用户名: 密码: 验证码:
JDD-100型城市地质调查钻机电液比例自动钻进系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自动化、智能化、信息化是未来钻机的发展方向。具有自动钻进功能的钻机可控性好,负载适应能力强,钻进效率高,钻进事故少。
     对JDD-100型城市地质调查钻机液压回路与液压元件选型进行了深入地分析。在此基础上,为了实现钻机自动钻进功能,设计了钻机电液比例控制液压系统。为实现钻机的自动钻进打下良好的基础。
     自动钻进系统对钻压、转速、泵压、孔深、钻速、孔底钻进力等钻进规程参数实时检测,使操作人员随时掌握钻机运行情况。同时对钻压、转速进行闭环反馈控制,达到使用最佳钻进规程参数钻进的目的。
     钻机自动识别地层是自动钻进的重要环节,如何准确地识别地层尤为关键。通过分析钻进规程参数之间的内在关系,建立了自动识别地层模型。以该模型为标准,在不同的地层中,自动钻进控制系统可自动调整钻进规程参数,与该地层钻探负载相适应,实现最优化钻进。
     钻机工作环境恶劣,采用工业计算机、可编程控制器等元件设计了钻机自动钻进控制系统。增强了自动钻进系统抗冲击振动能力与工作可靠性。采用组态软件设计了钻机自动钻进控制界面,操作简便。
     对钻机自动钻进闭环控制系统进行仿真分析,研究了控制系统的动态特性。最后通过试验验证了钻机钻进参数检测系统与钻进参数闭环反馈控制系统,为JDD-100型城市地质调查钻机自动钻进系统提供了充分的理论支持与良好的技术保障。
Information technology, automation, intelligent is the direction of development of drilling rig. At present, most of the geological drilling rig used in our country are the traditional vertical-type drilling rig, the small part are the full-hydraulic drilling rigs, although some drilling rigs have been drilling parameter monitoring implementation of the function, but the overall level of automation is still relatively backward.
     The proportion of electro-hydraulic technology is put into drilling rig design, so that drilling rigs automatically become possible. Electric-hydraulic proportional control technology is a new type of electro-hydraulic control technology based on the switch control and electro-hydraulic servo control. As the connection of modern microelectronic technology and power engineering control equipment, electric -hydraulic proportional control technology has become one of the basic technical components of the modern control engineering.
     with the traditional electro-hydraulic servo technology it has the obvious advantages of reliable, energy-efficient and cheap. It need not clean the oil strictly and maintenants conveniencely.
     Electro-hydraulic proportional technology can significantly streamline the rig hydraulic system and control the complexity of program implementation. Input signal rig control body changes in the law as scheduled, through the multi-channel parallel control rigs drilling parameters for drilling rigs in proportion to adjust the speed of rotation system and give the power into system. Simultaneously the drilling parameters as detect speed, penetration rate, giving force, torque and pump pressure. This feature greatly improved performance and rig control interoperability, simplified the rig hydraulic system, improve the reliability of the hydraulic system. Electro-hydraulic proportional control system can not only achieve long-distance on the drilling rig but also be wired to control implementation of wireless remote control, which the operators do not work in dangerous areas, improve the safety performance of the rig. Through the electro-hydraulic proportional control, hydraulic valves can be arranged at the most suitable location which is very beneficial to reduce the hydraulic losses and improve pipeline and improve the flexibility of the rig design. Through closed-loop feedback control, it can improve control accuracy or achieve specific control objectives using feedback. Acquisition of drilling rig in accordance with the parameters automatically determine the formation changes in power the first motor and give into the fuel tank, such as executing agency output speed, give into force and the formation drilling parameter to determine the default value the same or similar. Electric-hydraulic proportional control technology improves the control accuracy of the drilling rig order parameters to precise the implementation of the drilling rig and drilling optimization.
     The paper introduces hydraulic regulator and speed control by the main executing agency as drilling and rotary. In response to these characteristics of an analysis of hydraulic circuit, the selection of suitable electro-hydraulic proportional control of the rig to power into the voltage regulator circuit and the first governor loop. Electro-hydraulic proportional variable pump pressure regulator and long stroke double-acting hydraulic cylinder regulator agencies rig components, pressure can be adjusted automatically in accordance with procedures and at the same time to flow into the load changes in accordance with adjustments to the implementation of the stress into the automatic control, high-performance energy.Through the simulation analysis, the stress to the EC regulation into line, the system smaller overshoot, shorter response time, system stability. Electro-hydraulic proportional variable displacement pump controls head power hydraulic motor rotating speed component agencies. Variable displacement pump with the automatic adjustment procedures to control the pump output flow of power to control the speed of hydraulic motor head, power the first implementation of automatic control speed. At the same time can also be dual-hydraulic motor in series, parallel connection speed the first power conditioning. Drilling load hours, the first required power high-speed, low torque, through the dual-hydraulic motor in series to obtain the first high-speed power. Into the load when the required low-speed power heads, high-torque, hydraulic motors through the parallel to obtain large torque. Load through the simulation analysis, parameters such as moment of inertia of a mutation, the job rotation system stability, anti-interference ability. Back to convert to the system the impact of small, quick to respond.
     Hydraulic system is the most critical part in the all hydraulic rig. Through these analysis, in order to achieve the automatic drilling rig features we designed JDD-100 hydraulic drilling MWD hydraulic proportional control system. The rig has these drilling functions such as rotary, impact, static pressure and vibration. In addition to the boring routine tasks it can also be used to cone penetration power, formation density, resistivity and other geophysical parameters of the mission MWD. The rig has many executing agencies, the agencies act complexly and frequently.The Multi-function rigs request the better hydraulic system. The use of electro-hydraulic proportional control technology, electric-hydraulic proportional pressure regulator pump, electro-hydraulic proportional displacement pump adjustment and accurate control of the rig into rotary motion of the key institutions can achieve the goal of the best drilling and automatic drilling.Not only through the variable pump to change the speed of drilling, but also we can achieve the first rapid advance and retreat with the rapid turn motion, fully improve the utilization rate of each pump to increase the drilling efficiency through the merging of pump power. It cost savings and simplifies the system architecture by adopting gear pump-driven to other implementing agencies.
     The core of automatic drilling is the ability to automatically identify formation in rigs, how to identify formation is the key point. Through the analysis of the intrinsic relationship in drilling parameters, we establish the automatic identify formation model and the automatic identify formation model method. In the drilling process, drilling rigs automatic control system collects and analysis the drilling parameters to automatically identify the stratigraphic model for the standard to determine whether a change in strata. If the strata didn’t change, continued using the current drilling parameters. If the strata changed, the rig's automatic control system would adjust the drilling parameters according to Lithology so adapt the lithology and optimize drilling. Through the identification of existing formation models, a specific work-Logistic regression model is seted up. The formation will be divided into soil formation, loose layer and rock calculate, these three stratigraphic range by formula. Through the power which calculated by the drilling parameters automatic control system collected, we determine the current formation in the range of reactive power.Also the formation will be divided into soil formation, loose layer and rock by Logistic regression model.Through the acquisition of the drilling parameter calculate the probability belong to the current lithology.Make sure the largest provisions of the probability of the formation for the current drilling. But sometimes the probability calculated is relatively small, it is difficult to judge and identify the lithology. Therefore make the following provisions, when the probability is more than or equal to 0.8, we can determine the probability of the current lithology for the biggest lithology.If the probability of three types of lithology are less than 0.8, the system automatically switches to the model than reactive, in accordance with calculated values to determine rock than reactive, that is, than the reactive-Logistic regression model.
     The control system and the mathematical model are built.Through the simulation software, simulation analysis is made, add PID control algorithm into control system simulation model.Rig control systems for drilling are testing the parameters of PID control algorithms to provide a reference setting.
     In establishing a stratigraphic model of automatic identification, we design a rig control system for automatic control of drilling programs.Pressure sensors, Hall-speed sensors, rotary encoder sensor to capture nine give into pressure from the import and export power the first hydraulic motor bad stress, speed, penetration rate and pump pressure signal, passed to the PLC of the AD converter module with signal processing. Through the configuration software, the drilling parameters in real-time industrial computer screen shows up. In order to keep abreast of the situation and determine, used to detect the import and export of the stress to the fuel tank into the first hydraulic motor and the power to calculate the import and export pressure into force and power to the first torque, with the penetration rate, rotational speed is calculated with the adoption of PLC to identify the size of numerical stratigraphic model to determine Change formation. And adjust pressure and speed of drilling, to enable them to determine the stratigraphy and to adapt to achieve optimum drilling.PLC through WOB PID algorithm with closed-loop feedback control of speed, so that pressure and speed of drilling and consistent default to the purpose of precision drilling.Rig has manual control and automatic switching function.When we do not need drill automatically or the automatic control system into a temporary failure, we can be manually operated drilling rigs, improve the reliability of the rig.While Drilling, we will face the collapse of holes, such as sticking with unexpected incidents, in order to protect against damage, the control system has automatic alarm device. Torque as a reference to the volume, when the detection system to detect the torque of the drilling rig is greater than the maximum torque set value, issued a warning alarm, automatic control system at the same time cut the proportion of electro-hydraulic variable displacement pump and adjust the ratio of electro-hydraulic pressure variable pump power adjustment so that the output variable pump flow and pressure to zero, the executing agency for the protection of rig.
     Finally, the drilling parameters detection system and drilling parameters closed-loop feedback control system were built. The experiments were done for automatic drilling syetem of the JDD-100 MWD rig. These supplied for theoretical basis and technical support for the study of automatic drilling control system.
引文
[1]张伟.关于我国地质岩心钻机发展方向的分析[J].探矿工程,2008,35(8): 1-5.
    [2]孙友宏.地球物理参数随钻测量系统及钻机研制项目设计书[M].长春:吉林大学2006.3-6.
    [3]胡志坚.钻机负载敏感自适应液压控制系统的研究[D].吉林大学,2007.
    [4] Rezia M. Molfino, Roberto P. Razzoli, Matteo Zoppi. Autonomous drilling robot for landslide monitoring and consolidation. Automation in Construction, 2008(11): 111-121.
    [5]李琳,邵小华,张奇志,等.电动钻机全数字电控系统发展现状与趋势[J].石油机械. 2006, 34(8): 73-75.
    [6]李西峰,许益民,李树勋.国内外钻机自动送钻技术发展现状[J].甘肃科技. 2008, 24(19): 79-82.
    [7]吴根茂,丘敏秀,王庆丰,等.新编实用电液比例技术[M].杭州:浙江大学出版社,2006:1-12.
    [8]路甬祥,胡大纮著.电液比例控制技术[M].机械工业出版社,1 988.11:2 90~300.
    [9]李世忠.钻探工艺学(上册)[M].北京:地质出版社,1992.
    [10]章宏甲,黄谊.液压传动[M].北京:机械工业出版社,2000.9:57-62.
    [11]鄢泰宁.岩土钻掘工程学[M].武汉:中国地质大学出版社,2001.9:92-93.
    [12]刘桂琴.电液比例技术在工程钻机中的应用研究[D].中国地质大学(武汉). 2006.
    [13]庞海荣.全液压钻机电液比例技术的应用研究[D].煤炭科学研究总院西安分院,2003.7.
    [14]付永领,祁晓野著. AMESim系统建模和仿真[M].北京航空航天大学出版社,2006.6:90~115
    [15]刘海丽.基于AMESim的液压系统建模与仿真技术研究[D].西北工业大学,2006.3:30~60.
    [16]卢宁,付永领,孙新学.基于AMEsim的双压力柱塞泵的数字建模与热分析[J].北京航空航天大学学报. 2006, 32(9): 1055-1058.
    [17]宋海涛.履带钻机负载敏感液压系统的研究[D].中国地质大学(武汉),2 008
    [18]吴万荣,孟莹,杨矗,等.基于AMESim的新型数字控制液压冲击器的仿真[J].机械制造与自动化. 2008, 37(3): 105-107.
    [19]钱道光,陈奎生,陈阳国,等.基于AMESim的新型元件与液压系统仿真[J].机械. 2008, 35(11): 71-73.
    [20]段飞蛟,曹克强,李永林,等.基于AMESim的恒压力轴向柱塞泵动态特性仿真[J].机床与液压. 2008, 36(11): 160-162.
    [21]王强,吴张永,李红星,等.基于AMESim的电液伺服速度控制系统仿真分析[J].液压气动与密封. 2008, 28(4): 31-33.
    [22]周振华,邓和平,贺建国,等.基于AMEsim的500t液压拉力试验机液压系统仿真[J].矿业研究与开发. 2008(5): 44-45.
    [23]陈晓娟,李活,韩宇.水平定向钻机液压系统设计中AMEsim技术的应用[J].建筑机械:上半月. 2008(12): 95-98.
    [24]王全福,邵俊鹏. YB-20AH恒压变量泵特性分析及其仿真研究[J].哈尔滨理工大学学报. 2007, 12(6): 104-106.
    [25]许锦宗.恒压变量泵的恒压控制系统的动,静态特性分析[J].厦门水产学院学报. 1991, 13(2): 56-66.
    [26]徐绳武.恒压变量泵的节能,应用和发展[J].液压与气动. 1998(3): 5-11.
    [27]刘崇荣.恒压变量泵的使用[J].液压气动与密封. 1996(4): 38-40.
    [28]刘忠,杨襄璧,伍劲松,等.恒压变量泵系统的电液数字控制研究[J].机床与液压. 2001(2): 29-31.
    [29]苏东海,孙占文. AMEsim仿真技术在电液位置同步系统中的应用[J].液压气动与密封. 2007, 27(6): 13-15.
    [30]龚进,冀谦,郭勇,等. AMESim仿真技术在小型液压挖掘机液压系统中的应用[J].机电工程技术. 2007, 36(10): 111-114.
    [31]杨华,郑志昊.基于AMESim的带式输送机动态分析[J].煤矿机电. 2008(3): 46-47.
    [32]郭勇,张德胜,冀谦.基于AMESim的挖掘机动臂液压回路仿真研究[J].建筑机械. 2007(12S): 96-98.
    [33]吴晓光,宋海涛,殷新胜,等.基于AMESim的钻机负载敏感液压系统仿真分析[J].机床与液压. 2008, 36(3): 163-164.
    [34]万理想,丁保华,周洲,等.基于AMESim和Simulink的液压伺服系统动态仿真[J].煤矿机械. 2007, 28(9): 40-42.
    [35]吉林工业大学等编写.工程机械液压与液力传动(上册)[M].北京:机械工业出版社,1979.6:100~190.
    [36]吉林工业大学等编写.工程机械液压与液力传动(下册)[M].北京:机械工业出版社,1979.6:20~35.
    [37]孙友宏,胡志坚,等. JQW230型钻机液压系统设计[J].工程机械,2006(9): 41-45.
    [38]沙永柏,刘宝仁,于萍.非开挖导向钻机给进机构分析[J].探矿工程,2005 (5):46 - 48.
    [39]官忠范.液压传动系统[M].北京:机械工业出版社,1981.7:51-55.
    [40]李洪人著.液压控制系统.国防工业出版社,1981:65-80.
    [41]孙友宏,于萍,赵大军,沙永柏.JDY-1500型全液压动力头岩心钻机的研制[J].探矿工程(岩土钻凿工程),2007(增刊):43-45.
    [42]冯德强.钻机设计[M].中国地质大学出版社,1993,10:116~227.
    [43]杨惠民主编.钻探设备[M].北京:地质出版社,1988.11:100~130.
    [44]郑俊华,赵大军,孙友宏,等. JDX-1500型岩芯钻机给进与回转液压系统设计[J].工程机械. 2008, 39(8): 42-45.
    [45]殷新胜,姚宁平,陈跟马,等. ZDY6000L型履带式全液压坑道钻机液压系统设计[J].煤田地质与勘探. 2007, 35(6): 77-80.
    [46]朱建新,胡火焰,赵永城,等. ZYJ900型液压静力压桩机液压系统设计[J].建筑机械. 2006(12): 94-97.
    [47]朱鹏程,鄢华林.采用负载敏感控制技术的绞车液压系统设计[J].江苏科技大学学报:自然科学版. 2008, 22(3): 39-42.
    [48]张萌,李波,秘成良.全液压深孔岩芯钻机液压系统设计与研究[J].机床与液压. 2008, 36(12): 102-104.
    [49]田宏亮.瓦斯抽采钻机液压系统设计探讨[J].煤矿机电. 2008(6): 62-64.
    [50]鄢泰宁.钻探微机智能监测系统的研制与应用.探矿工程,1998,(4)26-28.
    [51]吴乃领,葛友华.液压振动加载轮碾机液压系统设计[J].机床与液压. 2003(6): 263-264.
    [52]马小骏,毛一平.液压振动器的研制[J].船舶设计通讯. 1992(4): 64-66.
    [53]江山,肖中.液压振动器空载振幅的力学分析,计算及测试[J].建筑机械. 1998(11): 18-22.
    [54]陈以田,史颖川,张忠海.一种新型液压无级变矩机构[J].建筑机械. 2004(11): 84-85.
    [55]薛祖德.一种液压振动器的研究[J].上海第二工业大学学报. 1989, 6(1): 22-28.
    [56]陈越千.一种用液压油缸作为振动器的砌块成型机[J].建筑砌块与砌块建筑. 2007(3): 46.
    [57]陈贺强.一种自动配流液压振动器[J].机械开发. 1991(3): 45-46.
    [58]彭延顺. JKY2.0/13BS型液压绞车在矿山的应用[J].煤炭技术. 2004, 23(10): 7-8.
    [59]程为彬,寇莹,程建年,等.液压绞车恒速度控制的实现[J].测井技术. 2005, 29(1): 63-65.
    [60]张远深,曾志钢,何再龙,等.一种新型液压绞车的设计[J].液压与气动. 2008(9): 18-19.
    [61]马子轩.地锚车动力头输出转矩计算[J].专用汽车. 2002(2): 12-14.
    [62]张子胜,郑满圈,等.多功能地锚车的结构及功能[J].专用汽车. 2001(3): 33-34.
    [63] Schunnesson, H. Rock characterization using ercussive drilling, Int. J. Rock Mech Mining ScL Vol. 35, No. 6. pp. 711-725. 1998.
    [64] Schunnesson, H. and Sturk, R., Drill Monitoring at the Hallandsas Porject in Sweden, Research Report, Vol. 21. Lulea University of Technology, Sweden, 1997.
    [65] Schunnesson, H. and Holme, K., Drill Monitoring FOR geological mine planning in the Vsicaria copper mine, Sweden. CIM Bull., 1997, 90,83-89.
    [66] Pfister, p., Recording drilling parameters in ground engineering Geodrilling, 1985, October, 8-14.
    [67] Schunnesson, H., Probing ahead of the face with percussive drilling. Tunnels Tunnelling, 1996, January, 22-23.
    [68] Jaime Solano, Evaluation of new methods for processing drilling data to the determine the cause of changes in bit performance[D], Louisiana State University and Agricultural and Mechanical College, May 2004.
    [69] Arash Aghassi, Investigation of Qualitative Methods for Diagnosis of Poor Bit Performance Using Surface Drilling Parameters, Thesis, Louisiana State University, May 2003.
    [70] John Rogers Smith,“Addressing the Problem of PDC Bit Performance in Deep Shales,”IADC/SPE 47814, IADC/SPE Asia Pacific Drilling Conference, Jakarta, Indonesia, September7-9, 1998.
    [71] John Rogers Smith and Jeffrey Bruce Lund,“Single Cutter Tests Demonstrate Cause of Poor PDC Bit Performance in Deep Shales,”ETCE 2000, ASME -Drilling Technology Symposium, Houston, TX, February 14-17, 2000.
    [72] John Rogers Smith, Diagnosis of Poor PDC Bit Performance in Deep Shales, Dissertation, Louisiana State University, August 1998.
    [73] Teale, R., The concept of specific energy in rock drilling, Int. J. Rock Mech Mining ScL Vol. 2, pp. 57-73. Pergamon Press 1965. Printed in Great Britain.
    [74]孙振宁.多元回归模型与Logistic回归分析的应用研究[D].南京信息工程大学,2008.4:18-23.
    [75]高文森,潘伟.大学数学—随机数学[M].北京:高等教育出版社,2004. 7: 211-232.
    [76]陈永胜.多元线性回归建模以及MATLAB和SPSS求解[J].绥化学院学报. 2007, 27(6): 166-168.
    [77]陈永胜,宋立新.多元线性回归建模以及SPSS软件求解[J].通化师范学院学报. 2007, 28(12): 8-9.
    [78]黄爽,安胜利.应用SPSS软件进行多分类Logistic回归分析[J].数理医药学杂志. 2001, 14(6): 548-549.
    [79]资新运,郭锋,王琛,等.电液比例变量泵控定量马达调速特性研究[J].工程机械. 2007, 38(7): 45-48. [80 ]李婷婷.电液比例变量泵-马达恒速控制系统的研究[D].长安大学,2 004.6: 18-55.
    [81]罗小梅.电液比例变量泵控马达控制系统的分析研究[D].长安大学, 2005.5:18-55.
    [82]成大先.机械设计手册(液压控制)[M].北京:化学工艺出版社,2004.
    [83]吴文海.电液比例变量柱塞泵的动态仿真[D].西南交通大学,2 006.2:1 6-56.
    [84]资新运,郭锋,王琛,等.电液比例变量泵控定量马达调速特性研究[J].工程机械. 2007, 38(7): 45-48.
    [85]万丽荣,赵胜刚,沈潇,等.基于MATLAB/SIMULINK的变量泵变量马达调速系统动态仿真[J].煤矿机械. 2007, 28(2): 26-28.
    [86]飞思科技产品研发中心. MATLAB7基础与提高[M].北京:电子工业出版, 2005.4:265-353.
    [87]张静. MATLAB在控制系统中的应用.北京:电子工业出版社,2 007.5:68 -95.
    [88]焦阳.钻机参数监测仪的研制[D].吉林大学,2006,5:35-40.
    [89]赵大军. JSL-30型钻机钻进参数检测系统的研究.地质与勘探,2 006,4 2( 3): 97-98.
    [90]藤子军.用钻进参数仪实时判层.煤田地质与勘探,2000,28(2): 58-60.
    [91]方承远,张振国.工厂电器控制技术[M].北京:机械工业出版社,2008: 198-233.
    [92]史万周.机器人化自动钻机的智能控制[J].煤炭科学技术, 1997,25(5):30-32.
    [93]马延荣.智能型自动钻进系统设计方案.西部探矿工程,2003,81(2): 120-121.
    [94]于海生.微型计算机控制技术.清华大学出版社,2001:50-66.
    [95]鄢景华.自动控制原理.哈尔滨工业大学出版社,1997:85-93.
    [96]曹刚. PID控制器参数整定方法及其应用研究.浙江大学,2004:78-99.
    [97]刘宝林,桂暖银.自控钻进中的优化钻进原理.地质与勘探,1999,35(6): 88-90.
    [98]史玉升.基于人工智能的自动送钻监控技术.石油机械,2000,35(1): 28-31.
    [99]朱迪斯.钻进过程监测与控制系统的软件设计.中国地质大学.2007:60-85.
    [100]史玉升.钻进过程自动节能与保护微机控制系统.探矿工程,1995,(6): 35-37.
    [101]史玉升.钻进过程自动节能与保护微机控制系统及其应用试验研究.有色金属矿产与勘查,1995,4(5): 303-305.
    [102]丁景祥.钻探工程钻进微机自动控制系统及软件的研究.探矿工程,2003, (6): 25-28.
    [103]成大先.机械设计手册(液压传动)[M].北京:化学工艺出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700