用户名: 密码: 验证码:
混凝土损伤机理及饱和混凝土力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与混凝土工程应用繁荣兴旺的背景相比较,关于混凝土科学、尤其是混凝土本构关系研究明显赶不上发展的需要。正确合理的揭示材料损伤破坏机理,已成为混凝土损伤力学能否进一步发展的关键。围绕着我国西部大开发、西电东送及南水北调等战略需求,我国西部地区正在或即将兴建一大批重力坝和拱坝等高坝水电项目。我国西部地区属于地震高发区,同时高坝混凝土结构大部分处于深水高压饱和状态,因此针对孔隙水压对混凝土材料静动态力学性能的研究具有重要的现实意义。本文结合国家自然科学基金重点项目(90510018)和国家自然科学基金面上项目(50679006),针对混凝土材料细观损伤演化机制以及湿态混凝土力学特性进行了系统深入的研究。
     1.通过对连续损伤力学与细观统计损伤力学的基本理论进行比较,指出现有损伤力学模型的缺陷和不足,将混凝土材料细观损伤对宏观力学性能的影响重新概括为断裂损伤和屈服损伤两种模式。基于平行杆模型PBS,并结合现代非线性科学中协同学、突变论、混沌学的有关原理以及声发射试验的有关成果,确定了细观两种损伤模式演化过程的特征参数,建立了描述混凝土等准脆性材料单轴拉伸变形破坏全过程的细观统计损伤模型。将材料整个拉伸破坏过程分为两个损伤阶段,均匀损伤阶段和局部破坏阶段;区分了峰值名义应力状态和临界状态,解释了两状态对应的物理含义,强调了临界状态在整个拉伸破坏过程中所起的关键性作用。假设了局部破坏阶段断裂过程区内的变形机制,并建议临界状态作为本构模型的最终破坏点。
     2.固体的破坏过程是力学家与固体物理学家为之奋斗了三个半世纪的跨层次难题,揭示材料的损伤破坏机理,是数十年来众多国内外研究者矢志不渝的目标和方向。基于所建立的细观统计损伤模型描述的混凝土单轴拉伸损伤演化过程,本文提出了新的准脆性材料破坏理论——材料内在力学性能发挥机制理论。结合协同学的观点,将混凝土等准脆性材料看作是能动的、具有自组织行为特性的复杂系统;认为材料变形破坏过程本质上是材料以“损伤”为代价,通过自身潜在的力学性能不断发展和释放以适应外界荷载环境变化的能动的自组织行为过程;而这个自组织行为赖以进行所遵循的内在动力学机制由材料内在力学性能发挥机制控制。采用类比的科学分析方法,通过将材料损伤演化、生物进化、社会发展这三类客观世界中典型的非线性运动形式进行比较,证明本文提出的材料破坏理论的正确性和合理性。
     3.混凝土材料的动态力学性能和静态相比有显著的不同,一般认为混凝土动态应变率效应包括惯性效应和孔隙水粘性效应两部分。传统唯象的宏观损伤本构模型无法反映材料复杂的细观损伤演化机制,因此更无法描述动态应变率效应对材料细观损伤演化机制的影响。本文针对干燥混凝土建立了考虑惯性效应的单轴拉伸动态统计损伤模型,针对饱和混凝土建立了综合考虑惯性效应和粘性效应的单轴拉伸动态统计损伤模型。材料自身的惯性效应引起材料破坏形态以及细观损伤演化过程的改变,模型中通过调整两种细观损伤模式演化过程的特征参数来模拟;水的粘性效应则调整了混凝土基体的受力状态,模型中通过并联一个阻尼元件来模拟。所建议模型物理意义直观、明确,形象的呈现出了干燥及饱和混凝土动态拉伸破坏过程的物理图景;从宏细观相结合的角度进一步揭示了混凝土等准脆性材料损伤破坏的力学机制。
     4.混凝土的压缩破坏过程实质上是由于泊松效应在细观产生局部拉应变从而引起微裂纹萌生、扩展、成核的连续损伤演化过程。传统唯象的宏观压缩本构模型无法反映材料的细观损伤演化机制。本文根据混凝土材料单轴压缩破坏过程的细观损伤机理,在单轴拉伸统计损伤模型的基础之上,进一步建立了混凝土单轴压缩统计损伤模型。根据柏松效应引起的横向拉损伤的演化过程,确定受压方向的损伤演化规律并建立相应的压应力-应变本构关系。通过理论预测和试验结果进行比较,初步说明采用本文建议的统计损伤模型描述混凝土材料单轴受压过程损伤破坏机理的可行性和适用性。
     5.大部分针对湿态或饱和混凝土力学性能的研究均是在试验的基础上给出宏观现象的描述,而很少有从理论层面上探讨影响机理。本文采用复合材料等效夹杂理论,将细观孔隙分为活性孔隙和非活性孔隙,建立了双类孔隙夹杂模型,预测不同饱和度情况下孔隙及孔隙水对混凝土材料弹性模量的影响。将两类孔隙和水泥砂浆作为等效基体,粗骨料作为硬化夹杂,建立了双重夹杂模型,并结合细观断裂力学方法,建立了综合考虑多种因素统一的混凝土单轴压缩强度公式,探讨细观各种组分不同体分比、不同孔隙率以及不同饱和度情况对湿态混凝土抗压强度的影响。将太沙基有效应力原理引入到饱和混凝土力学性质的研究中,建立了符合混凝土材料自身微结构特点的有效应力原理表达式,探讨复杂受力环境中孔隙水压力对混凝土抗压强度的影响机制。根据大量的试验结果研究了湿态混凝土强度、初始弹模与饱和度、加载应变率之间的关系。考虑含水率对混凝土强度和初始弹性模量的影响,结合现有规范建议的混凝土本构模型,建立了湿态混凝土静、动态工况单轴拉伸、压缩应力-应变全过程曲线实用经验表达式。
Comparing with the booming background of the engineering application of concrete,the research on the concrete science and especially the constitutive relation of concrete couldn't satisfy the need of the development of the concrete engineering.Correct and rational understanding of the damage and failure mechanism of material is the key point to the development of concrete damage mechanics.With the progress of Grand Western Development Program,West-East Power Transmission program and South-to-North Water Diversion,quite a few high darn hydropower projects are being or will soon be constructed in the Western.The Western of China is the frequently-occurring earthquake area,and the most concrete regions of high dam are in the deep water,high pressure and saturated state,so the study on the influence of the pore water pressure on the static and dynamic mechanical properties of concrete material has important realistic meaning.With the support from National Nature Science Foundation of China under grants No.90510018 and 50679006,in-depth research was conducted regarding the meso-damage evolution mechanism of concrete and mechanical properties of saturated concrete.
     1.By comparing the basic theories of Continuum Damage Mechanics and Statistical Damage Mechanics,the defects and shortcomings of the existing damage mechanical models are pointed out.The influence of the meso-damage mechanism on the macroscopic mechanical properties of concrete materials is newly summarized into two aspects,rupture damage and yield damage.Based on the parallel bar system,combining with the synergetic method,the catastrophe theory and also the acoustic emission test,two new activated statistical damage models for quasi-brittle solid are developed,which could simulate the whole damage and fracture process of material when exposed to quasi-static uniaxial tensile traction.The whole damage course is newly divided into the statistical even damage phase and the local breach phase.The two characteristic states,the peak nominal stress state and the critical state are distinguished,and emphasize the critical state plays a key role during the whole damage evolution course.A physical mechanism existing in the fracture process zone during the local breach phase was assumed.The critical state is proposed as the final failure point in the compressive constitutive model.
     2.The failure process of solid is the trans-scales problem,for which the mechanics workers and the solid physicists have struggled for three and half centuries.To reveal the damage and failure mechanism of material is the persevering aim for the researchers both at home and abroad during the past several decades.Based on the damage evolution process of concrete under uniaxial tension described by the statistical damage model in this paper,a novel material failure theory,i.e.the exerting mechanism of internal mechanical capability of material is proposed.Combining with the viewpoint of the synergetic theory,the quasi-brittle material is regarded as the complicated system with the characteristics of active and self-organization behavior.The essence of the deformation and failure of solid materials is the self-organization behavior process to adapt the changes of the external load environment by the exerting and release of the potential mechanical capabilities the material owns by itself,at the cost of "damage",and the self-organization behavior obeys the exerting mechanism of intemal mechanical capability.By comparing the processes of the material damage evolution, the social advancement and the biological evolution which are the three typical nonlinear motion forms in the objective world,the correctness and rationality of this new fracture theory is proven.
     3.The dynamic mechanical properties of concrete material is remarkable different from the static state.The physical mechanism of the dynamic strain rate effect is usually divided into two aspects,the inertial effect and the viscous effect.The traditional phenomenological damage models couldn't reflect the complicated meso-damage evolution mechanism,so they can't describe the influence of the dynamic strain rate effect on the meso-damage evolution mechanism.The dynamic statistical damage models under uniaxial tension,which consider the inertial effect for dry concrete and the inertial and viscous combinated effect for the saturated concrete are proposed respectively.The result of the inertial effect leads to the change of the fracture form and the evolution process of the damage accumulation,and be simulated by adjusting the characteristic parameters of the evolution process of the two damage modes.The viscous effect of the pore water leads to the adjustment of the loading condition of the matrix,and be simulated by paralleling a damper with the static statistical damage model.The proposed models lively and vividly describe the damage evolution mechanism of dry and saturated concrete under dynamic loading case from the macroscopic-microscopic viewpoint.
     4.The failure of concrete specimen under uniaxial compression mainly contributes to the nucleation and growth of microcracks due to local tensile strain caused by the poisson effect. The traditional phenomenological damage models couldn't reflect the tensile damage evolution mechanism in meso-scale.Based on the statistical damage model under uniaxial tension,a statistical damage model under uniaxial compression is further proposed.The damage evolutional law in the compressive direction is confirmed by the tensile damage evolution process of the lateral deformation due to the poisson effect,and then the compressive stress-strain relationship is defined.The comparisons between the theoretical results and the experiment results preliminarily verify the rationality and feasibility of understanding the failure mechanism of concrete through the statistical damage constitutional law.
     5.Most of the researches on the mechanical property of wet or saturated concrete are the description of the macroscopic phenomenon based on the experiment,but the influence mechanism of the pore water pressure has been seldom reported.Concrete is a porous material with two pore types,active pore and entrained non-active pore,and the former will be filled with water in moisture environment.Based on the effective inclusion theory,a double pore inclusion model is proposed to predict the influence of the pore and the pore water on the initial elastic modulus of moisture concrete.The two types of pore and the mortar are regarded as the equivalent matrix,the aggregate as the inhomogeneous inclusion,a kinds of double inclusion model is proposed;and an united compressive strength expression is established combining with the fracture mechanics method,which could consider the influence of the different volume fraction of kinds of phases,pore rate and the water saturation.The Terzaghi's effective stress principle is introduced into the study of the mechanical properties of saturated concrete,and the specific expression of effective stress principle applicable to saturated concrete is established to investigate the influence mechanism of pore water pressure on the strength of concrete under complicated stress states. The relationship between strength,initial elastic modulus and saturation,loading rate of wet concrete are studied based on lots of test results in the literature.Combining with the constitutive relation of concrete suggested by the specification,the practical constitutive equations for wet concrete under static and dynamic uniaxial tension and compression are established,which considers the influence of the water content on the strength and the initial elastic modulus of concrete.
引文
[1]张庆华.混凝土本构模型及损伤力学研究:(博士学位论文).上海:同济大学,2000.
    [2]尚仁杰.混凝土动态本构行为研究:(博士学位论文).大连:大连理工大学,1994.
    [3]肖诗云.混凝土率型本构模型及其在拱坝动力分析中的应用:(博士学位论文).大连:大连理工大学,2002.
    [4]闫东明.混凝土动态力学性能试验与理论研究:(博士学位论文).大连:大连理工大学,2006.
    [5]王良琛.混凝土坝地震动力分析.北京:地震出版社,1981.
    [6]汝乃华,姜忠胜.大坝事故与安全-拱坝.北京:中国水利水电出版社,1995.
    [7]林皋,陈健云.混凝土大坝的抗震安全评价.水利学报,2001,32(2):8-15.
    [8]林皋.混凝土大坝抗震安全评价的发展趋向.防灾减灾工程学报,2006,26(1):1-12.
    [9]李杰.混凝土随机损伤本构关系研究新进展.东南大学学报(自然科学版),2002,32(5):750-755.
    [10]张楚汉.论岩石、混凝土离散-接触-断裂分析.岩石力学与工程学报,2008,27(2):217-235.
    [11]黄克智,徐秉业.固体力学发展趋势.北京:北京理工大学出版社,1995.
    [12]夏蒙棼,韩闻生,柯孚久等.统计细观损伤力学和损伤演化诱致突变(Ⅰ).力学进展,1995,25(1):1-40.
    [13]白以龙,汪海英,夏梦棼等.固体的统计细观力学-连接多个耦合的时空尺度.力学进展。2006。36(2):286-305.
    [14]Bazant Z P,Chen E P.Scaling of structural failure.Applied Mechanics Reviews,1997,50(10):593-627.
    [15]钱学森.物理力学讲义.北京:科学出版社,1962.
    [16]陈惠发著,余天庆等译.土木工程材料的本构方程.武汉:华中科技大学出版社,2001.
    [17]过镇海.混凝土的强度和变形.北京:清华大学出版社,1997.
    [18]李敏.混凝土损伤研究:(硕士学位论文).开封:河南大学,2005.
    [19]殷有泉.岩石的塑性、损伤及其本构表达.地质科学,1995,30(1):63-70.
    [20]俞茂宏,彭一江.强度理论百年总结.力学进展,2004,34(4):529-560.
    [21]俞茂宏,Yoshimine M,强洪夫等.强度理论的发展和展望.工程力学,2004,21(6):1-20.
    [22]俞茂宏,赵坚,关令苇.岩石、混凝土强度理论:历史、现状、发展.自然科学进展,1997,7(6):653-660.
    [23]宁建国.混凝土材料动态性能的经验公式、强度理论与唯象本构模型.力学进展,2006,36(3):389-405.
    [24]高路彬.混凝土变形与损伤分析.力学进展,1993,23(4):510-519.
    [25]郭少华.混凝土破坏理论研究进展.力学进展,1993,23(4):520-529.
    [26]刘小敏,王华,杨萌等.混凝土本构关系研究现状及发展.河南科技大学学报(自然科学版).2004。(5):67-71.
    [27]张盛东.混凝土本构理论研究进展与评述.南京建筑工程学院学报(自然科学版),2002,(03):46-55.
    [28]肖建清,徐根,蒋复量.混凝土损伤模型的分类研究.矿业研究与开发,2007,27(1):82-86.
    [29]Kotsovos M D.Generalized Stress-Strain Relations for Concrete.Journal of Engineering Mechanics,1978,104(4):845-855.
    [30]Chert A C T,Chert W F.Constitutive relations for concrete.Journal of Engineering Mechanics Div.ASCE,1977,101(4):465-481.
    [31]Bazant Z P,Kim S S.Plastic-fracturing theory for concrete.Journal of Engineering Mechanics Div.ASCE,1979,105(6):407-428.
    [32]Bazant Z P,Bhat P D.Endochronic theory of inelasticity and failure of concrete.Journal of Engineering Mechanics Div.ASCE,1976,102(5):701-722.
    [33]Krajcinovic D.Constitutive equations for damaging materials.Journal of Applied Mechanics,1983,50:355-360.
    [34]Krajcinovic D.Damage mechanics.Amsterdam:Elsevier,1997.
    [35]Kachanov L M.On the time to failure under creep condition.Izv.Akad.Nauk.USSR.Otd.Tekhn.Nauk.1958,8:26-31.
    [36]Rabotnov Y N.On the equations of state for creep.Progress in Applied Mechanics,1963,307-315.
    [37]Janson J,Hult J.Fracture mechanics and damage mechanics,a combined approach.Journal of Applied Mechanics,1977,1(1):59-64.
    [38]Dougill J W.On stabie progressively fracturing solids.Journal of Applied Physics,1976,27:423-437.
    [39]Lemaitre J,Chaboche J.Aspect phenomenological delay rupture pare endommagement.Journal of Applied Mechanics,1978,12:317-365.
    [40]Lemaitre J,Plumtree J.Application of damage concepts to predict creep-fatigue failures,Journal of Engineering Materials and Technology,ASME,1979,101:284-292.
    [41]Lemaitre J.A continuous damage mechanics model for ductile fracture,Journal of Engineering Materials and Technology,1985,107(1):83-89.
    [42]Lemaitre J A.Course on damage mechanics.Berlin:Springer-verlag,1992.
    [43]Lemaitre J.Anisotropic damage law of evolution.European Journal of Mechanics,A/Solids,2000,19(2),187- 208.
    [44]Krajcinovic D,Fonseka G.U.The continuous damage theory of brittle materials Partl:general theory.Journal of Applied Mechanics,ASME,1981,48:809- 824.
    [45]Krajcinovic D.Continuous damage mechanics revisited:basic concept and definitions.Journal of Applied Mechanics,1985,52:829-834.
    [46]Krajcinovic D,Lemaitre J.Continuum damage mechanics theory and applications.Springer-Verlag,1987.
    [47]Krajcinovic D.Selection of damage parameter:art or science?.Mechanics of Materials,1998,28(3):165- 179.
    [48]Krajcinovic D.Damage mechanics:accomplishments,trends,and needs.International Journal of Solids Structure,2000,37:267-277.
    [49]Chaboche J.Continuum damage mechanics:partl-general concepts.Journal of Applied Mechanics,1988,55:59-64.
    [50]Chaboche J.Continuum damage meehanies:partⅡ-damage growth,craek initiation,and crack growth.Journal of Applied Mechanics,1988,55:65-72.
    [51]Mazars J.A description of micro- and macro-scale damage of concrete structures.Engineering Fracture Mechanics,1986,25:729-737.
    [52]Mazars J,Berthaud Y,Ramtani S.The unilateral behavior of damage concrete.Engineering Fracture Mechanics,1990,35(4/5):629-635.
    [53]Kachanov L M.Introduction to continuum damage mechanics.Dordrecht:Martinus Nijhoff,1986.
    [54]谢和平.岩石混凝土损伤力学.徐州:中国矿业大学出版社,1990.
    [55]李灏.损伤力学基础.济南:山东科学技术出版社,1992.
    [56]吴鸿遥.损伤力学.北京:国防工业出版社,1990.
    [57]余天庆,钱济成.损伤理论及其应用.北京:国防工业出版社,1993.
    [58]楼志文.损伤力学基础.西安:西安交通大学出版社,1991.
    [59]李兆霞.损伤力学及其应用.北京:科学出版社,2002.
    [60]蔡四维,蔡敏.混凝土的损伤断裂.北京:人民交通出版社,1999.
    [61]冯西桥,余寿文.准脆性材料细观损伤力学.北京:高等教育出版社,2002.
    [62]余寿文,冯西桥.损伤力学.北京:清华大学出版社,1999.
    [63]于海祥,武建华,李强.混凝土损伤本构模型研究评述.重庆建筑大学学报,2007,29(2):68-72.
    [64]封伯昊,张立翔,李桂青.混凝土损伤研究综述[J]昆明理工大学学报(自然科学版),2001。26(3):21-30.
    [65]杨卫.细观力学和细观损伤力学.力学进展,1992,22(1):1-9.
    [66]黄克智,黄永刚.固体本构关系.北京:清华大学出版社,1999.
    [67]Nemat-Nasser S,Hori M.Micromechanics:Overall properties of heterogeneous Materials.The Netherlands:Elsevier,1993.
    [68]Gilormini P,Licht C,Suquet P.Growth of voids in a ductile matrix:a review.Archive of Applied Mechanics,1988,40(1):43-80.
    [69]Krajcinovic D.Damage mechanics.Mechanics of Materials,1989,8:117-197.
    [70]冯西桥.脆性材料的细观损伤理论和损伤结构的安定分析:(博士学位论文).北京:清华大学,1995.
    [71]Gurson A L.Continued theory of ductile rupture in void nucleation and growth,part Ⅰ:yield criteria and flow rules for porous ductile media.Journal of Engineering Materials Technology,1977,6(4):2-15.
    [72]Litewka A.Effective material constants for orthotropically damaged elastic solid.Archive of Applied Mechanics,1985,37(6):631-643.
    [73]Chow C L,Wang J.An anisotropic theory of elasticity for continuum damage mechanics.International Journal of Fracture,1987,33(1):3-16.
    [74]Chow C L,Chen X F.An anisotropic model of damage mechanics based on end chronic theory of plasticity.International Journal of Fracture,1992,55(2):115-130.
    [75]Chaboche J L.Anisotropic creep damage in the framework of continuum damage mechanics.Nuclear Engineering and Design,1984,73(3):309-319.
    [76]Loland K E.Continuum damage model for load response estimation of concrete.Cement and Concrete Research,1980,10:395-402.
    [77]余天庆.混凝土的分段线性损伤模型.岩石、混凝土断裂与强度,1982,2:14-16.
    [78]钱济成,周建方.混凝土的两种损伤模型及其应用.河海大学学报,1989,3:40-47.
    [79]张我华。金荑.各向异性损伤力学中的弹塑性分析.固体力学学报,2000,21(1):1719-1734.
    [80]Armero F,Oller S.A general framework for continuum damage models.Ⅱ.Integration algorithm,with application to the numerical simulation of porous metals.International Journal of Solids Structure,2000,37:7437-7464.
    [81]杜荣强.混凝土静动弹塑性损伤模型及在大坝分析中的应用:(博士学位论文).大连:大连理工大学,2006.
    [82]唐春安,朱万成.混凝土损伤与断裂-数值试验.北京:科学出版社,2003.
    [83]JuJ W,Lee X.Micromechanical damage models for brittle solids.Ⅰ:tensile loading.Journal of Engineering Mechanics,1991,117(10):1495-1514.
    [84]Lee X,Ju JW,Micromechanical damage models forbrittle solids.Ⅱ:compressive loading.Journal of Engineering Mechanics,1991,117(10):1515-1536.
    [85]Kachanov M.On the effective moduli of solids with cavities and cracks.International Journal of Fracture,1993,59(1):17-21.
    [86]Nemat-Nasser S,Obata M.A microcrack model of dilatancy in brittle materials.Journal of Applied Mechanics,1988,55(1):24-35.
    [873 Basista M.Micromechanical and lattice modeling of brittle damage.Warszawa:Praca Habilitacyjna,2001.
    [88]Murakami S.Notion of Continuum Damage Mechanics and Its Application to Anisotropic Creep Damage Theory.Journal of Engineering Materials and Technology,1983,105:99-105.
    [89]邢修三.脆性断裂的微观机理和非平衡统计特性.力学进展,1986,16(4):495-510。
    [90]Bazant Z P.Microplane Model for Progressive Fracture of Concrete and Rock.Journal of Engineering Mechanics,1985,111(4):559-582.
    [91]Perice F T.Tensile test for cotton yarns vs “the weakest link”.J.Textile Inst.,1926,17:355-368.
    [92]Hult J,Travnicek l.Carrying capacity of fibre bundles with varying strength and stiffness.Journal de Mecanique Theorique at Appliquee,1983,2(4):643-657.
    [93]Chrzanowski M,Hult J.Ductile creep fracture of fibre bundles.Eengineering of Fracture Mechanics,1987,28(5/6):681-688.
    [94]Weibull W.A statistical distribution function of wide applicability.Journal of Applied Mechanics,1951,18(3):293-297.
    [95]Krajcinovic D,Silva M A G.Statistical aspects of the continuous damage theory.International Journal of Solids Structure,1982,18(7):551-562.
    [96]Iwan W D.On a class of models for the yielding behaviour of continuous and composite systems.Journal of Applied Mechanics,1967,34:612-617.
    [97]Breysse D.Probabilistic formulation of damage-evolution law of cementious composites.Journal of Engineering Mechanics,1990,116(7):1489-1511.
    [98]Kandarpa S,Kirkner D J.Stochastic damage model for brittle materials subjected to monotonic loading.Journal of Engineering Mechanics,1996,126(8):788-795.
    [99]李杰,张其云.混凝土随机损伤本构关系.同济大学学报(自然科学版),2001,29(10):1135-1141.
    [100]李杰.混凝土随机损伤力学的初步研究.同济大学学报(自然科学版),2004,32(10):1270-1277.
    [101]李杰,卢朝辉,张其云.混凝土随机损伤本构关系——单轴受压分析.同济大学学报(自然科学版),2003,31(5):505-509.
    [102]张其云.混凝土随机损伤本构关系研究:(博士学位论文).上海:同济大学,2001.
    [103]卢朝辉.混凝土随机损伤本构关系建模理论与试验研究:(博士学位论文).上海:同济大学,2002.
    [104]杨卫忠,王博.混凝土受拉随机损伤本构关系及其应用.工业建筑,2004,34(10):50-52.
    [105]杨卫忠,王保枝,樊濬.一种新的混凝土受拉本构模型.河南科学,2007,25(1):81-84.
    [106]杨卫忠,王博,樊濬.混凝土二轴受拉应力-应变关系.四川建筑科学研究,2007,33(04):31-33.
    [107]张盛东,樊承谋.混凝土受拉损伤本构关系的研究.哈尔滨建筑大学学报,2000,(1):69-73.
    [108]徐卫亚,韦立德.岩石损伤统计本构模型的研究.岩石力学与工程学报,2002,21(6):787-791.
    [109]韦立德,杨春和,徐卫亚.考虑体积塑性应变的岩石损伤本构模型研究.工程力学,2006,23(1):139-143.
    [110]曹文贵,方祖烈,唐学军.岩石损伤软化统计本构模型之研究.岩石力学与工程学报,1998,17(6):628-633.
    [111]曹文贵,张升,赵明华。软化与硬化特性转化的岩石损伤统计本构模型之研究.工程力学,2006,23(11):110-115.
    [112]曹文贵,张升.基于Mohr-Coulomb准则的岩石损伤统计分析方法研究.湖南大学学报(自然科学版),2005,32(1):43-47.
    [113]曹文贵,莫瑞,李翔.基于正态分布的岩石软硬化损伤统计本构模型及其参数确定方法探讨.岩土工程学报,2007,29(5):671-675.
    [114]曹文贵,赵明华,刘成学.基于Weibull分布的岩石损伤软化模型及其修正方法研究.岩石力学与工程学报,2004,23(19):3226-3231.
    [115]Carmeliet J,Hens H.Probable nonlocal damage model for continue with random field properties.Journal of Engineering Mechanics,1994,120(10):2013-2027.
    [116]Bhattacharya B,Ellingwood B.Continuum damage mechanics-based model of stochastic damage growth.Journal of Engineering Mechanics,1998,124(9):1000-1009.
    [117]王泓华.岩石应变软硬化特性转化的统计损伤理论研究:(博士学位论文).长沙:湖南大学,2007.
    [118]白洁,夏蒙棼,柯孚久等.损伤统计演化方程的性质和数值模拟.力学学报,1999,31(1):38-48.
    [119]陈厚群,丁卫华,蒲毅彬等.单轴压缩条件下混凝土细观破裂过程的X射线CT实时观测.水利学报,2006,37(9):1044-1050.
    [120]党发宁,刘彦文,丁卫华等.基于破损演化理论的混凝土CT图像定量分析.岩石力学与工程学报,2007。26(8):1588-1593.
    [121]周尚志,党发宁,陈厚群等.基于单轴压缩CT实验的混凝土破损细观机理研究.西安理工大学学报,2006,22(4):355-360.
    [122]尹小涛,葛修润,党发宁等.基于CT试验的混凝土破损机理生态学研究.混凝土,2006,(8):21-24.
    [123]刘彦文.混凝土力学行为的CT研究:(博士学位论文).西安:西安理工大学,2007.
    [124]纪洪广,裴广文,单晓云.混凝土材料声发射技术研究综述.应用声学,2002,21(4):1-5.
    [125]纪洪广,张天森,蔡美峰等.混凝土材料损伤的声发射动态检测试验研究.岩石力学与工程学报,2000,19(2):165-168.
    [126]纪洪广,贾立宏,李造鼎.混凝土材料在单轴拉伸时的声发射机理探讨.东北大学学报(自然科学版),1995,(6):568-572.
    [127]纪洪广,贾立宏,李造鼎.混凝土损伤的声发射模式研究.声学学报(中文版),1996,(S1):601-608.
    [128]纪洪广,蔡美峰.混凝土材料声发射与应力-应变参量耦合关系及应用.岩石力学与工程学报,2003,(2):57-61.
    [129]董毓利,谢和平,赵鹏.砼受压全过程损伤的实验研究.实验力学,1995,(2):95-102.
    [130]董毓利,谢和平,李世平.砼受压损伤力学本构模型的研究.工程力学,1995,13(1):44-53.
    [131]董毓利,谢和平,李玉寿.砼受压全过程声发射特性及其损伤本构模型.力学与实践,1995.17(4):25-28.
    [132]陈兵,姚武,吴科如.声发射技术在混凝土研究中的应用,无损检测,2000,(9):3-6,12.
    [133]I ida T,Watanabe H,Tomoda Y et al.Damage estimation of concrete core by AE rate process analysis.Proceeding of Japan Concrete Institute,2000,22(1):271-277.
    [134]殷正钢.岩石破坏过程中的声发射特征及其损伤实验研究:(博士学位论文).长沙:中南大学,2005.
    [135]朱万成,赵启林,唐春安等.混凝土断裂过程的力学模型与数值模拟.力学进展,2002,32(4):579-598.
    [136]夏晓舟.混凝土细观数值仿真及宏细观力学研究:(博士学位论文).南京:河海大学,2007.
    [137]夏晓舟,章青,汤书军.混凝土细观损伤破坏过程的数值模拟.河海大学学报(自然科学版),2007,(3):319-325.
    [138]马怀发,陈厚群,周永发等.大坝混凝土试件三维细观力学并行计算研究.工程力学,2007,24(10):74-79.
    [139]马怀发,陈厚群,黎保琨.混凝土试件细观结构的数值模拟.水利学报,2004,(10):27-35.
    [140]刘光廷,王宗敏.用随机骨料模型数值模拟混凝土材料的断裂.清华大学学报(自然科学版),1996,36(1):84-89.
    [141]杨强,程勇刚,张浩.基于格构模型的岩石类材料开裂数值模拟.工程力学,2003,20(1):117-120.
    [142]王宝庭,宋玉普,赵国藩.混凝土随机颗粒模型的网格自动剖分方法.大连理工大学学报,1999。39(3):107-112.
    [143]朱万成,唐春安,赵文,滕锦光.混凝土试样在静态载荷作用下断裂过程的数值模拟研究.工程力学,2002,19(6):148-153.
    [144]徐涛,唐春安,张哲等.单轴压缩条件下脆性岩石变形破坏的理论、试验与数值模拟.东北大学学报(自然科学版),2003,24(1):87-90.
    [145]朱万成.混凝土断裂的细观数值模型及应用:(博士学位论文).沈阳:东北大学,2000。
    [146]沈珠江,陈铁林.岩土破损力学--结构类型与荷载分担.岩石力学与工程学报,2004,23(13):2137-2142.
    [147]姜小春,谢和平,周宏伟.拉伸载荷下准脆性材料微裂纹损伤宏细观损伤变量关系初探.岩石力学与工程学报,2007,26(增1):2648-2653.
    [148]Takayuki H.Fractal structure of spatial distribution of microfracturing in rock.Geophysics.J.R.Austr,1987,90:232-239.
    [149]唐春安,徐小荷.岩石破裂过程失稳尖点突变模型.岩石力学与工程学报,1990,9(2):59-64.
    [150]唐春安.岩石破裂过程中的灾变.北京:煤炭工业出版社,1993.
    [151]Chunan Tang,John A H,Xiaohe Xu..Rock and failure instability and related aspects of earthquake mechanics.Bering:China Coal Industy Publishing House,1993.
    [152]尹光志,李贺,鲜学福等.工程应力变化对岩石强度特性影响的实验研究.岩土工程学报,1987,9(2):20-28.
    [153]于广明,董春胜,潘永战等.混凝土的分形性及其单轴应力下裂纹演化的混沌效应.青岛建筑工程学院学报,2004,25(1):1-6.
    [154]于广明,魏晔,潘永战等.混凝土声发射规律的协同学研究及可视化模拟.青岛理工大学学报,2005,26(4):1-5.
    [155]魏金波,于广明,段欣.混凝土受压构件的协同损伤机理.青岛理工大学学报,2006,27(5):13-16.
    [156]魏金波.混凝土损伤演化的协同学研究及本构模型的建立:(硕士学位论文).青岛:青岛理工大学,2006.
    [157]纪洪广,贾立宏,李造鼎.声发射参数的灰色尖点突变模型及其在混凝土断裂分析中的应用.声学学报(中文版),1996,21(6):935-940.
    [158]纪洪广,蔡美峰.混凝土材料断裂的声发射自相似性识别特征.岩石力学与工程学报,1999,(2):39-42.
    [159]纪洪广,王基才,单晓云等.混凝土材料声发射过程分形特征及其在断裂分析中的应用.岩石力学与工程学报,2001,20(6):801-804.
    [160]谢和平,陈至达.断口定量分析的分形几何方法.工程力学,1989,6(4):1-8.
    [161]谢和平.岩土介质的分形孔隙和分形粒子.力学进展,1993,23(2):145-164.
    [162]谢和平.分形力学研究进展.力学与实践,1996,18(2):10-18.
    [163]徐志斌,谢和平.断裂尺度的分形分布与其损伤演化的关系.地质力学学报,2004,10(3):268-275.
    [164]高峰,谢和平,巫静波.岩石损伤和破碎相关性的分形分析.岩石力学与工程学报,1999,18(5):503-506.
    [165]白以龙,夏蒙棼,柯孚久.固体损伤的演化诱致灾变和预测.失效分析与预防,2007,2(1):1-5.
    [166]白以龙.工程结构损伤的两个重要科学问题——分布式损伤和尺度效应.华南理工大学学报(自然科学版),2002,30(11):11-14.
    [167]何国威,夏蒙棼,柯孚久等.多尺度耦合现象:挑战和机遇.自然科学进展,2004,(2):3-6.
    [168]Krajcinovic D,Rinaldi A.Thermodynamics and statistical physics of damage processes in quasi-ductile solids.Mechanics of Materials,2005,37:299- 315.
    [169]Hughes B P,Chapman B P.The complete stress-strain curve for concrete in direct tension.(R.I.L.E.M.),Bulletin,1966,30:95-97.
    [170]Gopalaratnam V S,Shah S P.Softening response of plain concrete in direct tension.Journal of ACI,1985,82:310-323.
    [171]Guo Zhenhai,Zhang Xiuqin.Investigation of complete stress-deformation curves for concrete in tension.ACI Materials Journal,1987,84:278- 285.
    [172]谢洪林.混凝土损伤机理及临界损伤特性分析:(硕士学位论文).昆明:昆明理工大学,2004.
    [173]林夏水.分形的哲学漫步.北京:首都师范大学出版社,1999.
    [174]彭瑞东,谢和平,周宏伟.岩石变形破坏过程的热力学分析.金属矿山,2008,381:61-64.
    [175]中华人民共和国国家标准.混凝土结构设计规范(GB 50010-2002).北京:中国建筑工业出版社,2002.
    [176]邓爱民,徐道远.混凝土单轴拉伸损伤试验研究.合肥工业大学学报,2003,26(1):77-80.
    [177]李士勇,田新华.非线性科学与复杂性科学.哈尔滨:哈尔滨工业大学出版社,2006.
    [178]谢和平,鞠杨,董毓利.经典损伤定义中的“弹性模量法”探讨.力学与实践,1997,19(2):1-5.
    [179]Bazant Z P,Pang S D.Mechanics-based statistics of failure risk of quasibrittle structures and size effect on safety factors.Proc of the National Academy of Sciences,2006,103(25):9434-9439.
    [180]唐雪松.损伤力学的热力学理论研究及工程应用:(博士学位论文).北京:北京航空航天大学,2000.
    [181]陈升平,蒋俊玲,李四年.混凝土拉伸演变的细观力学研究.工程力学,2003,20(5):190-193.
    [182]Drucker D C.Introduction to mechanics of deformable solid.New York:McGrawHill Book Co Inc,1967.
    [183]Hillerborg G A,Modeer M,Petersson P E.Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements.Cement and concrete research,1976,6:773-782.
    [184]BAZANT Z P,OH B H.Crack band theory for fracture in concrete.Materials and Structures,1983,16(93):155-177.
    [185]黄克智,肖纪美.材料的损伤断裂机制和宏微观力学理论.北京:清华大学出版社,1999.
    [186]谢和平,彭瑞东,鞠杨.岩石变形破坏过程中的能量耗散分析.岩石力学与工程学报,2004,23(21):3565-2570.
    [187]赵忠虎,谢和平.岩石变形破坏过程中的能量传递和耗散研究.四川大学学报(工程科学版),2008,40(2):26-31.
    [188]谢和平,鞠杨,黎立云.基于能量耗散与释放原理的岩石强度与整体破坏准则.岩石力学与工程学报,2005,24(17):.3003-3010.
    [189]谢和平,鞠杨.分数维空间中的损伤力学研究初探.力学学报,1999,31(3):300-310.
    [190]谢和平,Sanderson D J,Peacock D C P.雁型断裂的分形模型和能量耗散.岩土工程学报,1994,26(1):1-7.
    [191]潘岳,王志强.岩体动力失稳的功能增量--突变理论研究方法.岩石力学与工程学报,2004,23(9):1433-1438.
    [192]尤明庆,华安增。岩石试样破坏过程的能量分析.岩石力学与工程学报,2002,21(6):778-781.
    [193]高文学,刘运通.冲击载荷作用下岩石损伤的能量耗散.岩石力学与工程学报,2003,22(11):1777-1780.
    [194]金丰年,蒋美蓉,高小玲.基于能量耗散定义损伤变量的方法.岩石力学与工程学报,2004,23(12):1976-1980.
    [195]肖纪美.知识三元系自然科学--社会科学--人文学科三元系.材料科学与工程学报,2006,24(1):1-5.
    [196]肖纪美.反馈与耗散结构物、人、事理的思考.材料科学与工程学报,2007,25(3):325-329.
    [197]肖纪美.人、才、材的命运.材料科学与工程学报,2004,22(3):313-317.
    [198]肖纪美.人才与材料的过程问题.材料科学与工程学报,2005,23(4):473-475.
    [199]陈昌曙.自然辩证法概论新编.沈阳:东北大学出版社,2001.
    [200]马克思,恩格斯著,中共中央马克思恩格斯列宁斯大林著作编译局编译.马克思恩格斯选集(第二卷).北京:人民出版社,1995.
    [201]方宗熙,江乃萼.进化论.北京:高等教育出版社,1986.
    [202]杨卫,孙庆平,黄克智等.固体的宏细观本构理论与断裂.自然科学进展,1993,3(6):515-524.
    [203]杨卫,谭鸿来.断裂过程的细观力学与纳观力学.中国科学基金,1993,(4):18-23.
    [204]余寿文.断裂损伤与细观力学.力学与实践,1988,(6):12-18.
    [205]李兆霞.一个综合模糊裂纹和损伤的混凝土应变软化本构模型.固体力学学报,1995,(1):22-30.
    [206]王向东.混凝土损伤理论在水工结构仿真分析中的应用:(博士学位论文).南京:河海大学,2004.
    [207]陈瑛,姜弘道,乔丕忠等.混凝土黏聚开裂模型若干进展.力学进展,2005,35(3):377-390.
    [208]中华人民共和国电力行业标准.水工建筑物抗震设计规范(DL5073-2000).北京:中国电力出版社,2001.
    [209]朱万成,唐春安,黄志平等.静态和动态载荷作用下岩石劈裂破坏模式的数值模拟.岩石力学与工程学报,2005,24(1):1-7.
    [210]朱万成,唐春安,杨天鸿等.岩石破裂过程分析(RFPA~(20))系统的细观单元本构关系及验证.岩石力学与工程学报,2003,22(1):24-29.
    [211]Abrams D A.Effect of rate application of load on the compressive strength of concrete.ASTM J,1917,17:364-377.
    [212]田子坤.混凝土单轴了动态受拉损伤试验研究:(硕士学位论文).大连:大连理工大学,2007.
    [213]Bischoff P H,Perry S H.Compressive behaviour of concrete at high strain rates.Materials and Structures,1991,24:425-450.
    [214]Tedesco J W,Kobayashi A S.A study of relationships between time,strength,deformation and fracture of plain concrete.Magazine of Cnocrete Reseacrh,1972,24(81):197-208.
    [215]Paul F M,Ken P V,Robert A C.Dynamic tensile-compressive behavior of concrete.Journal of The American Concrete Institute,1985,82(4):484-91.
    [216]Takeda J,Tachikawa H.Deformation and fracture of concrete subjected to dynamic load.Mechanical Behavior of Materials,1972,4:267-277.
    [217]Idem J L.Properties of materials at high rates of straining or loading.Materials and structures,1975,8(4):185-216.
    [218]王礼立,蒋昭镰,陈江瑛.材料微损伤在高速变形过程中的演化及其对率型本构关系的影响.宁波大学学报,1996,9(3):47-55.
    [219]Weerheijm J.Concrete under impact tensile loading and lateral compression:[dissertation].Delft,Delft University of Technology,1992.
    [220]李庆斌,郑丹.混凝土动力强度提高的机理探讨.工程力学,2005,22(增):188-193.
    [221]Brara A,Klepaczko J R.Experimental characterization of concrete in dynamic tension.Mechanics of Materials,2006,38(3):253-267.
    [222]李庆斌,张楚汉,王光纶.单轴状态下混凝土的动力损伤本构模型.水利学报,1994,(12):55-60.
    [223]Ross C A.Effects of strain rate on concrete strength.ACI Materials Journal,1995,92:37-47.
    [224]徐献芝,李培超,李传亮.多孔介质有效应力原理研究.力学与实践,2001,23(4):42-45.
    [225]陈惠发,萨里普A F著,余天庆等译.混凝土和土的本构方程.北京:中国建筑工业出版社,2004.
    [226]谢兴华,速宝玉,詹美礼.基于应变的岩石类脆性材料损伤研究.岩石力学与工程学报,2004,23(12):1966-1970.
    [227]李杰,张其云.混凝土随机损伤本构关系研究进展.结构工程师,2000,(54):54-61.
    [228]梅素P著,祝永年等译.混凝土的结构、性能与材料.上海:同济大学出版社,1991.
    [229]赵娟.混凝土试样损伤的细观数值演化分析:(硕士学位论文).大连:大连理工大学,2006.
    [230]Markeset G,Hilterborg A.Softening of concrete in compression - localization and size effects.Cement and Concrete Research,1995,25(4):702-708.
    [231]李庆斌,陈樟福生,孙满义等.真实水荷载对混凝土强度影响的试验研究.水利学报,2007,38(7):786-791.
    [232]Oshita H,Tanabe T.Water migration phenomenon in concrete in prepeak region.Journal of Engineering Mechanics,2000,126(6):565-572.
    [233]Oshita H,Tanabe T.Water migration phenomenon in concrete in postpeak region.Journal of Engineering Mechanics,2000,126(6):573-581.
    [234]王海龙,李庆斌.饱和混凝土静动力抗压强度变化的细观力学机理.水利学报,2006,37(8):958-962.
    [235]王海龙,李庆斌.不同加载速率下饱和混凝土的劈拉试验研究及强度变化机理.工程力学,2007,24(2):105-109.
    [236]Yaman 10,Hearn N,Aktan H M.Active and non-active porosity in concrete,Part Ⅱ:Evaluation of existing models.Material and Structure,2002,35(3):110-116.
    [237]商怀帅.引气混凝土冻融循环后多轴强度的试验研究:(博士学位论文).大连:大连理工大学,2006.
    [238]Mehta P K,Monteiro P J M.Concrete:Structure,Properties,and Materials,Second Edition.New Jersey:Prentice-Hall Inc,1993.
    [239]Yang C C,Huang R.A two-phase model for predicting the compressive strength of concrete.Cement and Concrete Research,1996,26(10):1567-1577.
    [240]Yang C C,Huang R.Double inclusion model for approximate elastic moduli of concrete material.Cement and Concrete Research,1996,26(1):83-91.
    [241]Nilsen A U,Monteiro P J M,Gjorv O E.Estimation of the Elastic Moduli of Lightweight Aggregate.Cement And Concrete Research,1995,25(2):276-280.
    [242]王海龙,李庆斌.饱和混凝土的弹性模量预测.清华大学学报,2005,45(6):761-763.
    [243]杨庆生.复合材料细观结构力学与设计.北京:中国铁道出版社,2000.
    [244]Aitcin P C,Neville A.High-performance concrete demystified.Concrete international:Design and Construction,1993,15(1):21-26.
    [245]Aitcin P C,Mehta P K.Effect of coarse-aggregate characteristics on mechanical properties of high-strength concrete.ACI Material Journal,1990,87(2):103-107.
    [246]王海龙,李庆斌.孔隙水对湿态混凝土抗压强度的影响.工程力学,2006,23(10):141-144.
    [247]Horii H,Nemat-Nasser S.Compression-induced microcrack growth in brittle solids:Axial splitting and shear failure.Journal of Geophysical Research,1985,90(B4):3105-3125.
    [248]Kemeny JM.A model for nonlinear rock deformation under compression due to subcritical crack growth.International Journal of Rock Mechanics and Mineral Science,1991,28:459-467:
    [249]闫东明,林皋.不同初始静态荷载下混凝土动态抗压特性试验研究.水利学报,2006,37(3):360-364.
    [250]Ross C A,Jerome D M,Tedesco J W,et al.Moisture and strain rate effects on concrete strength.ACI Materials Journal,1996,93(3):293-300.
    [251]Imran I,Pantazopoulou S J.Experimental study of plain concrete under triaxial stress.ACI Materials Journal,1996,93(6):589-601.
    [252]赵成刚,白冰,王运霞.土力学原理.北京:清华大学出版社,2004.
    [253]方玉树.关于孔隙压力系数.工程地质学报,2005,13(1):57-61.
    [254]Rossi P,Van Mier J G M,Boulay C.Effect of loading rate on the strength of concrete subjected to uniaxial tension.Materials and Structures,1994,27(4):260-264.
    [255]王海龙,李庆斌.不同加载速率下干燥与饱和混凝土抗压性能试验研究分析.水利发电学报,2007,26(1):84-89.
    [256]董毓利,谢和平,赵鹏.不同应变率下混凝土受压全过程的试验研究及其本构关系.水利学报,1997,7:72-77.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700