用户名: 密码: 验证码:
量子点材料的结构设计、生化分析及光电转换的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
量子点纳米材料具有优越的光电性能,在发光器件、生物标记、生化分析及太阳能电池领域中有着广泛的应用前景。量子点作为荧光探针,与量子点表面修饰物有关。因此随着纳米技术的进步,量子点的表面修饰以及性能优化成为生化分析研究者关注的目标。由于量子点具有量子限制效应、多激子效应,量子点敏化太阳能电池引起了科学家们的极大兴趣。
     本论文研究水溶性CdTe量子点的制备及其在生化分析上的应用,以及CdS、CdSe等纳米颗粒的制备及其在太阳能电池上的应用。
     采用水相合成法,制备荧光性质优良的L-半胱氨酸功能化CdTe量子点。以其作为荧光探针,基于量子点的荧光淬灭效应,建立氯霉素的荧光测定方法。该方法用于链霉素片剂中氯霉素含量的测定,结果符合标定值。
     采用水相合成法,制备巯基丙酸功能化CdTe量子点和L-半胱氨酸、巯基丙酸功能化CdTe量子点。基于量子点的荧光淬灭效应,通过同步荧光法,建立四环素和孔雀石绿的荧光测定方法。该方法用于样品中四环素和孔雀石绿含量的测定,结果符合标定值和添加值。
     采用水相合成法,制备巯基乙酸功能化CdTe/CdSe核壳量子点。以其作为荧光探针,基于量子点的荧光增强效应,建立卡那霉素和链霉素的荧光测定方法。该方法用于样品中卡那霉素和链霉素含量的测定,结果与高效液相法测定结果相符。
     采用化学浴沉积法,在CoO晶种层薄膜上制备垂直于FTO导电玻璃的CoO纳米线阵列,然后在其表面电沉积CdS或CdSe纳米颗粒,从而形成CdS/CoO或CdSe/CoO纳米异质结,将其作为太阳能电池的光阴极,获得0.102%或0.015%的光电转化效率。
     此外,对于生化药物和量子点之间可能的反应机制及CdS/CoO或CdSe/CoO纳米异质结电池产生电流的机理,本论文也进行研究和探讨,这将为量子点材料在生化分析和太阳能电池领域的应用研究奠定坚实基础。
Quantum dots materials show great potential in many applications such as lumi-nescence devices, bio-imaging fluorophores, biochemical analysis and solar cells dueto their outstanding optical and electronical properties. Quantum dots are used asfluorescent probes due to their surface modifications. With the development of nano-technology, surface modifications and performance improvement of Quantum dotshave become a core objective of modern research in biochemical analysis. For thevirtue of quantum confinement effect and multiple exciton generation of quantum dots,the reasearch of quantum dots sensitized solar cells have gained great interests inrecent years.
     In this thesis, water-soluble CdTe quantum dots were synthesized and applied inthe field of biochemical analysis, and CdS or CdSe nanoparticles were prepared andused in the field of solar cells.
     L-cysteine functionalized CdTe quantum dots with excellent fluorescenceproperties were successfully prepared by simple water-phase synthesis method. Basedon the fluorescence quenching of quantum dots, the fluorescence method for thedetermination of chloramphenicol was proposed using quantum dots as a fluorescentprobe. The developed method was used for the determination of chloramphenicol inthe commercial chloramphenicol tablets, and the results were consistent with theclaimed value.
     Mercapto propionic acid functionalized CdTe quantum dots and L-cysteine andmercapto propionic acid functionalized CdTe quantum dots were synthesized bysimple water-phase synthesis method. Based on fluorescence quenching of quantumdots, the fluorescence methods for the detection of tetracycline and malachite greenwere developed by synchronous fluorescence method. The proposed methods wereused to determinate tetracycline and malachite green in the samples, and the resultswere consistent with the claimed value and the adding value.
     Thioglycolic acid functionalized CdTe/CdSe core-shell quantum dots wereprepared by water-phase synthesis method. Based on the fluorescence enhancement ofquantum dots, the fluorescence methods for the determination of kanamycin andstreptomycin were proposed with quantum dots as fluorescent probes. The proposedmethods were used for the determination of kanamycin and streptomycin in thesamples, and the results by the presented method were in accordance with those of HPLC method.
     CoO nanowire arrays were grown on the FTO substrates by chemical bath depo-sition method. Then, CdS or CdSe nanoparticles was electrodeposited on the CoOnanowire arrays, and CdS/CoO or CdSe/CoO nano-heterojunction was formed. TheCdS/CoO or CdSe/CoO nano-heterojunctions was used as the photocathode forquantum dot sensitized solar cells, and the photoelectric conversion efficiency of0.102%or0.015%was achieved.
     In addition, the possible reaction mechanisms of quantum dots and biochemicalmedicines, and the mechanisms of cathodic photocurrent generation in CdS/CoO andCdSe/CoO nano-heterojunction were discussed, which set a good foundation forapplication research in biochemical analysis and quantum dot sensitized solar cells.
引文
[1] M. Bruchez Jr, M. Moronne, P. Gin, S. Weiss et al, Semiconductor nanocrystals asfluorescent biological labels, Science,1998,281:2013-2016.
    [2] W. C. Chan, S. Nie, Quantum dot bioconjugates for ultrasensitive nonisotopic de-tection, Science,1998,281:2016-2018.
    [3] L. Bos, Quantum crystallites and nonlinear optics, Appl. Phys. A,1991,53:461-465.
    [4] D. Awschalom, D. P. Divincenzo, Complex dynamics of mesoscopic magnets,Phys. Today,1995,48:43-48.
    [5] O. Halimi, B. Boudine, M. Sebais et al, Structural and optical characterisation ofZnO nanocrystals embedded in bulk KBr single crystal, Materials Science andEngineering: C,2003,23(6-8):1111-1114.
    [6] A. Henglein, Small-particle research: physicochemical properties of extremelysmall colloidal metal and semiconductor particles, Chem. Rev.,1989,89:1861-1873.
    [7] B. Louis, Electronic wave functions in semiconductor clusters: experiment andtheory, J. Phys. Chem.,1986,90(12):2555-2560.
    [8] A. Henglein, B. G. Ershov, M. Malow, Absorption Spectrum and Some ChemicalReactions of Colloidal Platinum in Aqueous Solution, J. Phys. Chem.,1995,99(38):14129-14136.
    [9] P. Ball, L. Garwin, Science at the atomic scale, Nature,1992,355:761-766.
    [10] A. Piryatinski, S. A. Ivanov, S. Tretiak et al, Effect of quantum and dielectricconfinement on the exciton-exciton interaction energy in type-II core/shell semi-conductor nanocrystals, Nano Lett.,2007,7:108-115.
    [11] S. Chowdhury, R. Banerjee, Evidence for quantum mechanical tunneling in thecoupled cobalt-carbon bond homolysis-substrate radical generation reaction cata-lyzed by methylmalonyl-CoA mutase, J. Am. Chem. Soc.,2000,122:5417-5418.
    [12] L. Brus, Quantum crystallites and nonlinear optics, Appl. Phys. A,1991,53(6):465-474.
    [13]谭翠燕,梁汝强,阮康成,量子点在生命科学中的应用,生物化学与生物物理学学报,2002,34(1):1-5.
    [14]沈学础,半导体光学性质,科学出版社,1992.
    [15]关柏鸥,汤国庆,韩关云,半导体纳米材料的光学性能及研究进展,光电子·激光,1998,9(3):260-263.
    [16]邹明强,杨蕊,李锦丰,等,量子点的光学特征及其在生命科学中的应用,分析测试学报,2005,24:133-137.
    [17]李前树,易朝阳,吕玉珍,等,液相合成方形PbS纳米晶的光学特性,分子科学学报,2005,21(2):1-5.
    [18]王益林,量子点及其在分析科学中的应用研究进展,江西科学,2006,24(6):446-450.
    [19] C. B. Murray, D. J. Norrid, M. G. Bawendi, Synthesis and characterization ofnearly monodisperse CdE (E=sulfur, selenium, tellurium) semiconductor nancrys-tallite, J. Am. Chem. Soc.,1993,115(19):8706-8715.
    [20] H. F. Qian, L. Li, J. C. Ren, One-step and rapid synthesis of high quality alloyedquantum dots (CdSe/CdS) in aqueous phase by microwave irradiation with con-trollable temperature, Mater. Res. Bull,2005,40(10):1726-1736.
    [21] D. Z. Yang, Q. F. Chen, S. K. Xu, Synthesis of CdSe/CdS with a simplenon-TOP-based route, J. Lumin.,2007,126(2):853-858.
    [22] L. Y. Wang, Y. Y. Zhou, L. Wang et al, Synchronous fluorescence determinationof protein with functionalized CdS nanoparticles as a fluorescence probe, Anal.Chim. Acta,2002,466(1):87-92.
    [23] H. L. Ma, C. L. Wang, H. Z. Liu et al, NHS mediated CdTe quantum dots/albumin conjugates and labeling C. elegans, Chem. Res. Chinese U,2006,22(2):181-184.
    [24] S. M. Stuczynski, J. G. Brennan, M. L. Steigerwald, Formation of met-al-chalcogen bonds by the reaction of metal-alkyls with silyl chalcogenides, Inor-ganic Chemistry,1989,28(25):4431-4432.
    [25] Z. A. Peng, X. Peng, Formation of high-quality CdTe, CdSe, and CdS nanocrys-tals using CdO as precursor, J. Am. Chem. Soc.,2001,123:183-184.
    [26] W. W. Yu, X. Peng, Formation of High Quality CdS and Other Ⅱ-Ⅳ Semicon-ductor Nanocrystals in Non-Coordinating Solvent, Tunable Reactivity of Mono-mers, Angew. Chem. Int. Ed.,2002,41:2368-2371.
    [27] L. Spanhel, M. Haase, W. Horst et al, Surface modification and stability of strongluminescing CdS particles, J. Am. Chem. Soc.,1987,109(19):5649-5655.
    [28] W. Bae, R. Abdulah, R. K. Mehra, Cysteine-mediated synthesis of CdS bion-anocrystallites, Chemosphere,1998,37(2):363-385.
    [29] A. L. Rogach, L. Katsikas, A. Kornowski et al, Synthesis and Characterization ofThiol-Stabilized CdTe Nanocrystals, Phys. Chem.,1996,100:1772-1778.
    [30] N. Gaponik, D. V. Talapin, A. L. Rogach et al, Thiol-Capping of CdTe Nano-crystals: An Alternative to Organometallic Synthetic Routes, J. Phys. Chem. B,2002,106(29):7177-7185.
    [31] L. Sondi, O. Siiman, E. Matijevic, Synthesis of CdSe nanoparticles in the pres-ence of aminodextran as stabilizing and capping agent, J. Colloid Interface Sci.,2004,275(2):503-507.
    [32] X. Peng, M. C. Schlamp, A. V. Kadavanich et al, Epitaxial growth of highly lu-minescent CdSe/CdS core/shell nanocrystals with photostability andelectronic ac-cessibility, J. Am. Chem. Soc.,1997,119:7019-7029.
    [33] M. T. Harrison, S. V. Kershaw, A. L. Rogach, Chemical Synthesis of Highly Lu-minescent HgTe/CdS Core/Shell Nanocrystals, Adv. Mater.,2000,12(2):123-125.
    [34] W. St ber, A. Fink, E. Bohn, Controlled growth of monodispersed spheres in themicron size range, J. Colloid and Interface Sci.,1968,26:62-69.
    [35] M. Darbandi, R. Thomann, T. Nann, Single Quantum dots in silica spheres bymicroemulsion synthesis, Chem. Mater.,2005,17:5720-5725.
    [36] Y. F. Chen, Z. Rosenzweig, Luminescent CdS quantum dots as selective ionprobes, Anal. Chem.,2002,74(19):5132-5138.
    [37] K. M. Gattás-Asfura, R. M. Leblanc, Peptide-coated CdS quantum dots for theoptical detection of copper (Ⅱ) and silver (Ⅰ), Chem. Commun.,2003,21:2684-2685.
    [38] Y. S. Xia, C. Q. Zhu, Use of surface-modified CdTe quantum dots as fluorescentprobes in sensing mercury (Ⅱ), Talanta,2008,75(1):215-221.
    [39] W. J. Jin, J. M. Costa-Fernandez, R. Pereiro et al, Surface-modified CdSe quan-tum dots as luminescent probes for cyanide determination, Anal. Chim. Acta,2004,522(1):1-8.
    [40] H. B. Li, C. P. Han, L. Zhang, Synthesis of cadmium selenide quantum dotsmodified with thiourea type ligands as fluorescent probes for iodide ions, J. Mater.Chem.,2008,18:4543-4548.
    [41] J. F. Sun, L. H. Liu, C. L. Ren et al, A feasible method for the sensitive and se-lective determination of vitamin B1with CdSe quantum dots, Mircrochim Acta,2008,163:271-276.
    [42] C. P. Huang, S. W. Liu, T. M. Chen et al, A new approach for quantitative deter-mination of glucose by using CdSe/ZnS quan dots, Sens. Actuators B,2007,10(1):1016-1020.
    [43] Y. He, H. F. Wang, X. P. Yan, Exploring Mn-doped ZnS quantum dots for theroom temperature phosphorescence detection of enoxacin in biological fluids,Anal. Chem.,2008,80(10):3832-3837.
    [44] B. Q. Sun, W. Z. Xie, D. P. Chen et al, Microminiaturized immunoassays usingquantum dots as fluorescent label by laser confocal scanning fluorescence detec-tion, J. Immunol. Methods,2001,249:85-89.
    [45]武红敏,韩鹤友,金梅林,等, CdSe/ZnS量子点探针用于检测猪链球菌2型溶菌酶释放蛋白(MRP)抗原的新方法研究,化学学报,2009,67(10):1087-1092.
    [46] G. P. Mitchell, C. A. Mirkin, R. L. Letsinger, Programmed assembly of DNAfunctionalized quantum dots, J. Am. Chem. Soc.,1999,121:8122-8123.
    [47] R. A. Gibbs, G. M. Weinstock, M. L. Metzker et al, Genome sequence of theBrown Norway rat yields insights into mammalian evolution, Nature,2004,428:493–521.
    [48]宋健,范佳,魏景艳,等,量子点偶联抗体型夹心免疫传感法检测心肌肌钙蛋白I,高等学校化学学报,2009,30(10):1940-1944.
    [49] F. Q. Chen, D. Gerion, Fluorescent CdSe/ZnS nanocrystal-peptide conjugates forlong-term, nontoxic imaging and nuclear targeting in living cells, Nano Lett.,2004,4(10):1827-1832.
    [50] X. Y. Wu, F. Peale, M. P. Bruchez et al, Immunofluorescent labeling of cancermarker Her2and other cellular targets with semiconductor quantum dots, Nat. Bi-otechnol.,2003,21:41-46.
    [51] J. P. Zimmer, S. W. Kim, S. Ohnishi et al, Size series of small indium ar-senide-zinc selenide core-shell nanocrystals and their application to in vivoimaging, J. Am. Chem. Soc.,2006,128(8):2526-2527.
    [52] J. N. Tiar, R. J. Liu, Y. C. Zhao et al, Controllable synthesis and cell-imagingstudies on CdTe quantum dots together capped by glutathione and thioglycolicacid, J. Colloid Interface Sci.,2009,336(2):504-509.
    [53] W. Jiang, E. Papa, H. Fisher et al, Semiconductor quantum dots as contrastagents for whole animal imaging, Trends Biotechnol.,2004,2(12):607-609.
    [54] E. Morag, E. A. Bayer, M. Wilchek, Reversibility of biotin-binding by selectivemodification of tyrosine in avidin, Biochem. J.,1996,316:193-199.
    [55] X. L. Gao, J. Chen, J. Y. Chen et al, Quantum dots bearing lectin-functionalizednanoparticles as a platform for in vivo brain imaging, Bioconjugate Chem.,2008,19(11):2189-2195.
    [56] P. Falaras, M. Gratzet, M. Nazeemddin et al, Dye Sensitization of TiO2SurfacesStudied by Raman Spectroscopy, Journal of the Electrochemical Society.1993,140:92-94.
    [57] W. Shockley, H. J. Queisser, Novel optimization principles and efficiency limitsfor semiconductor solar cells, Journal of applied physics,1961,32:2856-2863.
    [58] A. Zaban, O. I. Micic, B. A. Gregg, A. J. Nozik, Photosensitization of nanopor-ous TiO2electrodes with InP quantμm dots, Langmuir,1998,14:737-740.
    [59] P. V. Kamat, Quantum Dot Solar Cells. Semiconductor Nanocrystals as LightHarvesters. J. Phys. Chem. C,2008,112(48):18737-18753.
    [60] J. E. Murphy, M. C. Beard, A. G. Norman et al, PbTe colloidal nanocrystals:Synthesis, characterization, and multiple exciton generation, Journal of the Amer-ican Chemical Society,2006,128:3241-3247.
    [61] R. D. Schaller, V. I. Klimov, High efficiency carrier multiplication in PbSe nano-crystals: Implications for solar energy conversion, Physical Review Letters,2004,92:2917-2921.
    [62] R. D. Schaller, M. Sykora, J. M. Pietryga et al, Seven excitons at a cost of one:Redefining the limits for conversion efficiency of photons into charge carriers,Nano Letters,2006,6:424-429.
    [63] A. Shabaev, A. L. Efros, A. J. Nozik, Multiexciton generation by a single photonin nanocrystals, Nano Letters,2006,6:2856-2863.
    [64] A. Luque, A. Martí, Increasing the Efficiency of Ideal Solar Cells by Photon In-duced Transitions at Intermediate Levels, Physica Review Letters,1997,78:5014-5017.
    [65] S. Kohtania, A. Kudob, T. Sakatab, Spectral sensitization of a TiO2semiconduc-tor electrode by CdS microcrystals and its photoelectrochemical properties,Chemical Physics Letters,1993,206:166-170.
    [66] R. Plass, S. Pelet, J. Krueger et al, Quantμm dot sensitization of or-ganic-inorganic hybrid solar cells, Journal of Physical Chemistry B,2002,106:7578-7580.
    [67] Y. Z. Hao, W. Wang, Photoelectrochemical study of nanostructured TiO2com-posite film modified by PbS quantμm dots, Chinese Journal of Inorganic Chemis-try,2006,22:2070-2074.
    [68] L. M. Peter, K. G. U. Wijayantha, D. J. Riley et al, Band-edge tuning inself-assembled layers of Bi2S3nanoparticles used to photosensitize nanocrystallineTiO2, Journal of Physical Chemistry B,2003,107:8378-8381.
    [69] K. S. Leschkies, R. Divakar, J. Basu et al, Photosensitization of ZnO nanowireswith CdSe quantμm dots for photovoltaic devices, Nano Letters,2007,7:1793-1798.
    [70] A. Zaban, O. I. Micic, B. A. Gregg et al, Photosensitization of nanoporous TiO2electrodes with InP quantμm dots, Langmuir,1998,14:3153-3156.
    [71] A. Kongkanand, K. Tvrdy, K. Takechi et al, Quantμm dot solar cells. Tuningphotoresponse through size and shape control of CdSe-TiO2architecture, Journalof the American Chemical Society,2008,130:4007-4015.
    [72] I. Robel, M. Kuno, P. V. Kamat, Size-dependent electron injection from excitedCdSe quantμm dots into TiO2nanoparticles, Journal of the American ChemicalSociety,2007,129,4136:166-170.
    [73] W. T. Sun, Y. Yu, L. M. Peng, Highly Efficient CdS Quantμm Dots SensitizedSolar Cells Based on Modified Polysulfied Electrolyte, Journal of the AmericanChemical Society,2008,130:1124-1125.
    [74] O. Niitsoo, S. K. Sarkar, C. Pejoux et al, Chemical bath deposited CdS/CdSesensitized porous TiO2solar cells, Journal of Photochemistry and PhotobiologyA-Chemistry,2006,181:306-313.
    [75] F. Odobel, L. Pleux, Y. Pellegrin et al, New Photovoltaic Devices Based on theSensitization of p-type Semiconductors: Challenges and Opportunities, Accountsof Chemical Research,2010,43(8):1063-1071.
    [76] X. H. Chan, J. R. Jennings, M. A. Hossain et al, Characteristics of p-NiO ThinFilms Prepared by Spray Pyrolysis and Their Application in CdS-sensitized Pho-tocathodes, Journal of the Electrochemical Society,2011,158: H733-H740.
    [77] S. H. Kang, K. Zhu, N. R. Neale et al, Hole transport in sensitized CdS-NiO na-noparticle photocathodes, Chemical Communications,2011,47:10419-10421.
    [78] N. Kopidakis, K. D. Benkstein, J. van de Lagemaat et al, Transport-limited re-combination of photocarriers in dye-sensitized nanocrystalline TiO2solar cells,J.Phys. Chem. B,2003,107(41):11307-11315.
    [79] G. Hodes, Comparison of Dye-and Semiconductor-Sensitized Porous Nanocrys-talline Liquid Junction Solar Cells, J. Phys. Chem. C,2008,112(46):17778-17787.
    [80] A. I. Hochbaum, P. D. Yang, Semiconductor Nanowires for Energy Conversion,Chem. Rev.,2010,110(1):527-546.
    [81] B. Liu, E. S. Aydil, Growth of Oriented Single-Crystalline Rutile TiO2Nanorodson Transparent Conducting Substrates for Dye-Sensitized Solar Cells, J. Am.Chem. Soc.,2009,131(11):3985-3990.
    [82] C. K. Xu, P. Shin, L. L. Cao et al, Preferential Growth of Long ZnO NanowireArray and Its Application in Dye-Sensitized Solar Cells, J. Phys. Chem. C,2010,114(1):125-129.
    [83] K. Vivekanandan, M. G. Swamy, S. Prasad et al, A simple method of isolation ofchloramphenicol in honey and its estimation by liquid chromatography coupled toelectrospray ionization tandem mass spectrometry, Rapid Commun Mass Spec-trom,2005,19(21):3025-3030.
    [84] L. Wang, Y. Zhang, X Gao et al, Determination of chloramphenicol residues inmilk by enzyme-linked immunosorbent assay: improvement by bio-tin-streptavidin-amplified system, J. Agric. Food Chem,2010,58:3265-3270.
    [85] P. Mottier, V. Parisod, E. Gremaud et al, Determination of the antibiotic chlo-ramphenicol in meat and seafood products by liquid chromatography electrosprayionization tandem mass spectrometry, J. Chromatogr. A,2003,994:75-84.
    [86] D. Zhang, P. Zuo, B. C. Ye, Bead-based mesofluidic system for residue analysisof chloramphenicol, J. Agric. Food Chem.,2008,56:9862-9867.
    [87] J. L. Thomas, P. T. Francis, G. B. John et al, Rapid microbiological assay forchloramphenicol and tetracyclines, Antimicrob. Agents Chemother,1976,9:874-878.
    [88] G. Scortichini, L. Annunziata, M. N. Haouet et al, ELISA qualitative screening ofchloramphenicol in muscle, eggs, honey and milk: method validation according tothe Commission Decision2002/657/EC criteria, Anal. Chim. Acta,2005,535:43-48.
    [89] N. Sai, Y. P. Chen, N. Liu et al, A sensitive immunoassay based on direct haptencoated format and biotin–streptavidin system for the detection of chloramphenicol,Talanta,2010,82:1113-1121.
    [90] S. Yamato, H. Sugihara, K. Shimada, An enzymatic assay of chloramphenicolcoupled with fluorescence reaction, Chem. Pharm. Bull.,1990,38:2290-2292.
    [91] J. Z. Shen, X. Xia, H. Y. Jiang et al, Determination of chloramphenicol, thiam-phenicol, florfenicol, and florfenicol amine in poultry and porcine muscle and liv-er by gas chromatography-negative chemical ionization mass spectrometry, J.Chromatogr. B,2009,877:1523-1529.
    [92] T. Fodey, G. Murilla, A. Cannavan et al, Characterisation of antibodies to chlo-ramphenicol, produced in different species by enzyme-linked immunosorbent as-say and biosensor technologies, Anal. Chim. Acta,2007,592:51-60.
    [93] P. Zuo, B. C. Ye, Small molecule microarrays for drug residue detection in food-stuffs, J. Agric. Food Chem.,2006,54:6978-6983.
    [94] N. Gaponik, D. V. Talapin, A. L. Rogach et al, Thiol-Capping of CdTe Nano-crystals: An Alternative to Organometallic Synthetic Routes, J. Phys. Chem. B,2002,106:7177-7185.
    [95] Y. Q. Wang, C. Ye, Z. H. Zhu et al, Cadmium telluride quantum dots aspH-sensitive probes for tiopronin determination, Anal. Chim. Acta,2008,610:50-56.
    [96] A. Y. Nazzal, L. H. Qu, X. G. Peng et al, Photoactivated CdSe Nanocrystals asNanosensors for Gases, Nano. Lett,2003,3:819-822.
    [97] X. J. Ji, J. Y. Zheng, J. M. Xu et al,(CdSe)ZnS Quantum Dots and Organophos-phorus Hydrolase Bioconjugate as Biosensors for Detection of Paraoxon, J. Phys.Chem. B,2005,109:3793-3799.
    [98] L. Q. Wang, F. Y. Lin, L. P. Yu, A molecularly imprinted photonic polymer sensorwith high selectivity for tetracyclines analysis in food, Analyst,2012,137:3502–3509.
    [99] J. Tong, Q.X. Rao, K. Zhu et al, Simultaneous determination of five tetracyclineand macrolide antibiotics in feeds using HPCE, J. Sep. Sci,2009,32:4254–4260.
    [100] G. K. Webster, E. S. Luigs, L. A. Hearne et al, Investigation of assay interfer-ence with microbiological determinations of chlortetracycline in feed grade andpremix samples, J. AOAC Int.,1997,80(2):298–301.
    [101] J. Kurittu, S. L nnberg, M. Virta et al, A group-specific microbiological test forthe detection of tetracycline residues in raw milk, J. Agric. Food Chem.,2000,48(8):3372-3377.
    [102] W. A. Moats, K. L. Anderson, J. E. Rushing et al, Comparison of a radioimmu-noassay (Charm II) test with high-performance liquid chromatography for detec-tion of oxytetracycline residues in milk samples from lactating cattle, Am. J. Vet.Res.,1995,56:795–800.
    [103] M. Jeon, I. R. Paeng, Quantitative detection of tetracycline residues in honey bya simple sensitive immunoassay, Anal. Chim. Acta,2008,626(2):180-185.
    [104] R. Fernandez-González, M. S. García-Falcón, J. Simal-Gándara, Quantitativeanalysis for oxytetracycline in medicated premixes and feeds by second-derivativesynchronous spectrofluorimetry, Analytica Chimica Acta,2002,455:143–148.
    [105] Pena, C. M. Lino, R. Alonso et al, Determination of tetracycline antibiotic resi-dues in edible swine tissues by liquid chromatography with spectrofluorometricdetection and confirmation by mass spectrometry, J. Agric. Food Chem.,2007,55(13):4973-4979.
    [106] F. Zhao, X. Zhang, Y. Gan, Determination of tetracyclines in ovine milk byhigh-performance liquid chromatography with a coulometric electrode array sys-tem, J. Chromatogr. A,2004,1055(1-2):109–114.
    [107] A. L. Pena, C. M. Lino, I. N. Silveira, Determination of oxytetracycline, tetra-cycline, and chlortetracycline in milk by liquid chromatography with postcolumnderivatization and fluorescence detection, J. AOAC Int.,1999,82(1):55–60.
    [108] N. Furusawa, Rapid liquid chromatographic determination of oxytetracycline inmilk, J. Chromatogr. A,1999,839(1-2):247–251.
    [109] G. Boatto, A. Pau, M. Palomba et al, Monitoring of oxytetracycline in ovinemilk by high-performance liquid chromatography, J.Pharm. Biomed. Anal.,1999,20(1-2):321–326.
    [110] M. C. Carson, W. Breslyn, Simultaneous determination of multiple tetracyclineresidues in milk by metal chelate affinity chromatography: collaborative study, J.AOAC Int.,1996,79(1):29–42.
    [111] U. Koesukwiwat, S. Jayanta, N, Leepipatpiboon, Validation of a liquid chroma-tography-mass spectrometry multi-residue method for the simultaneous determi-nation of sulfonamides, tetracyclines, and pyrimethamine in milk, J. Chromatogr.A,2007,1140(1-2):147-156.
    [112] N. Furusawa, Sample preparation followed by HPLC under harmless100%aqueous conditions for determination of oxytetracycline in milk and eggs, J. Sep.Sci.,2004,27(7-8):552–556.
    [113] A. B. Wu, Y. M. Chen, K. K. Lee et al, Simultaneous determination of sulfadrugs and tetracyclines in foods and animal tissues by high-performance liquidchromatography. J. Food&Drug Anal.,1994,2(4):297–310.
    [114] L. Wang, H. Yang, C. Zhang et al, Determination of oxytetracycline, tetracy-cline and chloramphenicol antibiotics in animal feeds using subcritical water ex-traction and high performance liquid chromatography, Anal. Chim. Acta,2008,619(1):54–58.
    [115] X. Hu, J. Pan, Y. Hu et al, Preparation and evaluation of solid-phase microex-traction fiber based on molecularly imprinted polymers for trace analysis of tetra-cyclines in complicated samples, J. Chromatogr.A,2008,1188(2):97–107.
    [116] J. Fiori, G. Grassigli, P. Filippi et al, HPLC-DAD and LC-ESI-MS analysis ofdoxycycline and related impurities in doxipan mix, a medicated premix for incor-poration in medicated feedstuff, J. Pharm. Biomed. Anal.,2005,37(5):979–985.
    [117] N. D. Weng, H. Sun, R. Eugène et al, Assay and purity control of tetracycline,chlortetracycline and oxytetracycline in animal feeds and premixes by TLC den-sitometry with fluorescence detection, J. Pharmaceut. Biomed. Anal.,2003,33(1):85–93.
    [118] J. L. Gafner, Identification and semiquantitative estimation of antibiotics addedto complete feeds, premixes, and concentrates, J. AOAC Int.,1999,82(1):1–8.
    [119] S. M. Santos, M. Henriques, A. C. Duarte et al, Development and application ofa capillary electrophoresis based method for the simultaneous screening of six an-tibiotics in spiked milk samples, Talanta,2007,71(2):731–737.
    [120] M. C. Mamani, J. A. Farfan, F. G. Reyes et al, Simultaneous determination oftetracyclines in pharmaceuticals by CZE using experimental design, Talanta,2006,70(2):236–243.
    [121] Y. M. Hsiao, J. L. Ko, C. C. Lo, Determination of tetracycline and streptomycinin mixed fungicide products by capillary zone electrophoresis, J. Agric. FoodChem.,2001,49(4):1669–1674.
    [122] C. L. Chen, X. Gu, Determination of tetracycline residues in bovine milk, serum,and urine by capillary electrophoresis, J. AOAC Int.,1995,78(6):1369–1377.
    [123] S. Wang, P. Yang, Y. Cheng, Analysis of tetracycline residues in bovine milk byCE-MS with field-amplified sample stacking, Electrophoresis,2007,28(22):4173-4179.
    [124] I. G. Casella, F. Picerno, Determination of tetracycline residues by liquid chro-matography coupled with electrochemical detection and solid phase extraction, J.Agric. Food Chem.,2009,57(19):8735-8741.
    [125] C.Y. Long, Z. B. Mai, Y. F. Yang et al, Determination of multi-residue for mal-achite green, gentian violet and their metabolites in aquatic products by high per-formance liquid chromatography coupled with molecularly imprinted solid-phaseextraction, Journal of Chromatography A,2009,1216(12):2275–2281.
    [126] L. An, J. Deng, L. Zhou et al, Simultaneous spectrophotometric determinationof trace amount of malachite green and crystal violet in water after cloud pointextraction using partial least squares regression, Journal of Hazardous Materials,2010,175(1-3):883–888.
    [127] G. Dowling, P. P. J. Mulder, C. Duffy et al, Confirmatory analysis of malachitegreen, leucomalachite green, crystal violet and leucocrystal violet in salmon byliquid chromatography tandem mass spectrometry, Anal. Chim. Acta,2007,586(1/2):411–419.
    [128] L. Valle, C. Diaz, A. L. Zanocco et al, Determination of the sum of malachitegreen and leucomalachite green in salmon muscle by liquid chromatogra-phy-atmospheric pressure chemical ionization-mass spectrometryionization, J.Chromatogr. A,2005,1067(1–2):101–105.
    [129] K. C. Lee, J. L. Wu, Z. Cai, Determination of malachite green and leucomala-chite green in edible goldfish muscle by liquid chromatography-ion trap massspectrometry, J. Chromatogr. B,2005,843(2):247–251.
    [130] J. L. Allen, J. R. Meinertz, Post-column reaction for simultaneous analysis ofchromatic and leuco forms of malachite green and crystal violet byhigh-performance liquid chromatographywith photometric detection, J. Chroma-togr.,1991,536:217–222.
    [131] K. Mitrowska, A. Posyniak, J. Zmudzki, Determinatiovn of malachite green andleuomalachite green in water using liquid chromatography with visible and flu-orescence detection and confirmation by tandem mass spectrometry, J. Chroma-togr. A,2008,1207(1–2):94–100.
    [132] W. C. Andersen, S. B. Turnipseed, J. E. Roybal, Quantitative and confirmatoryanalyses of malachite green and leucomalachite green residues in fish and shrimp,J. Agric. Food Chem.,2006,54:4517–4523.
    [133] S. B. Turnipseed, W. C. Anderson, J. E. Robal, Determination and confirmationof malachite green and leucomalachite green residues in salmon using liquidchromatography=mass spectrometry with no-discharge atmospheric pressurechemical ionization, J. AOAC Int.,2005,88(5):1312–1317.
    [134] C. H. Tsai, J. D. Lin, C. H. Lin, Optimization of the separation ofmalachitegreen in water by capillary electrophoresis Raman spectroscopy (CE-RS) based onthe stacking and sweeping modes, Talanta,2007,72(2):368–372.
    [135] C. H. Tsai, P. H. Chan, C. H. Lin et al, A new approach for the detection of anonfluorescent compound by CE-resonance Raman spectroscopy based on thesweeping-MEKC mode, Electrophoresis,2006,27(23):4688–4693.
    [136] I. afa ík, M. afa íková, Detection of low concentrations of malachite greenand crystal violet in water, Water Res.,2002,36(1):196–200.
    [137] S. M. Kalytchuk, D. V. Korbutyak, L. P. Scherbak, Preparation technology andphotoluminescence properties of CdTe nanocrystals in colloidal solutions andpolymeric matrices. Semiconductor Physics, Quantum Electronics&Optoelec-tronics,2009,12(3):294-297.
    [138] V. Manyanga, R. L. Dhulipalla, J. Hoogmartens et al, Improved liquid chroma-tographic method with pulsed electrochemical detection for the analysis of kana-mycin, J. Chromatogr. A,2010,1217(24):3748-3753.
    [139] X. Wang, M. Zou, X. Xu et al, Determination of human urinary kanamycin inone step using urea-enhanced surface plasmon resonance light-scattering of goldnanoparticles, Anal. Bioanal. Chem.,2009,395(7):2397-2403.
    [140] A. S. Ahmad, N. Hoda, M. Ahmad et al, A simple and selective kinetic spectro-photometric method for the determination of kanamycin using acetylace-tone-formaldehyde reagent in N,N'-dimethylformamide medium, J. Anal. Chem.,2006,61(9):870-874.
    [141] Y. Q. Chen, Q. Chen, S.S. Tang et al, LC method for the analysis of kanamycinresidue in swine tissues using derivatization with9-fluorenylmethyl chloroformate,J. Sep. Sci.,2009,32(21):3620-3626.
    [142] M. Preu, G. Dominique, M. Petz et al, Development of a gas chromatogra-phy-mass spectrometry method for the analysis of aminoglycoside antibiotics us-ing experimental design for the optimisation of the derivatisation reactions, J.Chromatogr. A,1998,818(1):95-108.
    [143] W. X. Zhu, J. Z. Yang, Y. F. Liu et al, Simultaneous determination of13ami-noglycoside residues in foods of animal origin by liquid chromatogra-phy-electrospray ionization tandem mass spectrometry with two consecutivesolid-phase extraction steps, J. Chromatogr. A,2008,1207(1-2):29-37.
    [144] C. Z. Yu, Y. Z. He, G. N. Fu et al, Determination of kanamycin A, amikacin andtobramycin residues in milk by capillary zone electrophoresis with post-columnderivatization and laser-induced fluorescence detection, J. Chromatogr. B,2009,877(3):333-338.
    [145] J. L. Yan, Determinationation of Kanamycin by Square-Wave Cathodic Adsorp-tive Stripping Voltammetry, Russian Journal of Electrochemistry,2008,44(12):1334-1338.
    [146] Y. Q. Chen, Z. Q. Wang, Z. H. Wang et al, Rapid enzyme-linked immunosor-bent assay and colloidal gold immunoassay for kanamycin and tobramycin inSwine tissues, J. Agric. Food Chem.,2008,56(9):2944-2952.
    [147] Y. S. Xia, C. Q. Zhu, Aqueous synthesis of type-II core/shell CdTe/CdSe quan-tum dots for near-infrared fluorescent sensing of copper(II), Analyst,2008,133(7):928-932.
    [148] Y. Zhang, Y. Li, X. P. Yan, Aqueous layer-by-layer epitaxy of type-IICdTe/CdSe quantum dots with near-infrared fluorescence for bioimaging applica-tions, Small,2009,5(2):185-189.
    [149] M. van Bruijnsvoort, S. J. M. Ottink, K. M. Jonker et al, Determination ofstreptomycin and dihydrostreptomycin in milk and honey by liquid chromatogra-phy with tandem mass spectrometry, J. Chromatogr. A,2004,1058(1-2):137-142.
    [150] R. H. Granjaa, A. M. Ni o, R. A. Zucchetti et al, Determination of streptomycinresidues in honey by liquid chromatography-tandem mass spectrometry, Anal.Chim. Acta,2009,637(1-2):64-67.
    [151] F. Belal, S. M. EI-Ashry, M. M. EI-Kerdawy et al, Spectrofluorimetric deter-mination of streptomycin in dosage forms and in spiked plasma using9,10-phenanthraquinone, J. Pharm. Biomed. Anal.,2001,26(3):435-441.
    [152] O. Granados, G. Meza, A direct HPLC method to estimate streptomycin and itsputative ototoxic derivative, streptidine, in blood serum: application to streptomy-cin-treated humans, J. Pharm. Biomed. Anal.,2007,43(2):625-630.
    [153] M. Preu, M. J. Petz, Development and optimisation of a new derivatisationprocedure for gas chromatographic-mass spectrometric analysis of dihydrostrep-tomcycin: comparison of multivariate and step-by-step optimisation procedures, JChromatogr A,1999,840(1):81–91.
    [154] M. Pendela, J. Hoogmartens, A. V. Schepdael et al, LC-MS of streptomycinfollowing desalting of a nonvolatile mobile phase and pH gradient, J. Sep. Sci.,2009,32(20):3418-3424.
    [155] P. Schnaoppinger, E. Schneider, E. Maertlbauer et al, Rapid detection of strep-tomycin and Dihydrostreptomycin in milk by enzyme-linked immunofiltrationassay, Food Agric. Immunol.,1996,8(4):269-272.
    [156] P. P. Maia, J. A. Farfán, S. Rath et al, Simultaneous determination of streptomy-cin and oxytetracycline in agricultural antimicrobials by CZE after an experimen-tal design, J. Pharm. Biomed. Anal.,2007,43:450-456.
    [157] A. M. Gremilogianni, N. C. Megoulas, M. A. Koupparis et al, Hydrophilic in-teraction vs ion pair liquid chromatography for the determination of streptomycinand dihydrostreptomycin residues in milk based on mass spectrometric detection,J. Chromatogr. A,2010,1217(43):6646-6651.
    [158] L. Vayssieres, K. Keis, S-E. Lindquist et al, Purpose-built anisotropic metal ox-ide material:3D highly oriented microrod array of ZnO, J. Phys. Chem. B,2001,105(17):3350-3352.
    [159] H. Zhang, D. R. Yang, X. Y. Ma et al, Synthesis and field emission characteris-tics of bi-layered ZnO nanorod array pepared by chemical reaction, J. Phys. Chem.B,2005,109(36):17055-17059.
    [160] Q. C. Li, V. Kumar, Y. Li et al, Fabrication of ZnO Nanorods and Nanotubes inAqueous Solutions, Chem. Mater.,2005,17(5):1001-1006.
    [161] M. Ando, T. Kobayashi, M. Haruta, Combined effects of small gold particles onthe optical gas sensing by transition metal oxide films, Catal. Today,1997,36(1):135-141.
    [162] M. Ando, T. Kobayashi, S. Iijima et al, Optical recognition of CO and H2by useof gas-sensitive Au–Co3O4composite films, J. Mater. Chem.,1997,7(9):1779–1783.
    [163] D. Barreca, C. Massignan, S. Daolio et al, Composition and microstructure ofcobalt oxide thin films obtained from a novel cobalt (II) precursor by chemicalvapor deposition, Chem. Mater.,2001,13(2):588–593.
    [164] J. Jiang, J. P. Liu, R. M. Ding et al, Direct Synthesis of CoO Porous NanowireArrays on Ti Substrate and Their Application as Lithium-Ion Battery Electrodes, J.Phys. Chem. C,2010,114:929–932.
    [165]余火根,余家国,郭瑞.溶胶凝胶薄膜的制备和应用,材料导报,2003,17(6):31-33.
    [166] C. R dl, F. Fuchs, J. Furthmüller et al, Quasiparticle band structures of the anti-ferromagnetic transition-metal oxides MnO, FeO, CoO, and NiO, Physical Re-view B,2009,79:235114-235118.
    [167] L. A. Swafford, L. A. Weigand, M. J. Bowers et al, Homogeneously alloyedCdSxSe1-(x)nanocrystals: Synthesis, characterization, and compositionsize-dependent band gap, Journal of the American Chemical Society,2006,128:12299-12306.
    [168] Y. Yin, A. P. Alivisatos, Colloidal nanocrystal synthesis and the or-ganic-inorganic interface, Nature,2005,437:664-670.
    [169] Q. Dai, Y. Wang, X. Li et al, Size-Dependent Composition and Molar Extinc-tion Coefficient of PbSe Semiconductor Nanocrystals, Acs Nano.,2009,3:1518-1524.
    [170] E. M. Barea, M. Shalom, S. Gimenez et al, Design of Injection and Recombina-tion in Quantum Dot Sensitized Solar Cells, Journal of the American ChemicalSociety,2010,132:6834-6839.
    [171] K. S. Leschkies, R. Divakar, J. Basu et al, Photosensitization of ZnO nanowireswith CdSe quantum dots for photovoltaic devices, Nano Letters,2007,7:1793-1798.
    [172] K. Wang, J. Chen, W. Zhou et al, Direct growth of highly mismatched type IIZnO/ZnSe core/shell nanowire arrays on transparent conducting oxide substratesfor solar cell applications, Advanced Materials,2008,20:3248-3253.
    [173] P. Yang, R. Yan, M. Fardy, Semiconductor Nanowire: What's Next? Nano Let-ters,2010,10:1529-1536.
    [174] G. Wang, X. Yang, F. Qian et al, Double-Sided CdS and CdSe Quantum DotCo-Sensitized ZnO Nanowire Arrays for Photoelectrochemical Hydrogen Genera-tion, Nano Letters,2010,10:1088-1092.
    [175] D. K. P. Wong, C. H. Ku, Y. R. Chen et al, Enhancing Electron Collection Effi-ciency and Effective Diffusion Length in Dye-Sensitized Solar Cells, Chemphy-schem,2009,10:2698-2702.
    [176] Q. Zhang, C. S. Dandeneau, X. Zhou et al, ZnO Nanostructures forDye-Sensitized Solar Cells, Advanced Materials,2009,21:4087-4108.
    [177] B. O'Regan, M. Gr tzel, A low-cost, high-efficiency solar cell based ondye-sensitized colloidal TiO2films, Nature,1991,353:737-740.
    [178] M. Gratzel, Photoelectrochemical cells, Nature,2001,414:338-344.
    [179] P. Qin, H. Zhu, T. Edvinsson et al, Design of an organic chromophore for p-typedye-sensitized solar cells, Journal of the American Chemical Society,2008,130:8570-8571.
    [180] A. Morandeira, G. Boschloo, A. Hagfeldt et al, Coumarin343-NiO films asnanostructured photocathodes in dye-sensitized solar cells: Ultrafast electrontransfer, effect of the I3-/I-redox couple and mechanism of photocurrent genera-tion, Journal of Physical Chemistry C,2008,112:9530-9537.
    [181] L. Li, E. A. Gibson, P. Qin et al, Double-Layered NiO Photocathodes for p-TypeDSSCs with Record IPCE, Advanced Materials,2010,22:1759-1762.
    [182] B. Weintraub, Y. L. Deng, Z. L. Wang, Position-Controlled Seedless Growth ofZnO Nanorod Arrays on a Polymer Substrate via Wet Chemical Synthesis, Phys.Chem. C,2007,111:10162-10165.
    [183] B. Q. Cao, Y. Li, G. T. Duan et al, Growth of ZnO Nanoneedle Arrays withStrong Ultraviolet Emissions by an Electrochemical Deposition Method, CrystalGrowth&Design,2006,6(5):1091-1095.
    [184] M. J. Zheng, L. D. Zhang, G. H. Li et al, Fabrication and optical properties oflarge-scale uniform zinc oxide nanowire arrays by one-step electrochemical depo-sition technique, Chem. Phys. Lett.,2002,363:123-128.
    [185] D. C. Kim, B. H. Kong, H. K. Cho et al, Fects of buffer layer thickness ongrowth and properties of ZnO nanorods grown by metalorganic chemical vapourdeposition, Nanotechnology,2007,18:015603-015610.
    [186] D. J. Park, D. C. Kim, J. Y. Lee et al, Synthesis and microstructural characteri-zation of growth direction controlled ZnO nanorods using a buffer layer, Nano-technology,2006,17:5238-5243.
    [187] W. I. Park, D. H. Kim, S. W. Jung et al, Metalorganic vapor-phase epitaxialgrowth of vertically well-aligned ZnO nanorods. Appl. Phys. Lett.,2002,80:4232-4235.
    [188] M. Yang, G. F. Yin, Z. B. Huang et al, Well-aligned ZnO rod arrays grown onglass substrate from aqueous solution, Applied Surface Science,2008,254:2917-2921.
    [189] Z. K. Li, X. T. Huang, J. P. Liu et al, Morphology control and transition of ZnOnanorod arrays by a simple hydrothermal method, Materials Letters,2008,62:1503-1506.
    [190] H. Q. Yang, Y. Z. Song, L. Li et al, Large-Scale Growth of Highlu OrientedZnO Nanorod Arrays in the Zn-NH3·H2O Hydrothermal System, Crystal Growth&Design,2008,8(3):1039-1043.
    [191] C. Ye, G. Meng, Y. Wang et al, On the growth of CdS nanowires from evapora-tion of CdS nanopowders, J. Phys. Chem. B,2002,106:10338-10341.
    [192] V. Pardo-Yissar, E. Katz, J. Wasserman et al, Acetylcholine esterase-labeledCdS nanoparticles on electrodes: Photoelectrochemical sensing of the enzyme in-hibitors, J. Am. Chem. Soc.,2003,125:622-623.
    [193] Q. Peng, Y. Dong, Z. Deng et al, Low-temperature elemental-direct-reactionroute to II-VI semiconductor nanocrystalline ZnSe and CdSe, Inorganic Chemistry,2001,40(16):3840-3841.
    [194] Z. Peng, X. Peng, Formation of High-Quality CdTe, CdSe, and. CdS Nanocrys-tals Using CdO as Precursor, J. Am. Chem. Soc.,2001,123:183-184.
    [195] H. Bekele, J. H. Fendler, J. W. Kelly, Self-assembling peptidomimetic mono-layer nucleates oriented CdS nanocrystals, J. Am. Chem. Soc.,1999,121:7266-7267.
    [196] B. I. Lemon, R. M. Crooks, Preparation and characterization of dendrimer en-capsulated CdS semiconductor quantum dots, J. Am. Chem. Soc.,2000,122(51):12886-12887.
    [197] R. Vogel, P. Hoyer, H. Weler, Quantum-sized PbS, CdS, Ag2S, Sb&, and Bi&particles as sensitizers for various nanoporous wide-bandgap semiconductors, J.Phy. Chem.,1994,98:3183-3188.
    [198] T. Toyeda, J. Sato, Q. Shen, Effect of Sensitization by Quantumsized Cds onPhotoacouscic and Photoeleetrochemical Current Speetua of Porous TiO2Elec-trodes, Rev. Sci. Instrum.,2003,74(1):297-299.
    [199] R. Voel, K. Pohl, H. Weller, Sensitization of Highly Porous, PolycrystallineTiO2Electrodes by Quantum Sized CdS, Chem. Phys. Lett.,1990,174:241–246.
    [200] L. M. Peter, D. Riley, Photosensitization of Nanoerystalline TiO2by Selfas-sembled Layers of Cds Quantum Dots, J. Chem. Common.,2002,10:1030-1031.
    [201] M. Bruchez, M. Maronne, P. Gin, Semiconductor nanocrystals as fluorescentbiological labels, Science,1998,281:2013–2016.
    [202] W. U. Huynh, J. J. Dittmer, A. P. Alivisatos, Hybrid nanorod-polymer solar cells,Science,2002,295(5564):2425-2427.
    [203] W. U. Huynh, X. G. Peng, A. P. Alivisatos, Programmed assembly of DNAfunctionalized quantum dots, J. Am. Chem. Soc.,1999,121:8122–8123.
    [204] M. A. EI-Sayed, Small is different: shape, size, and composition-dependentproperties of some colloidal semiconductor nanocrystals, Acc. Chem. Res.,2004,37(5):326-333.
    [205] J. Y. Kim, F. E. Osterloh, ZnO-CdSe nanoparticle clusters as directional pho-toemitters with tunable wavelength, J. Am. Chem. Soc.,2005,127(29):10152-10153.
    [206] T. Toyoda, J. Kobayashi, Q. Shen, Correlation between crystal growth and pho-to sensitization of nanostructured TiO2electrodes using supporting Ti substratesby self-assembled CdSe quantum dots, Thin Solid Films,2008,516(9):2426-2431.
    [207] W. Z. Wang, Y. Geng, P. Yan et al, Synthesis and characterization ofMSe(M=Zn, Cd) nanorods by a new solvothermal method, Inorg. Chem. Com-mun.,1999,2/3:83-85.
    [208] Y. W. Lin, M. M. Hsieh, C. P. Liu et al, Photoassisted synthesis of CdSe andcore-shell CdSe/CdS quantum dots, Langmuir,2005,21(2):728-734.
    [209] J. Zhu, O. Palchik, S. Chen et al, Microwave Assisted Preparation of CdSe,PbSe, and Cu2-xSe Nanoparticles, J. Phys. Chem. B,2000,104(31):7344–7347

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700