用户名: 密码: 验证码:
利用SiN_x插入层和新型图形化蓝宝石衬底提高GaN外延层质量的相关研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当今,虽然GaN基LED已经实现了广泛的商业化应用,但是其总体性能仍然难以达到人们预期的最好效果。主要原因之一在于缺少高质量的GaN外延层。高质量的外延层是制备高性能器件的基础,因此,如何提高外延层的整体质量一直是研究者们研究的热点问题。本论文围绕着如何提高GaN外延层整体质量的问题进行了一系列研究,得到了好的实验结果。
     利用MOCVD设备在GaN外延层中原位生长SiNx插入层,通过改变SiNx的生长时间,生长位置,以及利用SiNx插入层结合变化的GaN再生长模式进行了一系列研究,得到了高质量的GaN外延层,外延层中的最小位错密度达到0.93×108cm-2。
     在图形化蓝宝石衬底(PSS)上生长GaN外延层,发现了GaN在PSS图形表面的选择性生长现象。通过进一步研究发现这种现象对于GaN外延层的生长具有一定的阻碍作用,并且对于减少GaN中的位错密度具有负面影响。
     考虑到湿法腐蚀具有各向异性的性质,我们创造性地利用PSS湿法再腐蚀的方法来去除GaN的选择性生长现象。实验过程中,观察到了区别于以往报道的新腐蚀区域,并得到了由新腐蚀晶面组成的新型PSS。
     首次利用干法腐蚀加湿法再腐蚀方法制备的新PSS进行了GaN外延层的生长研究。表征结果表明,新PSS有效地抑制了图形表面的GaN选择性生长现象,GaN外延层可以在图形表面顺利生长。相比于普通的PSS,外延层中的位错密度减小了50%以上。同时,外延层的其它性质也得到了显著的改善。
GaN possess many prominent qualities, such as wide band gap(3.39eV), highbreakdown field(3×10~6V/cm), and high electron saturation velocity(2.7×10~7cm/s),making them ideal for high-speed, high-power electronic applications andoptoelectronic devices. And GaN based LED has been used in many aspects of ourlife. Although GaN-based LEDs are commercially available, the output power stillfalls short of what is expected. One limitation is that the quality of GaN epilayer isdifficult to be perfect. Due to the lack of GaN bulk crystals, GaN epilayers usuallygrow on heterogeneous substrates, such as sapphire. The large lattice mismatch andthermal mismatch between GaN and sapphire leads to a high threading dislocation(TD)density in GaN films(about10~(10)cm-2), which seriously deteriorate the qualityof GaN film as well as the performance of corresponding GaN-based devices.Therefore, how to decrease the TD density and improve the quality of GaN epilayer isa hotspot issues for the researchers.
     In this paper, a serious of researches has been focused on improving the qualityof GaN epilayer. Such as the in-situ growth of SiNxinterlayer by metal-organicchemical vapor deposition(MOCVD), and the optimized research of patternedsapphire substrate(PSS). By characterization, good results were obtained. Thedetailed contents are as follows:
     (1)Three SiNxinterlayers with different growth-times were grown in the GaNepilayer. The SiNxinterlayer was proved to be a porous structure. It is found that the TD density in the epilayers decreased gradually with the increased growth-times ofSiN_xinterlayer. The smallest TD density reached to0.93×10~8cm~(-2)when the growthtime of SiN_xwas6mins. The full width at half maximum(FWHM)values of(0002)and(1012)diffraction peak decreased consistently with the prolongation of SiN_xgrowth-time. The minimum FWHM values of (0002)and(1012)diffraction peaksare118arcsec and222arcsec for the GaN epilayer with SiN_xgrowth time of6mins.The surface roughness increased with the growth-times of SiN_xinterlayer, and thebiggest root mean square (RMS) value is0.248nm. The results of low-temperature(10k)photoluminescence(PL)spectra indicated the good optical quality of GaNepilayer and the smallest FWHM value of D~oX peak was1.07meV. Raman scatteringexperiments confirmed that the compressive stress in the GaN epilayers was relaxedmore effectively with the increased SiN_xgrowth time.
     (2)The effect of combining porous SiN_xinterlayer with changed GaN regrowthmodes on improving the quality of the GaN epilayers was studied. Two different GaNregrowth conditions were used after SiN_xdeposition:(a)the regrowth mode of GaNtransformed form3D to2D, which labeled as sample A;(b)the GaN regrowth startedfrom the growth of nucleation layer and annealed at high temperature, then thefollowing growth conditions of GaN epilayer were the same with that of sample A,which labeled as sample B. It is found that the RMS values of the two samples arenearly the same. The effect of the two samples on decreasing the TD density is worsethan that of the above section. While for the aspect of optical quality, the smallestFWHM value of D~oX peak was0.804meV for sample A, which was the smallest inour study. In other hand, the compressive stress in the GaN epilayers of sample B was0.606GP, indicating that the condition of sample B was best for relaxing the stress.
     (3)The SiN_xinterlayer was grown after the growth and annealing of GaNnucleation layer. The surface of the epilayer was very rough. The FWHM values of(0002) and(1012) diffraction peaks were145arcsec and299arcsec, and the TDdensity was1.18×10~8cm~(-2), which was the smallest with the same SiN_xgrowth-time.The optical quality of the epilayer is good, the FWHM value of D~oX peak was1.24 meV. The result of Raman scattering experiments indicated that the compressivestress in GaN epilayers was relaxed effectively.
     Due to the sticking coefficients of Ga and N to GaN and SiN_xare about1and0,respectively, when GaN is deposited on the surface that partially covered with SiN_x, itwill grow firstly on the exposed surface of GaN rather than on SiN_x. Along with theincreased growth time, the GaN will grow laterally over the SiN_xregion, just like theprocess of GaN-growth in ELOG, and SiN_xacts as the mask. Thus, the TD densitywas decreased and the stress was relaxed. Furthermore, the SiN_xis preferentiallyformed at the TD cores because of the presence of N-dangling bonds for Si-Nformation, so the SiN_xinterlayer can also blocks some dislocations from entering theupper epilayers. The introduction of in-situ SiN_xhas the advantage of maskless,one-step processing, and the possible contaminations associated with the ex-situmethods can also be eliminated. These advantages are of great importance forimproving the performance of GaN-based devices.
     (4)Relevant knowledge of patterned sapphire substrate(PSS)was introducedand the growth mechanism of GaN grown on the PSS was also investigated. Thespecial selective growth phenomenon of GaN was found on the surface of PSS, andthe distribution morphology of GaN changed significantly after the recrystallization athigh temperature. It is thought that the slope of PSS prepared by ICP etchingcomposes of two types of crystal planes, the different arrangement of aluminum andoxygen atoms of corresponding crystal planes leaded to the selective growthphenomenon. A model of the pattern was proposed and the investigation in atom-levelwas carried on. Moreover, the influence of the selective growth phenomenon on thequality of GaN epilayer was also studied. Many big GaN islands were found in theselective zones on the pattern surface, which could hinder the growth of GaN on thepattern and introduce many TD in the epilayer. The effect of PSS on reducing the TDswas influenced negatively.
     (5)Wet etching was chosen as a method to suppress the selective growthphenomenon as well as the negative influence of which on the quality of GaN epilayer.During the etching process of NaOH, a porous structure of cone-shaped pattern was found, and the special morphology kept unchanged with increased etching time.When etched by KOH, it is found that the etching rate was very fast. The cone-shapedpattern transformed to a small hexagonal pyramid structure after20S. Mixture of98%H_2SO_4and85%H_3PO_4(H_2SO_4:H_3PO_4=3:1) was chosen as the corrodent,finally. During the etching process, three kinds of etching zones were found. Twoetching zones appeared first and vanished with increasing etching time. The other oneexposed later and expanded gradually. Finally, the cone-shaped pattern with anarcuate slope transformed to a hexagonal pyramid. The calculated orientation of thecrystallographic planes in the two etching zones were {1103} and {43127}, whichwere different from the previous reports.
     (6)Anew polyhedral PSS prepared during the wet etching was chosen to growthe GaN epilayer. It is found that the GaN nucleation layer was evenly distributed onthe polyhedral pattern. After recrystallization, though the nucleation layer transformedinto many small GaN grains, the distribution of them was uniform. These observationresults indicated that the selective growth of GaN had been suppressed successfully.And there were no big GaN islands on the pattern surface during the sequent growthof GaN, the epilayer could growth smoothly on the pattern region. The statisticalvalue of TD density was about1.38×10~8cm~(-2)in epilayer grown on the new PSS,which was much smaller than that in epilayer grown on the cone-shaped PSS(about3.4×10~8cm~(-2)). In addition, the characterization results indicated that the opticalquality was further improved and the residual compressive stress was relaxed moreeffectively by the new PSS.
     The discovery and suppression of selective GaN growth and the big GaN islandswas of great importance for further improving the function of PSS. The new methodused in our study for preparing the new PSS provided new ideas for the fabrication ofPSS. The new PSS could improve the quality of GaN epilayer markedly, which hasthe positive significance for the development of the industry of GaN-based device.
引文
[1]钦华林. GaN基LED外延生长工艺的研究[D].西安:西安电子科技大学,2011.
    [2] NARUKAWA Y, SAIJOU S, KAWAKAMI Y, et al. Radiative and nonradiativerecombination processes in ultraviolet light-emitting diode composed of anIn0.02Ga0.98N active layer [J]. Applied Physics Letters,1999,74(4):558-560.
    [3]沈光地,张念国,刘建平等. InGaN/GaN MQW双波长LED的MOCVD生长[J].半导体光电,2007,28(3):349-353.
    [4]张书明,朱建军,李德尧等.氮化稼基发光二极管的发光光谱和功率特性[J].半导体学报,2005,26:39-41.
    [5] AMANO H, SAWAKI N, AKASAKI I, et al. Metalorganic vapor phase epitaxialgrowth of a high quality GaN film using an AlN buffer layer [J]. Applied PhysicsLetters,1986,48(5):353-355.
    [6] NAKAMURA S. InGaN-based blue light-emitting diodes and laser diodes [J].Journal of crystal growth,1999,201:290-295.
    [7]刘行仁,郭光华,林秀华. InGaN蓝光LED的发射光谱,色品质与正向电流的关系[J].照明工程学报,2004,15(1):14-18.
    [8]刘耀忠,马仁祥.结区缺陷及其对LED光电特性的影响[J].电子学报,1982,3:015.
    [9]徐毓龙,阎西林等.材料物理导论[M].西安:西安电子科技大学,1994
    [10]MOHAMMAD S N, MORKO H. Progress and prospects of group-III nitridesemiconductors [J]. Progress in Quantum Electronics,1996,20(5):361-525.
    [11] AMBACHER O, SMART J, SHEALY J R, et al. Two-dimensional electron gasesinduced by spontaneous and piezoelectric polarization charges in N-and Ga-faceAlGaN/GaN heterostructures [J]. Journal of Applied Physics,1999,85(6):3222-3233.
    [12]SMITH A R, FEENSTRA R M, GREVE D W, et al. Reconstructions of the GaN(0001) Surface [J]. Physical review letters,1997,79(20):3934-3937.
    [13]DASGUPTA S, BROWN D F, WU F, et al. Ultralow nonalloyed Ohmic contactresistance to self aligned N-polar GaN high electron mobility transistors by In(Ga) N regrowth [J].Applied Physics Letters,2010,96(14):143504-143504.
    [14]KARRER U, AMBACHER O, STUTZMANN M. Influence of crystal polarity onthe properties of Pt/GaN Schottky diodes [J]. Applied Physics Letters,2000,77(13):2012-2014.
    [15]YU E T, DANG X Z, ASBECK P M, et al. Spontaneous and piezoelectricpolarization effects in III–V nitride heterostructures [J]. Journal of VacuumScience&Technology B: Microelectronics and Nanometer Structures,1999,17(4):1742-1749.
    [16]YANG W C, RODRIGUEZ B J, PARK M, et al. Photoelectron emissionmicroscopy observation of inversion domain boundaries of GaN-based lateralpolarity heterostructures [J]. Journal of Applied Physics,2003,94(9):5720-5725.
    [17]BRANDT O, YANG H, KOSTIAL H, et al. High p‐type conductivity in cubicGaN/GaAs (113) A by using Be as the acceptor and O as the codopant [J].Applied Physics Letters,1996,69(18):2707-2709.
    [18]LIN M E, XUE G, ZHOU G L, et al. p‐type zinc‐blende GaN on GaAssubstrates [J]. Applied Physics Letters,1993,63(7):932-933.
    [19]NG H M, PARZ W, WEIMANN N G, et al. Patterning GaN microstructures bypolarity-selective chemical etching [J]. Japanese Journal of Applied Physics,2003,42:1405.
    [20]KARPI SKI J, POROWSKI S. High pressure thermodynamics of GaN [J].Journal of crystal growth,1984,66(1):11-20.
    [21]LEE C, LU W, PINER E, et al. DC and microwave performance of recessed-gateGaN MESFETs using ICP-RIE [J]. Solid-State Electronics,2002,46(5):743-746.
    [22]KUZNETSOV N I, NIKOLAEV A E, ZUBRILOV A S, et al. Insulating GaN: Znlayers grown by hydride vapor phase epitaxy on SiC substrates [J]. AppliedPhysics Letters,1999,75(20):3138-3140.
    [23]ILEGEMS M, MONTGOMERY H C. Electrical properties of n-typevapor-grown gallium nitride [J]. Journal of Physics and Chemistry of Solids,1973,34(5):885-895.
    [24]PERLIN P, SUSKI T, TEISSEYRE H, et al. Towards the identification of thedominant donor in GaN [J]. Physical review letters,1995,75(2):296-299.
    [25]PANKOVE J I, WANCE R O, BERKEYHEISER J E. Neutralization of acceptorsin silicon by atomic hydrogen [J]. Applied Physics Letters,1984,45(10):1100-1102.
    [26]ZHANG G Y, TONG Y Z, YANG Z J, et al. Relationship of background carrierconcentration and defects in GaN grown by metalorganic vapor phase epitaxy [J].Applied Physics Letters,1997,71(23):3376-3378.
    [27]TCHOUNKEU M, BRIOT OLIVIER, GIL BERNARD, et al. Optical propertiesof GaN epilayers on sapphire [J]. Journal of Applied Physics,1996,80(9):5352-5360.
    [28]SAARINEN K, SEPPALA P, OILA J, et al. Gallium vacancies and the growthstoichiometry of GaN studied by positron annihilation spectroscopy [J]. AppliedPhysics Letters,1998,73(22):3253-3255.
    [29]G TZ W, KERN R S, CHEN C H, et al. Hall-effect characterization of III–Vnitride semiconductors for high efficiency light emitting diodes [J]. MaterialsScience and Engineering: B,1999,59(1):211-217.
    [30]ZHANG J P, WANG X L, SUN D Z, et al. High-concentration hydrogen inunintentionally doped GaN [J]. Journal of crystal growth,1998,189:566-569.
    [31]GELMONT B, KIM K, SHUR M. Monte Carlo simulation of electron transportin gallium nitride [J]. Journal of Applied Physics,1993,74(3):1818-1821.
    [32]ASIF KHAN M, KUZNIA J N, VAN HOVE J M, et al. Growth of high opticaland electrical quality GaN layers using low‐pressure metalorganic chemicalvapor deposition [J]. Applied Physics Letters,1991,58(5):526-527.
    [33]NAKAMURA S, MUKAI T, SENOH M. In situ monitoring and Hallmeasurements of GaN grown with GaN buffer layers [J]. Journal of AppliedPhysics,1992,71(11):5543-5549.
    [34]PALCZEWSKA M, SUCHANEK B, DWILINSKI R, et al. Paramagnetic defectsin GaN [J]. MRS Internet Journal of Nitride Semiconductor Research,1998,3
    [35]PANKOVE J I, BERKEYHEISER J E, MARUSKA H P, et al. Luminescentproperties of GaN [J]. Solid State Communications,1970,8(13):1051-1053.
    [36]MONEMAR B. Fundamental energy gap of GaN from photoluminescenceexcitation spectra [J]. Physical Review B,1974,10(2):676.
    [37]雷本亮.氢化物气相外延生长GaN材料及其物性分析[D].上海:中国科学院上海微系统与信息技术研究所,2006.
    [38]VARSHNI Y P. Temperature dependence of the energy gap in semiconductors [J].Physica,1967,34(1):149-154.
    [39]SMITH M, LIN J Y, JIANG H X, et al. Room temperature intrinsic opticaltransition in GaN epilayers: The band-to-band versus excitonic transitions [J].Applied Physics Letters,1997,71(5):635-637.
    [40]李述体,江风益,范广涵, et al.未掺杂GaN外延膜的结晶特性与蓝带发光关系的研究[J].量子电子学报,2004,21(3):366-370.
    [41]CHUNG B C, GERSHENZON M. The influence of oxygen on the electrical andoptical properties of GaN crystals grown by metalorganic vapor phase epitaxy [J].Journal of Applied Physics,1992,7(2):651-659.
    [42]HIROTOSHI S, TADATSUGU M, EIJI Y. Transparent and conductiveimpurity‐doped GaN thin films prepared by an electron cyclotron resonanceplasma metalorganic chemical vapor deposition method [J]. Journal of AppliedPhysics,1994,75(3):1405-1460.
    [43]KOIDE N, KATO H, SASSA M. Doping of GaN with Si and properties of bluem/i/n/n+GaN LED with Si-doped n+-layer by MOVPE [J]. Journal of CrystalGrowth,1991,115(1-4):639–642.
    [44]CHEN H M, CHEN Y F, LEE M C. Yellow luminescence in n-type GaN epitaxialfilms [J]. Physical Review B,1997,56(11):6942–6946.
    [45]MONEMAR B, LAGERSTEDT O, GISLASON H P. Properties of Zn‐dopedVPE‐g rownGaN. I. Luminescence data in relation to doping conditions [J].Journal of Applied Physics,1980,51(1):625-639.
    [46]ILEGEMS M, DINGLE R, LOGAN R A. Luminescence of Zn‐a nd Cd‐dopedGaN [J]. Journal of Applied Physics,1972,43(9):3797-3800.
    [47]ABERNATHY C R, MACKENZIE J D, PEARTON S J, et al. CCl4doping ofGaN grown by metalorganic molecular beam epitaxy [J]. Applied Physics Letters,1995,66(15):1969-1971.
    [48]KAUFMANN U, KUNZER M, MAIER M, et al. Nature of the2.8eVphotoluminescence band in Mg doped GaN [J]. Applied Physics Letters,1998,72(11):1326-1328.
    [49]GOTZ W, JOHNSON N M, BOUR D P, et al. Local vibrational modes of theMg–H acceptor complex in GaN [J]. Applied Physics Letters,1996,69(24):3725-3727.
    [50]KAUFMANN U, SCHLOTTER P, OBLOH H, et al. Hole conductivity andcompensation in epitaxial GaN: Mg layers [J]. Physical Review B,2000,62(16):10867.
    [51]KIM K, HARRISON J G. Critical Mg doping on the blue-light emission in p-typeGaN thin films grown by metal–organic chemical-vapor deposition [J]. Journal ofVacuum Science&Technology A: Vacuum, Surfaces, and Films,2003,21(1):134-139.
    [52]HULL B A, MOHNEY S E, VENUGOPALAN H S, et al. Influence of oxygen onthe activation of p-type GaN [J]. Applied Physics Letters,2000,76(16):2271-2273.
    [53]NAKAMURA S. GaN growth using GaN buffer layer [J]. Jpn. J. Appl. Phys,1991,30(10A):L1705-L1707.
    [54]NAKAMURA S, MUKAI T, SENOH M. High-power GaN pn junctionblue-light-emitting diodes [J]. Japanese Journal of Applied Physics,1991,30(12A):L1998-L2001.
    [55]NAKAMURA S, SENOH M, NAGAHAMA S, et al. InGaN-basedmulti-quantum-well-structure laser diodes [J]. Japanese Journal of AppliedPhysics Part2Letters,1996,35:74-76.
    [56]NAKAMURA S, SENOH M, NAGAHAMA S, et al. Room‐temperaturecontinuous‐wave operationof InGaN multi‐q uantum‐well structure laserdiodes [J]. Applied Physics Letters,1996,69(26):4056-4058.
    [57]NAKAMURA S, SENOH M, NAGAHAMA S, et al. Continuous-wave operationof InGaN/GaN/AlGaN-based laser diodes grown on GaN substrates [J]. AppliedPhysics Letters,1998,72(16):2014-2016.
    [58]梁春广,张冀. GaN-第三代半导体的曙光[J].半导体学报,1999,20(2):89-99.
    [59]KHAN M A, KUZNIA J N, VAN HOVE J M. Observation of atwo‐dimensional electron gas in low pressure metalorganic chemical vapordeposited GaN‐A lxGa1-xN heterojunctions [J]. Applied Physics Letters,1992,60(24):3027-3029.
    [60]JOHNSON W C, PARSON J B, CREW M C. Nitrogen Compounds of Gallium.III [J]. The Journal of Physical Chemistry,1932,36(10):2651-2654.
    [61]MANASEVIT H M. SINGLE‐CRYSTAL GALLIUM ARSENIDE ONINSULATING SUBSTRATES [J]. Applied Physics Letters,1968,12(4):156-159.
    [62]AMANO H, SAWAKI N, AKASAKI I, et al. Metalorganic vapor phase epitaxialgrowth of a high quality GaN film using an AlN buffer layer [J]. Applied PhysicsLetters,1986,48:353.
    [63]SASAKI T, MATSUOKA T. Analysis of two‐step‐growth conditions for GaNon an AlN buffer layer [J]. Journal of Applied Physics,1995,77(1):192-200.
    [64]KELLER B P, KELLER S, KAPOLNEK D, et al. Metalorganic chemical vapordeposition growth of high optical quality and high mobility GaN [J]. Journal ofelectronic materials,1995,24(11):1707-1709.
    [65]DOVERSPIKE K, ROWLAND L B, GASKILL D K. The effect of GaN and AlNbuffer layers on GaN film properties grown on both C-plane and A-plane sapphire[J]. journal of electronic materials,1995,24:269-273.
    [66]KATO Y, KITAMURA S, HIRAMATSU K, et al. Selective growth of wurtziteGaN and Al x Ga1x N onGaN/sapphire substrates by metalorganic vapor phase epitaxy [J]. Journal ofcrystal growth,1994,144(3):133-140.
    [67]ZHELEVA T S, SMITH S A, THOMSON D B, et al. Pendeo-epitaxy: A newapproach for lateral growth of gallium nitride films [J]. Journal of electronicmaterials,1999,28(4):L5-L8.
    [68]ISHIBASHI A, KIDOGUCHI I, SUGAHARA G, et al. High-quality GaN filmsobtained by air-bridged lateral epitaxial growth [J]. Journal of crystal growth,2000,221(1):338-344.
    [69]STRITE S, MORKOC H. GaN, AlN, and InN: a review [J]. Journal of VacuumScience&Technology B: Microelectronics and Nanometer Structures,1992,10(4):1237-1266.
    [70]MORKOC H, STRITE S, GAO G B, et al. Large‐b and‐gap SiC, III‐V nitride,and II‐VI ZnSe‐based semiconductor device technologies [J]. Journal ofApplied Physics,1994,76(3):1363-1398.
    [71]ZHOU J, REDDIC J E, SINHA M, et al. Surface morphologies ofMOCVD-grown GaN films on sapphire studied by scanning tunneling microscopy[J]. Applied surface science,2002,202(3):131-138.
    [72]ZHAO Z, QI M, LI A. Investigation of dislocation density of GaN withsingle-and double-buffer layer grown on sapphire (0001) by RF-plasma assistedMBE [J]. Materials Science and Engineering: B,2002,95(3):308-313.
    [73]吴学华,吴自勤.高质量GaN外延薄膜的生长[J].物理,1999,28(1):44-51.
    [74]MARTIN D H, WAKEFIELD R H. Ion Beam Analysis by an ElectrostaticTechnique [J]. Journal of Applied Physics,1966,37(1):398-401.
    [75]TANAKA A, FUNAYAMA Y, MURAKAMI T, et al. GaN crystal growth on anSiC substrate from Ga wetting solution reacting with NH3[J]. Journal of crystalgrowth,2003,249(1):59-64.
    [76]DI FORTE-POISSON M A, ROMANN A, TORDJMAN M, et al. LPMOCVDgrowth of GaN on silicon carbide [J]. Journal of crystal growth,2003,248:533-536.
    [77]XIONG C, JIANG F, FANG W, et al. The characteristics of GaN-based blue LEDon Si substrate [J]. Journal of luminescence,2007,122:185-187.
    [78]李国强,杨慧. Si衬底氮化物LED器件的研究进展[J].半导体光电,2012,33(2):153.
    [79]GRZEGORY I, POROWSKI S. GaN substrates for molecular beam epitaxygrowth of homoepitaxial structures [J]. Thin Solid Films,2000,367(1):281-289.
    [80]KELLY M, VAUDO R, PHANSE V, et al. Large free-standing GaN substrates byhydride vapor phase epitaxy and laser-induced liftoff [J]. Japanese Journal ofApplied Physics,1999,38:L217-L219.
    [81]SKIERBISZEWSKI C, WASILEWSKI Z R, SIEKACZ M, et al. Blue-violetInGaN laser diodes grown on bulk GaN substrates by plasma-assistedmolecular-beam epitaxy [J]. Applied Physics Letters,2005,86:011114.
    [82]PERLIN P, SUSKI T, LESZCZY SKI M, et al. Properties of InGaN blue laserdiodes grown on bulk GaN substrates [J]. Journal of crystal growth,2005,281(1):107-114.
    [83]SCHOWALTER L J, ROJO J C, SLACK G A, et al. Epitaxial growth of AlN andAl0.5Ga0.5N layers on aluminum nitride substrates [J]. Journal of crystal growth,2000,211(1):78-81.
    [84]KARPOV S YU, ZIMINA D V, MAKAROV Y N, et al. Sublimation growth ofAlN in vacuum and in a gas atmosphere [J]. physica status solidi (a),1999,176(1):435-438.
    [85]KE X, JUN X, PEIZHEN D, et al. γ-LiAlO2single crystal: a novel substrate forGaN epitaxy [J]. Journal of crystal growth,1998,193(1):127-132.
    [86]KUNG P, SAXLER A, ZHANG X, et al. Metalorganic chemical vapor depositionof monocrystalline GaN thin films on β‐LiGaO2substrates [J]. Applied PhysicsLetters,1996,69(14):2116-2118.
    [87]YUN F, MOONY T, FU Y, et al. Efficacy of single and double SiNxinterlayers on defect reduction in GaN overlayers grown by organometallicvapor-phase epitaxy [J]. Journal of Applied Physics,2005,98(12):123502-123502.
    [88]FANG X L, WANG Y Q, MEIDIA H, et al. Reduction of threading dislocations inGaN layers using in situ deposited silicon nitride masks on AlN and GaNnucleation layers [J]. Applied Physics Letters,2004,84(4):484-486.
    [89]KAPPERS M J, DATTA R, OLIVER R A, et al. Threading dislocation reductionin (0001) GaN thin films using SiN x interlayers [J]. Journal of crystalgrowth,2007,300(1):70-74.
    [90]ZHELEVA T S, NAM O H, ASHMAWI W M, et al. Lateral epitaxy anddislocation density reduction in selectively grown GaN structures [J]. Journal ofcrystal growth,2001,222(4):706-718.
    [91]HEYING B, WU X H, KELLER S, et al. Role of threading dislocation structureon the x‐ray diffraction peak widths in epitaxial GaN films [J]. Applied PhysicsLetters,1996,68(5):643-645.
    [92]SUGAHARA T, SATO HI, HAO M, et al. Direct evidence that dislocations arenon-radiative recombination centers in GaN [J]. Japanese Journal of AppliedPhysics,1998,37:L398-L400.
    [93]ROSNER S J, CARR E C, LUDOWISE M J, et al. Correlation ofcathodoluminescence inhomogeneity with microstructural defects in epitaxialGaN grown by metalorganic chemical-vapor deposition [J]. Applied PhysicsLetters,1997,70(4):420-422.
    [94]GIL B, HAMDANI F, MORKO H. Oscillator strengths for optical band-to-bandprocesses in GaN epilayers [J]. Physical Review B,1996,54(11):7678.
    [95]RIEGER W, METZGER T, ANGERER H, et al. Influence of substrate‐inducedbiaxial compressive stress on the optical properties of thin GaN films [J]. AppliedPhysics Letters,1996,68(7):970-972.
    [96]ZHAO D G, XU S J, XIE M H, et al. Stress and its effect on optical properties ofGaN epilayers grown on Si (111),6H-SiC (0001), and c-plane sapphire [J].Applied Physics Letters,2003,83(4):677-679.
    [97]FIGGE S, B TTCHER T, EINFELDT S, et al. In situ and ex situ evaluation of thefilm coalescence for GaN growth on GaN nucleation layers [J]. Journal of crystalgrowth,2000,221(1):262-266.
    [98]BOTTCHER T, EINFELDT S, FIGGE S, et al. The role of high-temperatureisland coalescence in the development of stresses in GaN films [J]. AppliedPhysics Letters,2001,78(14):1976-1978.
    [99]TANAKA S, TAKEUCHI M, AOYAGI Y. Anti-Surfactant in III-NitrideEpitaxy---Quantum Dot Formation and Dislocation Termination [J]. JapaneseJournal of Applied Physics,2000,39:831.
    [100] HAFFOUZ S, KIRILYUK VICTORIA, HAGEMAN P R, et al. Improvementof the optical properties of metalorganic chemical vapor deposition grown GaN onsapphire by an in situ SiN treatment [J]. Applied Physics Letters,2001,79(15):2390-2392.
    [101] PARK S E, LIM S M, LEE C R, et al. Influence of SiN buffer layer in GaNepilayers [J]. Journal of crystal growth,2003,249(3):487-491.
    [102] JU I, KWON Y, SHIN C S, et al. High-Power GaN-Based Light-EmittingDiodes Using Thermally Stable and Highly Reflective Nano-ScaledNi–Ag–Ni–Au Mirror [J]. Photonics Technology Letters, IEEE,2011,23(22):1685-1687.
    [103] SEO T H, LEE K J, PARK A H, et al. Enhanced light output power of nearUV light emitting diodes with graphene/indium tin oxide nanodot nodes fortransparent and current spreading electrode [J]. Optics express,2011,19(23):23111-23117.
    [104] LEE Y C, CHEN C Y, CHOU Y Y. Fabrication of high-refractive-indexmicrostructures and their applications to the efficiency improvement ofGaN-based LEDs [J]. Optics express,2011,19(106):A1231-A1236.
    [105] LEE S J, CHO C Y, HONG S H, et al. Improved performance of GaN-basedlight-emitting diodes with high-quality GaN grown on InN islands [J]. Journal ofPhysics D: Applied Physics,2011,44(42):425101.
    [106] SHEU J K, TU S J, LEE M L, et al. Enhanced light output of GaN-basedlight-emitting diodes with embedded voids formed on Si-implanted GaN layers [J].Electron Device Letters, IEEE,2011,32(10):1400-1402.
    [107] LIN Y S, YEH J A. GaN-based light-emitting diodes grown on nanoscalepatterned sapphire substrates with void-embedded cortex-like nanostructures [J].Appl. Phys. Express,2011,4:092103.
    [108] LEE H K, KIM M S, YU J S. Light-extraction enhancement of large-areaGaN-based LEDs with electrochemically grown ZnO nanorod arrays [J].Photonics Technology Letters, IEEE,2011,23(17):1204-1206.
    [109] KAO C C, SU Y K, LIN C L. Enhancement of light output power ofGaN-based light-emitting diodes by a reflective current blocking layer [J].Photonics Technology Letters, IEEE,2011,23(14):986-988.
    [110] SUN Y, TRIEU S, YU T, et al. GaN-based LEDs with a high light extractioncomposite surface structure fabricated by a modified YAG laser lift-off technologyand the patterned sapphire substrates [J]. Semiconductor Science and Technology,2011,26(8):085008.
    [111] CHIU C H, TU P M, LIN C C, et al. Highly efficient and bright LEDsovergrown on GaN nanopillar substrates [J]. Selected Topics in QuantumElectronics, IEEE Journal of,2011,17(4):971-978.
    [112] WANG G, ZUO H, ZHANG H, et al. Preparation, quality characterization,service performance evaluation and its modification of sapphire crystal for opticalwindow and dome application [J]. Materials&Design,2010,31(2):706-711.
    [113] BILLEB A, GRIESHABER W, STOCKER D, et al. Microcavity effects inGaN epitaxial films and in Ag/GaN/sapphire structures [J]. Applied PhysicsLetters,1997,70(21):2790-2792.
    [114] FUJII T, GAO Y, SHARMA R, et al. Increase in the extraction efficiency ofGaN-based light-emitting diodes via surface roughening [J]. Applied PhysicsLetters,2004,84(6):855-857.
    [115] CHANG S, LIN Y C, SU Y K, et al. Nitride-based LEDs fabricated onpatterned sapphire substrates [J]. Solid-State Electronics,2003,47(9):1539-1542.
    [116] AKASAKI I, AMANO H, KITO M, et al. Photoluminescence of Mg-dopedp-type GaN and electroluminescence of GaN pn junction LED [J]. Journal ofluminescence,1991,48:666-670.
    [117] SAKAI A, SUNAKAWA H, USUI A. Defect structure in selectively grownGaN films with low threading dislocation density [J]. Applied Physics Letters,1997,71(16):2259-2261.
    [118] NAKADA N, NAKAJI M, ISHIKAWA H, et al. Improved characteristics ofInGaN multiple-quantum-well light-emitting diode by GaN/AlGaN distributedBragg reflector grown on sapphire [J]. Applied Physics Letters,2000,76(14):1804-1806.
    [119] FAN S, VILLENEUVE P R, JOANNOPOULOS J D. Rate-equation analysisof output efficiency and modulation rate of photonic-crystal light-emitting diodes[J]. Quantum Electronics, IEEE Journal of,2000,36(10):1123-1130.
    [120] TUN C, SHEU J K, PONG B J, et al. Enhanced light output of GaN-basedpower LEDs with transparent Al-doped ZnO current spreading layer [J]. PhotonicsTechnology Letters, IEEE,2006,18(1):274-276.
    [121] ASHBY C H, MITCHELL C C, HAN J, et al. Low-dislocation-density GaNfrom a single growth on a textured substrate [J]. Applied Physics Letters,2000,77(20):3233-3235.
    [122] CHENG J H, WU Y C S, LIAO W C, et al. Improved crystal quality andperformance of GaN-based light-emitting diodes by decreasing the slanted angleof patterned sapphire [J]. Applied Physics Letters,2010,96(5):051109-051109.
    [123] KIM T S, KIM S M, JANG Y H, et al. Increase of light extraction from GaNbased light emitting diodes incorporating patterned structure by colloidallithography [J]. Applied Physics Letters,2007,91(17):171114-171114.
    [124] PAN C C, HSIEH C H, LIN C W, et al. Light output improvement of InGaNultraviolet light-emitting diodes by using wet-etched stripe-patterned sapphiresubstrates [J]. Journal of Applied Physics,2007,102(8):084503-084503.
    [125] KIMA D W, JEONGA C H, KIMA K N. High rate sapphire (Al2O3)etching in inductively coupled plasmas using axial external magnetic field [J].Thin Solid Films,2003,435(1-2):242-246.
    [126] FENG Z H, QI Y D, LU Z D, et al. GaN-based blue light-emitting diodesgrown and fabricated on patterned sapphire substrates by metalorganicvapor-phase epitaxy [J]. Journal of crystal growth,2004,272(1):327-332.
    [127] CHANG C T, HSIAO S K, CHANG E Y, et al.460-nm InGaN-based LEDsgrown on fully inclined hemisphere-shape-patterned sapphire substrate withsubmicrometer spacing [J]. Photonics Technology Letters, IEEE,2009,21(19):1366-1368.
    [128] GAO H, YAN F, ZHANG Y, et al. Fabrication of nano-patterned sapphiresubstrates and their application to the improvement of the performance ofGaN-based LEDs [J]. Journal of Physics D: Applied Physics,2008,41(11):115106.
    [129] WUU D S, WU H W, CHEN S T, et al. Defect reduction of laterally regrownGaN on GaN/patterned sapphire substrates [J]. Journal of crystal growth,2009,311(10):3063-3066.
    [130] JEONG C H, KIM D W, BAE J W, et al. Dry etching of sapphire substratefor device separation in chlorine-based inductively coupled plasmas [J]. MaterialsScience and Engineering: B,2002,93(1):60-63.
    [131] PARK H, CHAN H M, VINCI R P. Patterning of sapphire substrates via asolid state conversion process [J]. Journal of materials research,2005,20(2):417-423.
    [132] EE Y K, BISER J M, CAO W, et al. Metalorganic vapor phase epitaxy ofIII-nitride light-emitting diodes on nanopatterned AGOG sapphire substrate byabbreviated growth mode [J]. Selected Topics in Quantum Electronics, IEEEJournal of,2009,15(4):1066-1072.
    [133] CUONG T V, CHEONG H S, KIM H G, et al. Enhanced light output fromaligned micropit InGaN-based light emitting diodes using wet-etch sapphirepatterning [J]. Applied Physics Letters,2007,90(13):131107-131107.
    [134] KISSINGER S, JEONG S M, YUN S H, et al. Enhancement in emissionangle of the blue LED chip fabricated on lens patterned sapphire (0001)[J].Solid-State Electronics,2010,54(5):509-515.
    [135] LEE Y J, KUO H C, LU T C, et al. Study of GaN-based light-emitting diodesgrown on chemical wet-etching-patterned sapphire substrate with V-shaped pitsroughening surfaces [J]. Journal of Lightwave Technology,2008,26(11):1455-1463.
    [136] DWIKUSUMA F, SAULYS D, KUECH T F. Study on sapphire surfacepreparation for III-nitride heteroepitaxial growth by chemical treatments [J].Journal of The Electrochemical Society,2002,149(11):G603-G608.
    [137] KIM S J. Vertical electrode GaN-based light-emitting diode fabricated byselective wet etching technique [J]. Japanese Journal of Applied Physics,2005,44:2921.
    [138] WANG J, GUO L W, JIA H Q, et al. Investigation of characteristics oflaterally overgrown GaN on striped sapphire substrates patterned by wet chemicaletching [J]. Journal of crystal growth,2006,290(2):398-404.
    [139] GAO H, YAN AWANG, ZHANG Y, et al. Enhancement of the light outputpower of InGaN/GaN light-emitting diodes grown on pyramidal patternedsapphire substrates in the micro-and nanoscale [J]. Journal of Applied Physics,2008,103(1):014314-014314.
    [140] LEE Y J, HWANG J M, HSU T C, et al. Enhancing the output power ofGaN-based LEDs grown on wet-etched patterned sapphire substrates [J].Photonics Technology Letters, IEEE,2006,18(10):1152-1154.
    [141] GAO H, YAN F, ZHANG Y, et al. Improvement of GaN-based light emittingdiodes performance grown on sapphire substrates patterned by wet etching, date,International Society for Optics and Photonics,Year.
    [142]赵广才,李培咸,郝跃.腐蚀时间对蓝宝石衬底上外延生长GaN质量的影响[J].发光学报,2010,31(5):624-627.
    [143]邵慧慧,李树强,曲爽, et al.湿法腐蚀制备蓝宝石图形衬底的研究[J].人工晶体学报,2010,39(6):1443-1445.
    [144] LEE J W, DEVRE M W, REELFS B H, et al. Advanced selective dry etchingof GaAs/AlGaAs in high density inductively coupled plasmas [J]. Journal ofVacuum Science&Technology A: Vacuum, Surfaces, and Films,2000,18(4):1220-1224.
    [145]宋颖娉,郭霞,艾伟伟, et al. Cl2/BCl3ICP刻蚀GaN基LED的规律研究[J].微纳电子技术,2006,43(3):125-129.
    [146]钱振型.固体电子学中的等离子体技术[M]北京:电子工业出版社,1983
    [147]汪明刚,杨威风,胡冬冬, et al.图形化蓝宝石衬底技术综述[J].激光与光电子学进展,2012,49(8):80005.
    [148] CHANG S J, LIN Y C, SU Y K, et al. Nitride-based LEDs fabricated onpatterned sapphire substrates [J]. Solid-State Electronics,2003,47(9):1539-1542.
    [149] HSU Y P, CHANG S J, SU Y K, et al. ICP etching of sapphire substrates [J].Optical Materials,2005,27(6):1171-1174.
    [150] LEE Y J, HSU T C, KUO H C, et al. Improvement in light-output efficiencyof near-ultraviolet InGaN–GaN LEDs fabricated on stripe patterned sapphiresubstrates [J]. Materials Science and Engineering: B,2005,122(3):184-187.
    [151] HSU Y P, CHANG S J, SU Y K, et al. Lateral epitaxial patterned sapphireInGaN/GaN MQW LEDs [J]. Journal of crystal growth,2004,261(4):466-470.
    [152] TSAI P C, CHUANG R W, SU Y K, et al. Lifetime tests andjunction-temperature measurement of InGaN light-emitting diodes using patternedsapphire substrates [J]. Journal of Lightwave Technology,2007,25(2):591-596.
    [153] JEONG S M, KISSINGER S, KIM D W, et al. Characteristic enhancement ofthe blue LED chip by the growth and fabrication on patterned sapphire (0001)substrate [J]. Journal of crystal growth,2010,312(2):258-262.
    [154] KISSINGER S, JEONG S M, YUN S H, et al. Enhancement in emissionangle of the blue LED chip fabricated on lens patterned sapphire (0001)[J].Solid-State Electronics,2010,54(5):509-515.
    [155] SONG J C, LEE S H, LEE I H, et al. Characteristics comparison betweenGaN epilayers grown on patterned and unpatterned sapphire substrate(0001)[J].Journal of crystal growth,2007,308(2):321-324.
    [156] HUANG H W, HUANG J K, LIN C H, et al. Efficiency improvement ofGaN-based LEDs with a SiO2nanorod array and a patterned sapphire substrate [J].IEEE Electron Device Letters,2010,31(6):582.
    [157] SHIN H Y, KWON S K, CHANG Y I, et al. Reducing dislocation density inGaN films using a cone-shaped patterned sapphire substrate [J]. Journal of crystalgrowth,2009,311(17):4167-4170.
    [158] LEE K S, KWACK H S, HWANG J S, et al. Spatial correlation betweenoptical properties and defect formation in GaN thin films laterally overgrown oncone-shaped patterned sapphire substrates [J]. Journal of Applied Physics,2010,107(10):103506-103506.
    [159] HUANG H W, LIN C H, HUANG J K, et al. Investigation of GaN-basedlight emitting diodes with nano-hole patterned sapphire substrate (NHPSS) bynano-imprint lithography [J]. Materials Science and Engineering: B,2009,164(2):76-79.
    [160] WUU D S, WANG W K, SHIH W C, et al. Enhanced output power ofnear-ultraviolet InGaN-GaN LEDs grown on patterned sapphire substrates [J].Photonics Technology Letters, IEEE,2005,17(2):288-290.
    [161] SUNG Y J, KIM H S, LEE Y H, et al. High rate etching of sapphire waferusing Cl2/BCl3/Ar inductively coupled plasmas [J]. Materials Science andEngineering: B,2001,82(1):50-52.
    [162] KOO S M, KIM D P, KIM K T, et al. The etching properties of Al2O3thinfilms in N2/Cl2/BCl3and Ar/Cl2/BCl3gas chemistry [J]. Materials science&engineering. B, Solid-state materials for advanced technology,2005,118(1-3):201-204.
    [163] KIM D W, JEONG C H, KIM K N, et al. High rate sapphire (Al2O3)etching in inductively coupled plasmas using axial external magnetic field [J].Thin Solid Films,2003,435(1):242-246.
    [164] JEONG C H, KIM D W, KIM K N, et al. A study of sapphire etchingcharacteristics using BCl3-based inductively coupled plasmas [J]. JapaneseJournal of Applied Physics,2002,41(10A):6206-6208.
    [165] SHEN K C, WUU D S, SHEN C C, et al. Surface modification on wet-etchedpatterned sapphire substrates using plasma treatments for improved GaN crystalquality and LED performance [J]. Journal of The Electrochemical Society,2011,158(10):H988-H993.
    [166] WANG M T, LIAO K Y, LI Y L. Growth mechanism and strain variation ofGaN material grown on patterned sapphire substrates with various pattern designs[J]. Photonics Technology Letters, IEEE,2011,23(14):962-964.
    [167] WANG W K, WUU D S, LIN S H, et al. Growth and characterization ofInGaN-based light-emitting diodes on patterned sapphire substrates [J]. Journal ofPhysics and Chemistry of Solids,2008,69(2):714-718.
    [168] ZHMAKIN A I. Enhancement of light extraction from light emitting diodes[J]. Physics Reports,2011,498(4):189-241.
    [169] LEE Y J, CHIU C H, KE C C, et al. Study of the excitation power dependentinternal quantum efficiency in InGaN/GaN LEDs grown on patterned sapphiresubstrate [J]. Selected Topics in Quantum Electronics, IEEE Journal of,2009,15(4):1137-1143.
    [170] GAO H, YAN F, ZHANG Y, et al. Improvement of the performance ofGaN-based LEDs grown on sapphire substrates patterned by wet and ICP etching[J]. Solid-State Electronics,2008,52(6):962-967.
    [171] PEI X J, GUO L W, WANG X H, et al. Enhanced photoluminescence ofInGaN/GaN green light-emitting diodes grown on patterned sapphire substrate [J].Chinese Physics Letters,2009,26(2):028101.
    [172] JIANG Y, LUO Y, WANG L, et al. Influence of pillar-and hole-patternedsapphire substrates on MOVPE grown GaN bulk and LED structures [J]. ActaPhysica Sinica,2009,5:093.
    [173] ZANG K Y, WANG Y D, CHUA S J, et al. Nanoscale lateral epitaxialovergrowth of GaN on Si (111)[J]. Applied Physics Letters,2005,87(19):193106-193106.
    [174] WANG Y D, ZANG K Y, CHUA S J, et al. Improvement of microstructuraland optical properties of GaN layer on sapphire by nanoscale lateral epitaxialovergrowth [J]. Applied Physics Letters,2006,88(21):211908-211908.
    [175] HIRAMATSU K, NISHIYAMA K, ONISHI M, et al. Fabrication andcharacterization of low defect density GaN using facet-controlled epitaxial lateralovergrowth (FACELO)[J]. Journal of crystal growth,2000,221(1):316-326.
    [176] LEE J H, LEE D Y, OH B W, et al. Comparison of InGaN-based LEDsgrown on conventional sapphire and cone-shape-patterned sapphire substrate [J].Electron Devices, IEEE Transactions on,2010,57(1):157-163.
    [177] WU M, ZENG Y P, WANG J X, et al. Investigation of a GaN NucleationLayer on a Patterned Sapphire Substrate [J]. Chinese Physics Letters,2011,28(6):068502.
    [178] AMBACHER O. Growth and applications of group III-nitrides [J]. Journal ofPhysics D: Applied Physics,1998,31(20):2653.
    [179] LIU L, EDGAR J H. Substrates for gallium nitride epitaxy [J]. MaterialsScience and Engineering: R: Reports,2002,37(3):61-127.
    [180] UCHIDA K, WATANABE A, YANO F, et al. Nitridation process of sapphiresubstrate surface and its effect on the growth of GaN [J]. Journal of AppliedPhysics,1996,79(7):3487-3491.
    [181] NG K W, HWANG J M, LAU K M. Growth and Characterizations ofGaN-Based LEDs Grown on Wet-Etched Stripe-Patterned Sapphire Substrates [J].Journal of electronic materials,2008,37(10):1560-1564.
    [182] DASSONNEVILLE S, AMOKRANE A, SIEBER B, et al. Luminescence ofepitaxial GaN laterally overgrown on (0001) sapphire substrate: Spectroscopiccharacterization and dislocation contrasts [J]. Journal of Applied Physics,2001,89(7):3736-3743.
    [183] ST PNIEWSKI R, KORONA K P, WYSMO EK A, et al. Polariton effectsin reflectance and emission spectra of homoepitaxial GaN [J]. Physical Review B,1997,56(23):15151.
    [184] HARIMA H. Properties of GaN and related compounds studied by means ofRaman scattering [J]. Journal of Physics: Condensed Matter,2002,14(38):R967.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700