barham P J, A van der Pol, Kip B J, Ottjes R, J van Ruiten. Polymer [J], 2001, 42: 212.
    114.薛奇.高分子结构研究中的光谱方法[M],北京:高等教育出版社,1995:81.
    115.殷敬华,莫志深.现代高分子物理学[M].北京:科学出版社,2001:478.
    116.吴彤,宋亮,赵磊等,m-PE LLD/PE LD共混物结晶结构的研究[J],中国塑料,2005,19(1):34-37.
    117. J.Hill and P. J. liarham. Liquic-Liquid Phase Separation Blends Containinn Copolymers Produced Using Metallocene Catalysts[J], Polymer, 1997, 38(22): 5595-5601.
    118. Hoffman J D. [J]SPE Trans, 1964, 4: 315-319.
    119. A.M.E.Baker, A.H.Windle. The effects of branching and fibre drawing on the crystal structure of polyethylene [J]. Polymer, 2001(42): 651-665.
    120. J-M Gonnet, J Guillet, J Sirakov, etc. "In-situ" Monitoring of the non-isothermal crystallization of polymers by dielectric spectroscopy[J]. Polymer Engineering and Science, 2002, 42(6): 1159-1170
    121. Clark D C, Brker W E, Whitney R A. Peroxide-initiated comonomer grafting of styrene and maleic anhydride onto polyethylene: effect of polyethylene microstructure[J]. Appl Polym Sci, 2001, 79(1): 96-107.
    122.吴其晔,王新,胡有良等.线性聚乙烯及线性聚乙烯/高岭土复合材料的异常流变行为[J].高分子材料科学与工程,2000,16(2):70.
    123.钱家盛.聚合物基纳米复合材料的制备与性能研究[J].中国科学技术大学博士论文.
    124.阳范文,赵耀明,高倩斐等.HDPE/LDPE混合物熔融接枝GMA的研究[J].中国塑料,2001,15(7):58-61.
    125.叶南飚,沈经纬.硅烷接枝聚乙烯反应的DSC研究[J].中国塑料,2001,15(7):62-65.
    126. Lusinchi J M, Boutevin B, Torroes N. In situ compatibilization of HDPE/PET blends[J]. Appl Polym Sci, 2001, 79(5): 874-880.
    127.李海东,庞洪宝,程凤梅,杜春龙.m-LLDPE/nano-SiO2复合材料的性能和形态结构研究[J].塑料 科技,2005,5:45-48.
    128.江盛玲,华幼卿.纳米二氧化硅填充线性低密度聚乙烯的等温结晶动力学[J].北京化工大学学报,2004,31(2):49-53.
    129. Liang J Z, Li Y, Tjong S C. Crystallization behavior of glass bead filled low-density polyethylene composites[J]. J Appl Polym Sci, 1999, 71: 687~692.
    130. YAMAZAKI HITOSHI, AOKI TOMOAKI, KAWAI HIROMASA. Cyclolefin polymer compositions containing filler with good mechanical strength and their moldings [P]. J P2001, 14: 488.
    131. Alan Sellinger, Pilar M. Weiss, Anh Nguyen, etc, Continuous self-assembly of organic-inorganic nanocomposite coatings that mimic nacre [J], Nature, 1998, 394 (16): 256-260.
    132. Dirix Y, Bastiaansen C, Caseri W, et al. Preparation structure and properties of uniaxially oriented polyethylene silver nanocomposites [J]. J Mater Sci, 1999, 34: 3859-3866.
    133. Alexandre M, Dubois P, Sun T, Graces JM, Jerome R. Polyethylene-layered silicate nanocomposites prepared by the polymerization-filling technique: synthesis and mechanical properties [J]. Polymer 2002; 43: 2123-32.
    134. Q. R. Huang, Ho-Cheol Kim, Elbert Huang, etc, Miscibility in Organic/Inorganic Hybrid Nanocomposites Suitable for Microelectronic Applications: Comparison of Modulated Differential Scanning Calorimetry and Fluorescence Spectroscopy [J], Macromolecules, 2003. 36 (20), 7661-7671.
    135.倪克钒,单国荣,翁志学.制备有机-无机杂化纳米材料的研究进展[J],高分子通报,2006(11):9-15.
    136. Keisuke Kageyama, Jun-ichi Tamazawa, and Takuzo Aida, Extrusion Polymerization: Catalyzed Synthesis of Crystalline Linear Polyethylene Nanofibers Within a Mesoporous Silica [J], Science 1999 285(24): 2113-2115.
    137. Heinemann J, Reichelt P, Thomson R, Mulhaupt R. Polyolefin nanocomposites formed by melt compounding and transition metal catalyzed ethane homo- and copolymerization in the presence of layered silicates [J]. Macromol Rapid Commun 1999; 20: 423-30.
    138. Jin Y-H, Park H-J, Im S-S, Kwak S-Y, Kwak S. Polyethylene/clay nanocomposite by in situ exfoliation of montmorillonite during Ziegler-Natta polymerization of ethylene [J]. Macromol Rapid Commun 2002; 23: 135.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700