用户名: 密码: 验证码:
小目标检测识别技术性能评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小目标检测识别是自动目标识别的重要组成部分和研究方向。小目标的检测和跟踪问题产生于远程监控警戒的应用背景中。近些年来,强杂波条件下的小目标的检测研究工作已愈来愈为人们所重视,对大量已形成或正形成的小目标检测识别算法和系统进行有效的评估、并通过性能评估来改进算法和发展新算法成为日益迫切的需求。小目标检测识别技术性能评价对研究和发展小目标检测识别算法与系统、界定算法与系统的边界与适应性、提高系统的性能十分关键。
     本论文工作的目的是结合国家自然科学基金重点项目和国防重点预研课题,研究小目标检测识别算法性能评价的理论、方法与支撑环境模型,为算法与系统的研制提供理论依据和试验支撑。因此,本文拟从三方面展开研究:一是目标检测识别算法性能评价的基本框架研究;二是小目标检测识别算法性能评价新方法研究,包括机理分析方法、基于试验设计方法学的性能评价方法、全流程性能评价技术等,用以评估现有算法或支撑发展新算法;三是小目标检测识别算法研究与性能评价支撑环境理论模型及其实现技术的研究。为小目标检测识别技术研究一体化提供支持。
     本文通过对目标检测识别算法性能评估现状的分析,提出了将算法研究与性能评估过程统一到一个框架的观点。论述了性能评估的基本原理和方法,把系统辨识模型引入到算法系统性能的建模中,发展了多元数据分析方法,并探讨了算法性能评价的组织结构和软件支撑环境的保障问题。
     建立了算法系统性能的全流程评价模型,评价了湍流退化条件下作为小目标检测预处理操作的气动光学效应图像校正算法的性能。分析了图像校正算法对红外小目标检测的影响,探讨了性能评价研究涉及的两个基本问题a)如何评估整个系统性能;b)如何考察在数据变化情况下,比较已存在系统的能力和局限性。试验结果验证了提出的评估模型和方法的有效性。
     发展了基于机理分析的性能评价方法和基于科学试验设计的性能评估技术,验证了机理分析性能评价方法对发展新算法的积极作用。提出了一种新的红外弱小目标图像模型——一阶邻域空间分布模型,创造性地将逆/反问题求解的优化问题引入到小目标检测领域,考察了传统背景预测滤波方法中存在的不适问题,由此提出了基于正则化理论的滤波框架,推导出一种新的基于“杂波抑制-目标增强”正则化滤波的小目标检测快速算法。理论分析和试验结果表明新算法具有良好的红外弱小目标检测能力,运算量小、结构简单、利于硬件实时实现;试验结果也验证了评价方法的有效性。
     为了降低小目标检测识别评价的复杂性,提高算法研究和评估的效率,提出了支撑算法研究与评价的一体化环境的概念模型。并根据目标识别算法域和软件编程域的专家知识,为支撑环境提出了一种新的基于知识的计算模型——专家系统模型,论述了它的计算机表达方法和实现技术。实践表明,基于该模型的开发可大大加快新算法原型的建模,简化了开发过程,提高了开发效率,使开发和管理更简易、有效,从而能够提升算法与系统研制的生产力。
The detection and recognition of small target is an important component and research direction of automatic target recognition. The problem of detection and tracking of dim target comes from application of long-range surveillance system. In recent years, researchers pay more and more attention on the detection work of dim target in infrared (IR) image sequence. It is an increasingly impending requirement to evaluate the existing or developing algorithms and systems of small target detection and recognition, and to study and develop new algorithms for small target detection by way of performance evaluation. So the performance evaluation is crucial to study and develop new algorithms and systems of detecting and recognizing small targets, to look for the flexibility boundary and to improve the system’s performance.
     The purpose of the paper is to present new theories, methods and supporting environment models of performance evaluation for small target detection algorithms and their systems. The work of the paper is to provide theory foundation and experience support for developing the algorithms and systems of the National Natural Science Foundation of PR China and the National defense key advanced research project of PR China. The work of the paper focuses on three aspects. First of them is the research work of the basic performance evaluation framework of algorithm systems of target detection and recongintion. The second is the research work of new performance evaluation methods for small target detection and recognition, including mechanism analysis method, performance evaluation based on experimental design methodology, performance estimation technology of the full processing flowchart, which are used to estimate the existion algorithms or improve and develop new algorithms. The last is the research work of the theoretic models of supporting algorithm development and performance evaluation of small target detection and recognition, and its implementation technologies are also discussed. The work of the paper provides technologic support of research and development of small target detection, recognition.
     By analyzing the evolution of performance evaluation of target recognition algorithm, the viewpoint is proposed that the process of the algorithm development and the process of performance estimation should be unified into one framework. The theories and methods of performance evaluation are discussed, the system identification model is introduced into the performance modeling of algorithm systems, and the multivariate data analysis approaches are developed. The organization and software supporting environment for the performance evaluation are discussed.
     The performance estimation model of the full processing flowchart for analyzing algorithm systems is made, which is applied to analyze the effects of image restoration on small target acquisition from the turbulence-degraded images is presented. The effect of the restoration operation on infared point target detection is analyzed. The broad basic problems during performance evaluation research are addressed: a) how to investigate the system as a whole, and b) how to evaluate the performance on realistic and varied data to determine and compare both the capabilities and limits of the existing systems. The evaluation experimental results demonstrate the validity of the proposed model and methods.
     The new mechanism analysis method and the evaluation technology based on scientific experimental design are presented, and the active effect of the mechanism analysis method on developing novel algorithms is demonstrated. A new model of IR dim small target image– a 1-rank adjacent space distribution model is made. The optimization problem of inverse problem is applied to the domain of small target detection, and the ill-pose problem of conventional clutter background prediction methods is analyzed. Based on this, a filtering framework using regularization technology is presented and a novel fast filtering method with‘clutter-removal target-preserving’regularization is proposed. Detailed theoretical analyses and experimental results show that this new method provides good filtering results and robust adaptability of small IR target detection, moreover, its little computing complexity and simple computing structure are suitable to be implemented in real-time system.
     In order to reduce the complexity of evaluating small target detection and recognition, and to enhance the efficiency of algorithm development and estimation, a new supporting environment concept model for algorithm development and performance evaluation is presented. Based on expert knowledge in software programming domain and automatic target recognition domain, a new knowledge-based computing model using expert system is proposed, and its representation method and implementation technologies of the expert system are discussed. The practice shows that the development based on this new model can improve modeling of a novel algorithm prototype and reduce the developing process to get a higher efficiency; and it aso make the development and management more easier and efficient, which improve the productivity of algorithms and systems.
引文
[1]张天序.成像自动目标识别.武汉:湖北科技出版社, 2005. 4
    [2] B. Bhanu et. al. Introduction to the special issue on automatic target detection and recognition. IEEE Trans on Image Processing, 1997, 6(1): 1-3
    [3]郁文贤,郭桂蓉. ATR的研究现状和发展趋势.系统工程与电子技术, 1994, 6: 25-32
    [4]李补莲.自动目标识别(ATR)技术发展述评.现代防御技术, 2000, 128(12):10-20
    [5]廖云涛. ATR性能评估方法的研究.华中科技大学硕士学位论文, 2002
    [6]王自勇,廖朝佩.红外图像自动目标识别技术进展.飞航导弹, 1996, 7: 41-48
    [7]金易,杜爱军.发展中的自动目标识别技术.军事科学. pp:5-6
    [8] Sadjadi, Mike Bazakos. A Perspective on ATR evaluation technology. SPIE Vol. 1310, 1990: 2-15
    [9] Fimoz Sadjadi. Experimental design methodology: the scientific tool for performance evaluation. SPIE Vol. 1310, 1990
    [10] Hatem Nasr and Mike Bazakos. Automated evaluation and adaptation of automatic target recognition systems. Proc. of SPIE, 1990, 1310: 108-119
    [11] Hossien Amehdi and Hatem Nasr. Neural networks for ATR parameters adaptation. Proc. of SPIE, 1991, 1483: 177-184
    [12] J.F.Gilmore. Knowledge-besed target recognition system evolution. Optical Engineering, May 1991, 30(5): 557-570
    [13] Erik Lithopoulos, Ed Bender and John Bronskill. Algorithm evaluation for an infrared target-detection test-bed. Proc. SPIE, signal and image processing systems performance evaluation, 1990, 1310: 58-65
    [14] Walters, Clarence P. Removing the ATR performance evaluation bottleneck: the C2NVEO AUTOSPEC facility. Proc. of SPIE, v 1310, 1990: 16-31
    [15] MSTAR. Online (2005) http://www. alphatech. com/secondary/techpro/ projects/ mstar/MSTARTopLevel. html
    [16] J. C. Mossing, T. D. Ross. An evaluation of SAR AIR algorithm performance sensitivity to MSTAR extended operating conditions. Proc. SPIE, Algorithms for Synthetic Aperture Radar Imagery V, April 1998, 3370: 554-565
    [17] Timothy D. Ross, Steven W. Worrell, et al. Standard SAR ATR evaluationexperiments using the MSTAR public release data set. Proc. SPIE Int. Soc. Opt. Eng. 3370, 566 (1998)
    [18] Ross, Timothy D. MSTAR evaluation methodology. Proc. of SPIE, 1999, 3721: 705-713
    [19] U. Grenander, M. I. Miller, and A. Srivastava. Hilbert–Schmidt lower bounds for estimators on matrix lie-groups for ATR. IEEE Trans. Pattern Anal. Machine Intell., Aug. 1998, 20: 790-802
    [20] M. Lindenbaum. Bounds on shape recognition performance. IEEE Trans. Pattern Anal. Machine Intell., July 1995, 17: 666-680
    [21] Lori Westerkamp, Thomas Wild, Donna Meredith, et al. Problem set guidelines to facilitate ATR research, development, and performance assessments. Automatic Target Recognition XII, Proc. of SPIE, 2002, 4726: 310-315
    [22]张坤.序列图像处理算法性能评价研究.华中科技大学博士学位论文, 2007
    [23]李张帆.图像处理算法性能分析方法研究.华中科技大学硕士学位论文, 2007
    [24] Zhou Chuan, Zhang GuiLing, Pen JiaXiong. General evaluation method for segmentation algorithm based on experimental design methodology. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, 1995, 1: 258-262
    [25]张桂林,熊艳.一种评价自动目标检测算法性能的方法.华中理工大学学报, 1994, 22(5): 46-50
    [26] Jerald A. Herstein, Rodney L. Pickens, and William W. Boyd. Model-based system for vehicle detection and identification. SPIE Vol. 1957, 1993: 122-143
    [27] B. Li. Experimental evaluation of FLIR ATR approaches - a comparative study. Computer Vision and Image Understanding, October, 2001, 84(1): 5-24
    [28] Dan E. Dudgeon. ATR Performance modeling and estimation. Digital Signal Processing, 2000(10): 269-285
    [29] Peter Klausmann, Kristian Kroschel and Dieter Willersinn. Performance prediction of vehicle detection algorithms. Automatic Target Recognition XI, Firooz A. Sadjadi, Editor, Proceedings of SPIE Vol. 4379, 2001:364-74
    [30] Stevens, Mark R., Snorrason, Magnus; Jarratt, Mary, et al. A scoring, truthing and registration toolkit for ATR evaluation. Proceedings of SPIE - The International Society for Optical Engineering, 2003, 5094: 91-100
    [31] Irvine, John M. Evaluating assisted target recognition performance: An assessment ofDARPA's SAIP system. Proceedings of SPIE - The International Society for Optical Engineering, 1999, 3721: 693-704
    [32] S. Richard F. Sims. Putting ATR performance on an equal basis: the measurement of knowledge base distortion and relevant clutter. Proc. SPIE Int. Soc. Opt. Eng., 4050, 55 (2000): 55-60
    [33] William E. Pierson and Jr. Timothy D. Ross. Automatic target recognition (ATR) evaluation theory: a survey. Proc. SPIE Int. Soc. Opt. Eng. 4053, 666 (2000): 666-676
    [34] Zhaoyang Chen and Guilin Zhang. General quantitative approach to performance evaluation of automatic target recognition (ATR) systems. Proc. SPIE Int. Soc. Opt. Eng. 4553, 179 (2001): 179-184
    [35] David Blacknell. A comparison of SAR ATR performance with information theoretic predictions. Proc. SPIE Int. Soc. Opt. Eng. 5095, 385 (2003)
    [36] S. Fries, Klausmann, U. Jager, et al. Evaluation framework for ATR algorithms. SPIE Conference on Automatic Target Recognition IX. April 1999. SPIE Vol. 3718: 438 -448
    [37] Sadja F, Bazakoe M. A perspective on automatic target recognition evaluation technology. Optical Engineering, 1991, 30(2): 141-149
    [38] Sadjadi Firooz. Knowledge and model-based automatic target recognition algorithm adaptation. Optical engineering, 1991, 30(2):183-188
    [39]陈鸿翔.成像跟踪算法性能评价设计方法研究.华中理工大学硕士论文, 1996
    [40]方开泰,马长兴.正交与均匀试验设计.北京:科学出版社, 2001
    [41]吴贵生,于治福.试验设计与数据处理.北京:冶金工业出版社, 1997: 46-76
    [42]方开泰,全辉,陈庆云.实用回归分析[M].北京:科学出版社, 1988
    [43] Baoxin Li, Qinfen Zheng, Sandor Dert, et al. Experimental evaluation of neural, statistical and model-based approaches to FLIR ATR. Part of the SPIE Conference on Automatic Target Recognition VIII. Orlando. Florida. 1998, SPIE Vol. 3371: 388-397
    [44] Firooz Sadjadi. Automatic object recognition: critical issues and current approaches. SPIE Vol. 1471, 1991: 303-313
    [45] M. D. Heath, S. Sarkar, T. Sanocki and K. W. Bowyer. A robust visual method for assessing the relative performance of edge detection algorithms. IEEE Trans. Pattern Analysis and Machine Intelligence, 1997, 19(20): 1338-1359
    [46] Power, Gregory J. ATR subsystem performance measures using manual segmentationof SAR target chips. Proc. of SPIE, V3721, 1999: 685-692
    [47] Ross, Timothy D. MSTAR evaluation methodology. Proc. of SPIE, 1999, 3721: 705-713
    [48] R. Stevens, Magnus Snorrason, Mary Jarratt, et al. A scoring, truthing, and registration toolkit for ATR evaluation. Proc. SPIE Int. Soc. Opt. Eng. 5094, 91 (2003)
    [49]李勐.红外序列图像弱小运动目标检测新方法研究.华中科技大学博士学位论文. 2006
    [50] Blostein S. D., Huang T. S. Detection of Small Moving Objects in Image Sequences Using Sequential Hypothesis Testing[J]. IEEE Trans. Signal Process, 1991, 39(7): 1611-1629
    [51] Wang G., Zhang T., Wei L. and Sang N. A multifeatures-based algorithm for small target detection. Proc. of 1995 IEEE International Conference on Systems. Man and Cybernetics, 1995, 5(5): 4085-4088
    [52]周进,吴钦章.弱小目标跟踪算法性能评估的研究.光电工程,2007, 34(1):19- 22
    [53] Dimitris Manolakis. Realistic matched filter performance prediction for hyperspectral target detection. Optical Engineering, 2005, 44(11): 116401. 1 -116401.7
    [54] Jun X., Jiangqi Zhang, Changhong Liang. Prediction of the performance of an algorithm for the detection of small targets in infrared images. Infrared Physics & Technology, 2001, 42: 17-22
    [55] S. Tarun, J. R. Zeidler and W. H. Ku. Performance Evaluation of 2-D Adaptive Prediction Filters for Detection of Small Objects in Image Data. IEEE Transactions on Image Processing, July 1993, 2(3): 327-339
    [56]计世资讯(CCWResearch).中国软件平台产业发展战略研究报告, 2003, http://www. ccwresearch. com. cn
    [57]管理软件的新生存法则. http://www. huhoo. com, 2006
    [58] RSI. [Online]. Available: http://www. rsinc. com/
    [59] Jonathan Campbell, Fionn Murtagh. DataLab-J: A signal and image processing laboratory for teaching and research. IEEE Trans. Edu., 2001, 44(4): 329-335
    [60] Roberto H., Bamberger. Portable tools for image processing instruction. IEEE Trans. Edu., 1994: 525-529
    [61] Q. Wang, Y. J. Zeng, P. Huo, P. Huo, et al. A specialized plug-in software module for computer-aided quantitative measurement of medical images. Medical Engineering &Physics, 2003, 25: 887-892
    [62] Wang, Dongyan, Lin, Bo; Zhang, Jun. JIP: java image processing on the internet. Proceedings of SPIE - Color Imaging: Device-Independent Color, Color Hardcopy, and Graphic Arts IV, 1999, 3648: 354-364
    [63] Paul Ouo, David Lau-Kee. Design and implementation issues in VPL: a visual language for image processing. SPIE Proc. Image Processing and Interchange, 1992, 1659: 240-253
    [64] S. L. Tanimoto. VIVA: A Visual language for image processing. journal of visual languages and computing, 1990, 1(2): 127-139
    [65] M. S. Atkins, B. Johnston, et al. An object-oriented dataflow software development tool for medical image analysis. IEEE, 1994: 1287-1291
    [66] Domagoj Cosi′c. An open medical imaging workstation architecture for platform-independent 3-D medical image processing and visualization. IEEE trans. Information Technology In Biomedicine, 1997, 1(4): 279-283
    [67] K. Konstantinides and J. Rasure. The KHOROS software development environment for image and signal processing. IEEE Trans. Image Processing, 1994, 3(3): 243-252
    [68] K. N. Whitley, Alan F. Blackwell. Visual programming in the wild: a survey of LabVIEW programmers. Journal of Visual Languages and Computing, 2001: 435-472
    [69]殷兴良.气动光学原理[M].北京:中国宇航出版社, 2003
    [70]刘纯胜.基于湍流退化模式机理的气动光学效应校正仿真与实验.华中科技大学博士学位论文, 2006
    [71] A. D. Kathman, L. C. Brooks, D. A. Kalin, and R. L. Clark. A time-integrated image model for aero-optic analysis. AIAA 92-2795
    [72] G. W. Sutton, J. E. Pond, R. Snow& Y. Hwang. Hypersonic interceptor performance evaluation center: aero-optics performance predictions. AIAA 93-2675
    [73] John E. Pond, Charles T. Welch, and George W. Sutton. Side mounted ir window aero-optical and aerothermal analysis. SPIE, 1999, 3705:266-275
    [74] G. R. Ayers, J. C. Dainty. Iterative blind deconvolution method and its applications. Optics Letters, 1988, 13(7): 547-549
    [75] R. G. Lane. Blind deconvolution of speckle images. J. Opt. Soc. Am. A. 1992, 9(9): 1508-1514
    [76] F. Tsumuraya, N. Miura, N. Baba. Iterative blind deconvolution method using Lucy’salgorithm. Astronomy and Astrophysics, 1994, 282(3): 669-708
    [77] Franklin T. Luk, David Vandevoorde. Reducing boundary in image restoration. SPIE, 1994, 2296: 554-565
    [78] Malur K. Sundareshan, Ho-Yuen Pang. Image restoration in multi-sensor missile seeker environments for design of intelligent integrated processing architectures. SPIE 1997, 3170:203-214
    [79] A. Stern and N. S. Kopeika. Vibrated images restoration from two consecutive images. SPIE 1995, 3110, 849-859
    [80] D. Sheppard, B. R. Hunt. Blind super-resolution of turbulence-degraded imagery. IEEE, 1998: 923-927
    [81] Y. Yitzhaky and N. S. Koeika. Vibrated image restoration from a single frame. SPIE 2000, 3808: 603-613
    [82] C. Bondeau, E. Bourennane and M. Paindavoine. Restoration of a short- exposure image sequence degraded by atmospheric turbulence. Proceeding of SPIE. 2000, 4125: 120-130
    [83] Luca Caucci, Giulia Spaletta. Blind restoration of astronomical image with mathematica. Department of mathematics, Bolagna, Italy, 2002. 10
    [84] Laurent M. Mugnier, Thierry Fusco, Jean-Marc Conan. MISTRAL: a myopic edge-preserving image restoration method, with application to astronomical adaptive-optical-corrected long-exposure images. J. Opt. Soc. Am. A, 2004, 21(10): 1841-1854
    [85] Ruimin Pan, Stanley J. Reeves. Fast Huber-Markov edge-perserving image restoration. Proceeding of SPIE-IS & Electronic imaging, SPIE 2005, 5674: 138-146
    [86]张天序,洪汉玉,孙向华, et al.气动光学效应图像校正技术研究报告.华中科技大学科研报告, 2001. 5
    [87]余国亮,张天序,洪汉玉.基于贝叶斯理论的湍流退化图像复原方法研究. 2005, 10(9): 1171-1177
    [88]张天序,洪汉玉.基于估计点扩散函数值的湍流退化图像复原.自动化学报, 2003, 29(4): 573-581
    [89] Zhang Tianxu, Hong Hanyu, Shen Jun. Restoration algorithms for turbulence-degraded images based on optimized estimation of discrete values of overall point spread functions. Optical Engineering, 2005, 44(1)
    [90] Hong Hanyu, Zhang Tianxu. Fast restoration approach for rotational motion blurredimage based on deconvolution along the blurring paths. Optical Engineering, 2003, 42(12): 3471-3486
    [91]刘纯胜,张天序,殷兴良.高速湍流流场气动光学传输效应研究[J].红外与激光工程, 2005, 34(6)
    [92]何成剑.气动光学效应图像盲复原算法及其应用研究[硕士学位论文].华中科技大学, 2006
    [93]涂娇姣,洪汉玉,张天序.保边缘的递归逆滤波盲目图像复原方法[J].计算机与数字工程, 2006, 34(12): 4-6
    [94]曾三友,康立山,丁立新,黄元江.一种基于正则化方法的准最佳图像复原技术.软件学报, 2003, 14(3): 689-696
    [95]张永平,郑南宁,赵荣椿.基于变分的图像恢复算法及收敛性.自动化学报, 2002, 28(5): 673-680
    [96]陈武凡,李超,陈和晏.空域中退化图像恢复的有效算法.计算机学报, 1999, 22(12): 1267-1271
    [97]张永平,郑南宁,赵荣椿.基于变分的图像恢复算法及收敛性.自动化学报, 2002, 28(5): 673-680
    [98] Norman S. Kopeika, Stanley R. Rotman, et. al. Effects of image restoration on target acquisition [J]. Opt. Eng., 2003, 42(2): 534-540
    [99]张天序,左峥嵘.星上运动目标识别的若干关键问题.红外与激光工程, 2001, 30(6): 395-400
    [100]张孝霖等.红外背景中点与近点源目标探测的卷积减法滤波算法.红外与激光技术, 1995, 24(4): 31-36
    [101] Sang Nong, Zhang Tianxu, Shi Weiqiang. Characteristics of contrast and application for small target detection. SPIE Data and Processing of Small Target, 1998, 3809: 123-131
    [102]聂洪山,李飚,沈振康.一种基于自适应背景抑制的红外小目标检测方法[J].红外技术, 2004, 26(2)
    [103]沈宇键,何昕,郝志航.运动小目标实时检测系统的设计与分析[J].红外与毫米波学报, 2000(5)
    [104]李吉成,沈振康.红外起伏背景下运动点目标的检测方法[J].红外与激光工程, 1997, 26(6): 8-13
    [105] S. Tarun, J. R. Zeidler and W. H. Ku.. Performance evaluation of 2-D adaptive prediction filters for detection of small objects in image data[J]. IEEE Trans. Image Processing, 1993, 2(3): 327-339
    [106] Li Guokuan, Peng Jiaxiong, Li Hong. Small target detection based on multi-wavelet transform[J]. J Huazhong Univ of Sci &Tech, 2000, 28(1): 72-75
    [107] Blostein S. D., Huang T. S. Detection of small moving objects in image sequences using sequential hypothesis testing[J]. IEEE Trans. Signal Process, 1991, 39(7): 1611-1629
    [108] Wang Guoyou, Zhang Tianxu, Wei Luogang et al. Efficient method for multiscale small target detection from a natural scene. Opt. Eng., 1996, 35(3): 761-768
    [109] Jean-Francois Rivest, Roger Fortin. Detection of dim targets in digital infrared imagery by morphological image processing [J]. Optical Engineering, 1996, 35(7): 1886-1893
    [110] Srephrn L. J. An extended track-before-detect algorithm for infrared target detection [J]. IEEE Transactions on Aerospace and Electronic System, 1997, 33(3): 1087-1092
    [111]许彬,郑链,王永学.红外序列图像小目标检测与跟踪技术综述.红外与激光工程, 2004, 33(5):482-487
    [112] Blostein S. D., Richardson H. S. A sequential detection approach to target tracking, IEEE Trans. on AES, 1994, 30(1): 197-211
    [113] Femandez M., A. Randolph, et. al. Optimal subpixel-level frame-to-frame registration. Singal and data processing of small targets 1991 proceedings of SPIE 1481(1991), 172-179
    [114] D. S. K. Chan, D. A. Langan, and D. A. Stayer. Spatial processing techniques for the detection of small targets in IR clutter. Proc. SPIE 1305, 53-62 (1990)
    [115] Y. S. Moon and T. X. Zhang. Detection of sea surface small target in infrared images based on multilevel filter and minimum risk bayse test. Int. J. of Pattern Recognition and Artificial Intelligence, 2000, 14(7): 907-918
    [116] Meng Li, Tianxu Zhang, et al. Moving weak point target detection and estimation with three-dimensional double directional filter in IR cluttered background. Opt. Eng., 2005, 44(10)
    [117] Reed, I., Gagliardi R., and Stootts L. Optical moving target detection with 3-D matched filtering. IEEE Trans. Aerosp. Electron. Syst., 1988, 24(4): 327-335
    [118] Jicheng Li, Zhenkang Shen, et. al. Weak and small target detection based on adaptive predictions of IR background clutter. Laser &infrared, 2004, 34(6): 478-480
    [119] J. Y. Chen and I. S. Reed. A detection algorithm for optical targets in clutter. IEEE Trans. on aerospace and electronic Sys., 1987, 23(1): 46-591
    [120]熊辉,沈振康等.低信噪比运动红外点目标的检测[J].电子学报, 1999, 27(12): 26-29
    [121]杨磊,杨杰等.海空复杂背景中基于自适应局部能量阈值的红外小目标检测.红外与毫米波学报, 2006, 25(1): 41-45
    [122]朱红,赵亦工.基于背景自适应预测的红外弱小运动目标检测.红外与毫米波学报, 1999, 18(4): 305-310
    [123]武斌,姬红兵,李红.基于三阶累积的红外弱小运动目标检测新方法.红外与毫米波学报, 2006, 25(5): 364-367
    [124]邹谋炎.反卷积和信号恢复.北京:国防工业出版社, 2001
    [125] S. Geman and G. Reynolds. Constrained restoration and the recovery of discontinuities. IEEE Trans. Pattern Anal. Machine Intell., Mar. 1992, 14: 367-383
    [126] S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Machine Intell., Nov. 1984, PAMI-6: 721-741
    [127] Sylvie Teboul and Laure Blanc-F’eraud. Variational approach for edge-preserving regularization using coupled PDE’s. IEEE Trans. Image Processing, 1998, 7(3)
    [128] D. Terzopoulis. Regularization of inverse visual problems involving discontinuities. IEEE Trans. Patt. Anal. Machine Intell, 1986, PAMI-8: 413-424
    [129] Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion [J]. IEEE Trans. Pattern Anal. Mach. Intell., 1990, 12(7): 629-639
    [130] P. Charbonnier, L. Blanc-F′eraud, G. Aubert, and M. Barlaud. Deterministic edge- preserving regularization in computed imaging. IEEE Trans. Image Processing, Feb. 1997, 5
    [131] Michael J. Black, Guillermo Sapiro, David H. Marimont, et al. Robust anisotropic diffusion. IEEE Trans. Image Processing, March, 1998, 7(3): 421-432
    [132] I. Gijbels, A. Lambert, and P. H. Qiu. Edge-Preserving image denoising and estimation of discontinuous surfaces. IEEE Trans. Pattern Anal. Machine Intell., July 2006, 28(7): 1075-1087
    [133] G. Demoment. Image reconstruction and restoration: Overview of common estimation structures and problems. IEEE Trans. Acoust., Speech, Signal Processing, Dec. 1989, 37
    [134] Vicent Caselles, Jean-Michel Morel, Guillermo Sapiro, et al. Introduction to the special issue on partial differential equations and geometry-driven diffusion in image processing and analysis. IEEE Trans. Image Processing, 1998, 7(3): 269-273
    [135] N. Acito, G. Corsini, M. Diani, et al. Experimental performance analysis of clutter removal techniques in ir images. IEEE 2005
    [136] J. N. Lin, X. Nie and R. Unbehauen.: Two-dimensional lms adaptive filter incorporating a local-mean estimator for image processing. IEEE Tran. on Circuits and Systems-II: Analog and digital signal processing, 1993, 40(7): 417-428
    [137]聂洪山,沈振康.基于自适应Wiener滤波的红外小目标检测方法.红外技术, 2004, 26(6): 54-57
    [138] Joseph Giarrataro, Gary Riley. Expert Systems Principles and Programming[M]. PWS pulishing company, 1999
    [139] Zhang Tianxu, Peng Jiaxiong, Li Zongjie. An adaptive image segmentation method with visual nonlinearity characteristics [J]. IEEE Trans. Syst., Man, Cybern., 1996, SMC- 26(4): 619-627

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700