用户名: 密码: 验证码:
适用于微污染水源水的农村饮水浸没式超滤组合工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我国农村地区,特别是一些经济欠发达地区地表水饮用水水源普遍受到污染;受到经济、技术和管理水平的制约,农村地区的供水安全,特别是分散式供水安全存在很大的风险。本研究中采用以浸没式超滤膜为核心,综合生物预处理、混凝、粉末炭吸附等技术的微污染水源水净化处理组合工艺。
     超滤膜去除水中有机污染物的效果不佳(20%以下),强化混凝预处理对提高超滤膜组合工艺去除水中腐殖酸效果明显,混凝剂投加量10mg/L时,对UV254和DOC去除率可达到85.7%和69.0%;混凝和粉末炭吸附预处理能有效提高组合工艺对受生活污染的水源水中的污染物去除效果;采用经济有效的横向流跌水曝气生物滤池作为生物预处理,适用于受污染水源的农村饮用水处理,可以有效去除氨氮(90%以上),并降低后续超滤膜处理的有机物负荷及AOC和BDOC,提高后续管网的生物稳定性;生物滤池自然充氧效果良好,水力停留时间应不小于r=r (T-20)1小时,氨氮的去除速率与水温的关系式为T20。
     通过采用强化的冲洗操作,浸没式超滤膜膜箱内混合液浊度可以达到20000NTU,为扩大短流程膜法净水工艺的应用范围提供了参考依据;单位膜比通量(J/J0)与过滤时间可以简化拟合为公式J/J0a exp(kt),拟合方程中指数系数k与进水腐殖酸DOC之间存在二次项关系。混凝、粉末炭吸附预处理可以去除水中造成膜污染的疏水性物质,混凝形成的矾花可以使超滤膜表面的滤饼层结构疏松,粉末炭可以在超滤膜表面形成滤饼层的刚性骨架,从而缓解组合工艺运行过程中膜通量的下降;连续投加混凝剂和一次性投加粉末炭对提高膜通量效果较好,并可不设置混凝反应池;缩小反洗周期、增大曝气强度可以提高膜通量,化学清洗和低碱度在线化学清洗使通量恢复较好。
     NOM可以使水中的粘土颗粒稳定性更强,从而不容易形成多孔性的的透水性强的滤饼层,对膜通量存在负面的叠加效应,混凝预处理可以降低粘土颗粒与腐殖酸的叠加效应,并使粘土颗粒与腐殖酸同时存在的条件下通量下降速度比单纯腐殖酸时的通量下降更小,其机理是粘土颗粒改善了滤饼层结构。
     示范工程浸没式超滤膜组合工艺可长期稳定运行,产水率为93.8%,气水比0.31:1;单位制水成本为0.36元/m~3,其中动力费为0.02元/m~3,药剂费为0.01元/m~3,主要的费用是膜处理设备的折旧费(0.19元/m~3)和人工费(0.07元/m~3)。
The surface drinking water resource in rural districts of China has been pollutedin many ways, especially in some poor districts. Due to the limit of economy,technology and management level, there is some critical risk for the drinking watersafety in rural districts, especially for some scattered drinking water facilities Drinkingwater treatment technology on micro-polluted water resources was studied in thisarticle, whose key technology was immersed ultrafiltration(UF) membrane with thepretreatments of coagulation, powder activated carbon (PAC) adsorption and biologicalpretreatment.
     The removal rate of organic matter in the water by solo UF was lower than20%.Enhanced coagulation as pretreatment could increase the removal rate of humic acid inthe water by hybrid process of UF efficiently, and10mg/L dosage of coagulant couldmake the removal rate of UV254and DOC up to85.7%and69.0%, respectively.Coagulation and PAC adsorption could improve the removal rate of pollutant led bysewage in the water resource by hybrid process efficiently. It is suitable, economicaland effective for transverse flow and water-dropping aerated biological filter to beadopted as pretreatment of immersed UF, biological filter could achieve high ammonianitrogen removal(>90%), decrease the organic matter load of UF, and increase thebiological stability of pipeline through removing AOC and BDOC. The effectivenessof water-dropping aeration was fine and the hydraulic retention time (HRT) should belonger than1hour. The relationship between ammonia nitrogen removal velocity andwater temperature followed the equation asr=r (T-20)20.
     The turbidity of the mixed liquid in the reactor of immersed UF could reach20,000NTU through enhanced washing, which could offer reference for short-processdrinking water treatment technology of UF membrane being applied more widely. Therelationships between the normalized permeate flux (J/J0) and filtration time could befitted to the simple equation of J/J0a exp(kt), and coefficient k in the equationand DOC of humic acid in influent could be fitted to the square equation. Coagulationand PAC adsorption could remove hydrophobic matter in the water which mostly leadsto membrane fouling, and flocs caused by coagulation could make filter cake layer on the membrane surface loose, PAC could act as skeleton of the cake layer, then, the
     membrane flux would decline slower during the process. Continuous dosing coagulantand batch dosing PAC had better results on increasing the membrane flux. During theapplication of the hybrid process of UF, coagulation reaction tank was not necessary.Shorter backflushing period and greater aeration intensity could increase the membraneflux; chemical washing and in-line chemical washing in low alkali solution could makethe membrane flux revive efficiently.
     With the co-existence of particles and NOM, NOM will adsorb onto the surface ofthe particles, make the particles more stable, decrease the agglomerate size and smoothout the surface heterogeneity of kaolinite. Porous polyhedral structure would not beformed on the membrane surface easily, which was an additive effect on membraneflux during solo UF. Coagulation could eliminate the additive effect led by NOM andparticles and make the membrane flux decline slower with the co-existence of particleand NOM, than with the existence of NOM alone, because the particles improved thestructure of filter cake layer.
     The process and equipment in the demonstration project could work stably in along period. In this demonstration project, the water production ratio was93.8%, andthe ratio between air and water was0.31:1. The unit cost of water production was0.36RMB yuan/m~3, including0.02RMB yuan/m~3of power fee, and0.01RMB yuan/m~3of medicament expense. In the unit cost of water production, depreciation cost ofmembrane and other equipments (0.19RMB yuan/m~3) and payment for the workerswere the main cost (0.07RMB yuan/m~3).
引文
[1]中华人民共和国水利部.中国水资源公报:北京:2010.
    [2]夏军,贾绍凤,刘苏峡.水系统与水资源可持续管理北京:中国水利水电出版社,2010.
    [3]金海洋,姚政,徐四新,等.黄浦江水源保护区农业面源污染控制对策研究.上海农业学报,2007,23(01):88-91.
    [4]杨益.南水北调中线水源区农业面源污染防治对策研究.南水北调与水利科技,2010,8(04):31-34.
    [5]贾洪纪,石长金,严尔梅.城市饮用水源农业面源污染综合防治措施研究.水土保持通报,2008,5(01):154-157.
    [6]赵云霞.城市垃圾污染防治对策研究.云南环境科学,2004,(S1):156-158.
    [7]梁淑轩,孙汉文.中国工业废水污染状况及影响因素分析.环境科学与技术,2007,30(05):43-47.
    [8]胡洪营,赵文玉,吴乾元.工业废水污染治理途径与技术研究发展需求.环境科学研究,2010,23(07):861-868.
    [9]中华人民共和国环境保护部.2009中国环境状况公报:北京:2009.
    [10]中华人民共和国环境保护部.松花江水污染事件通报:北京:2005.
    [11]李丽娟,梁丽乔,刘昌明,等.近20年我国饮用水污染事故分析及防治对策.地理学报,2007,62(09):917-924.
    [12]杨刚.农村生活饮用水源水细菌学指标分析.环境与健康杂志,2007,24(04):279.
    [13]苏新礼,张学文.城市及农村饮用水水源地管理与保护.地下水,2009,31(06):110-111.
    [14]沙鲁生.农村饮用水水源地安全保障与水污染防治.中国水利,2009,(11):26-28.
    [15]林素兰,袁立新.大伙房水库水源地农村面源污染综合防治研究.农业环境与发展,2008,(02):82-83.
    [16]李仰斌,张国华,谢崇宝.我国农村饮用水源现状及相关保护对策建议.中国农村水利水电,2007,(11):1-7.
    [17]张家团.加强农村水源工程建设促进我国小康社会发展.中国水利,2003,(07):65-66.
    [18]王占生,刘文君.微污染水源饮用水处理北京:中国建筑工业出版社,1999.
    [19] Korshin G V, Li C, Benjamin M M. Monitoring the properties of natural organic matter throughUV spectroscopy: A consistent theory. Water Research,1997,31(7):1787-1795.
    [20] Westerhoff P, Aiken G, Amy G, et al. Relationships between the structure of natural organicmatter and its reactivity towards molecular ozone and hydroxyl radicals. Water Research,1999,33(10):2265-2276.
    [21] Liao W, Christman R F, Johnson J D. Structural characterization of aquatic humic material.Environmental Science and Technology,1982,16(7):403-410.
    [22] Kim H, Yu M. Characterization of natural organic matter in conventional water treatmentprocesses for selection of treatment processes focused on DBPs control. Water Research,2005,39(19):4779-4789.
    [23] Hammes F, Meylan S, Salhi E, et al. Formation of assimilable organic carbon (AOC) and specificnatural organic matter (NOM) fractions during ozonation of phytoplankton. Water Research,2007,41(7):1447-1454.
    [24]程爱华,王磊,史新斌,等.水中微量弱极性内分泌干扰物测定方法的研究.环境污染与防治,2007,29(02):134-137.
    [25]芮旻,高乃云,徐斌,等.水中腐殖酸对高级氧化联用技术去除内分泌干扰物(DMP)的影响.环境科学,2006,27(12):2495-2501.
    [26]程爱华,王磊,王旭东,等.水中的环境内分泌干扰物.环境科学与技术,2006,29(11):106-108.
    [27]孙晓峰,高乃云,徐斌,等.内分泌干扰物4-叔丁基苯酚在水中的氯化动力学研究.环境科学,2007,28(07):1483-1489.
    [28]谭佑铭,刘燕群,宿飞,等.某市自来水与原水中环境内分泌干扰物的调查.环境与健康杂志,2008,23(03):231-235.
    [29]武睿.活性炭和膜技术去除水中内分泌干扰物的研究进展.工业水处理,2010,30(07):11-14.
    [30]马晓雁,高乃云,李青松,等.黄浦江原水及水处理过程中内分泌干扰物状况调查.中国给水排水,2006,22(19):1-4.
    [31]谢剑彪.水体中持久性有机污染物(POPs)的化学降解研究进展.科技情报开发与经济,2009,19(18):142-144.
    [32]王志霞,陆雍森.区域持久性有机物的健康风险评价方法研究.环境科学研究,2007,20(03):152-157.
    [33] A B T, J L J, C A K R. The occurrence of organohalides in chlorinated drinking waters. J.AWWA,1974,66(12):703-707.
    [34] Ram N M. A review of the significance and formation of chlorinated N-organic compounds inwater supplies including preliminary studies on the chlorination of alanine, tryptophan, tyrosine,cytosine, and syringic acid. Environment International,1985,11(5):441-451.
    [35] Peters R J B, Erkelens C, de Leer E W B, et al. The analysis of halogenated acetic acids in dutchdrinking water. Water Research,1991,25(4):473-477.
    [36] Becher G, Ovrum N M, Christman R F. Novel chlorination by-products of aquatic humicsubstances. Science of The Total EnvironmentAdvances in Humic Substances Research,1992,117-118:509-520.
    [37] Heller-Grossman L, Manka J, Limoni-Relis B, et al. Formation and distribution of haloaceticacids, THM and tox in chlorination of bromide-rich lake water. Water Research,1993,27(8):1323-1331.
    [38] Kristiansen N K, Aune K T, Frs haug M, et al. Determination of halogenated acetic acids inchlorinated sea water and drinking water produced offshore. Water Research,1996,30(9):2155-2159.
    [39]陈超,张晓健,韩宏大,等.顺序氯化消毒控制卫生学指标的效果.中国给水排水,2005,(10):5-8.
    [40]陈超,张晓健,何文杰,等.顺序氯化对微生物、副产物和生物稳定性的综合控制.环境科学,2006,27(01):74-79.
    [41]翟旭陈忠林刘小为赵淑清杨磊.臭氧氧化去除饮用水消毒副产物二氯乙酸.中国给水排水,2010,26(11):139-141.
    [42]张永吉,刘文君.紫外线对自来水中微生物的灭活作用.中国给水排水,2005,21(09):1-4.
    [43]方自毅,何凤华,刘文君,等.紫外线消毒技术在天津开发区净水厂三期工程中的应用.给水排水,2010,36(01):12-15.
    [44]贾瑞宝,李力,李世俊,等.二氧化氯强化处理含藻水库水研究.中国给水排水,2003,19(S1):93-95.
    [45]陈超,张晓健,朱玲侠,等.控制消毒副产物及前体物的优化工艺组合.环境科学,2005,26(04):87-94.
    [46]李宝东,刘冬梅,林涛.饮用水处理过程中的化学氧化技术.哈尔滨商业大学学报(自然科学版),2004,20(02):199-202.
    [47]刘成,高乃云,蔡云龙.强化混凝去除黄浦江原水中有机物研究.中国给水排水,2006,22(01):84-87.
    [48]刘丽娜.臭氧-活性炭对某市饮用水中消毒副产物和生物稳定性控制的研究.环境科学与管理,2009,34(12):52-54.
    [49]黎雷,高乃云,张可佳,等.饮用水臭氧生物活性炭净化效果与传统工艺比较.同济大学学报(自然科学版),2010,38(09):1309-1313.
    [50]刘帅霞,汪蕊.组合工艺控制有机物和消毒副产物的研究.环境科学与技术,2007,30(08):88-89.
    [51]王倩,王燕,高宝玉,等.复合混凝剂混凝-超滤-氯消毒处理模拟原水的研究.中国环境科学,2010,30(03):330-344.
    [52]左金龙,崔福义.饮用水中污染物质及处理工艺的研究进展.癌变.畸变.突变,2007,19(03):174-180.
    [53]付婉霞,聂正武,高杰,等.饮用水氨氮的去除方法综述.能源环境保护,2006,20(03):15-17
    [54]姜登岭,张晓健.饮用水中磷与细菌再生长的关系.环境科学,2004,25:57-60.
    [55]陆少鸣,黄念禹,杨立任,等.叠式曝气生物滤池预处理高氨氮原水.中国给水排水,2009,25(20):49-54.
    [56]韩范,朱风才.人体隐孢子虫病.中国寄生虫病防治杂志,1990,3(3):252-254.
    [57] Guo L. Doing Battle with the Green Monster of Taihu Lake. Science,2007,317(5842):1166.
    [58]王丽霞.我国饮用水水质标准研究现状综述.化学工程与装备,2009,(06):113-115.
    [59]张媛嫒,杨祝红,文高飞,等.我国饮用水水质标准研究进展及新增项目检测.中国公共卫生,2007,23(03):275-276.
    [60]张宁吓.我国饮用水水质标准发展及与国际标准的对比.山西建筑,2010,36(34):175-176.
    [61]华佳,张林生.我国生活饮用水水质标准的现状及探讨.给水排水动态,2009,(01):10-11.
    [62]《全国农村饮水安全工程“十一五”规划》摘要.中国水利,2007,(10):1-14.
    [63]游雪现,曾瑞胜.浙江省农村供水工程可持续运行管理体制调查研究.中国农村水利水电,2007,(02):58-60.
    [64]郑建城.浅谈农村供水工程建后的运行管理.给水排水动态,2008,(05):16-17.
    [65] Choksuchart P, Héran M, Grasmick A. Ultrafiltration enhanced by coagulation in an immersedmembrane system. Desalination,2002,145(1-3):265-272.
    [66]易兆青,余冬冬,张振家,等.混凝-超滤联用技术制备自来水的试验研究.环境科学与技术,2008,31(02):95-97.
    [67] Mozia S, Tomaszewska M. Treatment of surface water using hybrid processes--adsorption onPAC and ultrafiltration. Desalination,2004,162:23-31.
    [68]董秉直,曹达文,范瑾初.粉末活性炭-超滤膜处理黄浦江原水的研究.上海环境科学,2003,22(11):731-737.
    [69]孙丽华,李星,夏圣骥,等.高锰酸钾强化混凝/砂滤/超滤组合工艺处理松花江水试验研究.膜科学与技术,2008,28(01):77-80.
    [70]刘玲花,周怀东,李文奇.生物慢滤技术的应用与发展.中国农村水利水电,2004,(06):30-33
    [71]汪秀丽.农村饮用水水质处理方法介绍.水利电力科技,2009,(01):40-48.
    [72] Yeh H H, Kao J F, Chen Y H. The effect of preozonation on slow sand filtration. Water Supply,1986,4(1):319-328.
    [73]张键,程吉林,伏培仟,等.生物炭滤-砂慢滤处理农村分散式饮水的试验研究.中国农村水利水电,2007,(08):131-134.
    [74]陈启宏.微絮凝—直接过滤在水处理中的应用.辽宁城乡环境科技,2005,25(01):52-54.
    [75]陈杰,陈清,陈良刚.膜技术在农村饮水工程中的应用.中国水利,2007,(10):119-121.
    [76]李攀岳.超滤膜在农村饮水安全工程中的应用.中国水利,2009,(05):60.
    [77]王劲松,张鹤鹏.膜处理技术在农村饮水安全中的应用.中国农村水利水电,2010,(02):41-47.
    [78] Nunes S P, Peinemann K V. Ultrafiltration membranes from PVDF/PMMA blends. Journal ofMembrane Science,1992,73(1):25-35.
    [79] Xu Z, Alsalhy Qusay F. Polyethersulfone (PES) hollow fiber ultrafiltration membranes preparedby PES/non-solvent/NMP solution. Journal of Membrane Science,2004,233(1-2):101-111.
    [80] Ling A, Chen Q. Polyacrylonitrilic/polysulfone (PAN/PS) blend ultrafiltration (UF) membranes.Desalination,1995,101(1):51-56.
    [81] Ohya H, Shibata M, Negishi Y, et al. The effect of molecular weight cut-off of PANultrafiltration support layer on separation of water-ethanol mixtures through pervaporation withPAA-PAN composite membrane. Journal of Membrane Science,1994,90(1-2):91-100.
    [82] Xu J, Xu Z. Poly(vinyl chloride)(PVC) hollow fiber ultrafiltration membranes prepared fromPVC/additives/solvent. Journal of Membrane Science,2002,208(1-2):203-212.
    [83]高会元,林跃生,李永丹.金属膜开发应用研究新进展.膜科学与技术,2007,27(02):76-79.
    [84]邢卫红,范益群,徐南平.无机陶瓷膜应用过程研究的进展.膜科学与技术,2003,23(04):86-92.
    [85]董秉直,曹达文,陈艳.饮用水膜深度处理技术北京:化学工业出版社,2006.
    [86]陈昊,张浩勤,刘金盾.聚砜超滤膜与低分子有机物交互作用的研究.应用化工,2008,37(06):673-676.
    [87]任立纲,马红刚.内压式与外压式超滤膜在实际应用中的分析比较.冶金动力,2009,(05):78-80.
    [88]马敬环,项军,李娟,等.无机陶瓷膜错流超滤海水污染机理研究.盐业与化工,2009,38(03):31-34.
    [89]黄富民,胡海修.超滤膜直接过滤浑浊水的试验.净水技术,2010,29(04):24-26.
    [90]金鹏康,吴鑫,王晓昌.不同截留分子量超滤膜污染过程分析.西安建筑科技大学学报(自然科学版),2010,42(05):712-715.
    [91]芮旻,周杰敏,许嘉炯,等.饮用水处理工程超滤膜系统设计关键技术.给水排水,2010,36(01):21-26.
    [92]李伟英,董秉直,谭章荣,等.混凝与超滤联用技术处理长江原水的研究.同济大学学报(自然科学版),2004,32(05):644-647.
    [93]夏圣骥,李圭白,张军,等.混凝/超滤去除地表水中颗粒特性.哈尔滨工业大学学报,2008,40(10):1657-1659.
    [94] Crozes G, Anselme C, Mallevialle J. Effect of adsorption of organic matter on fouling ofultrafiltration membranes. Journal of Membrane Science,1993,84(1-2):61-77.
    [95] Song L. Flux decline in crossflow microfiltration and ultrafiltration: mechanisms and modeling ofmembrane fouling. Journal of Membrane Science,1998,139(2):183-200.
    [96] Huisman I H, Prádanos P, Hernández A. The effect of protein-protein and protein-membraneinteractions on membrane fouling in ultrafiltration. Journal of Membrane Science,2000,179(1-2):79-90.
    [97] Cho J, Amy G, Pellegrino J. Membrane filtration of natural organic matter: factors andmechanisms affecting rejection and flux decline with charged ultrafiltration (UF) membrane.Journal of Membrane Science,2000,164(1-2):89-110.
    [98] Carroll T, King S, Gray S R, et al. The fouling of microfiltration membranes by NOM aftercoagulation treatment. Water Research,2000,34(11):2861-2868.
    [99] Mignard D, Glass D H. Fouling during the cross-flow ultrafiltration of proteins: a mass-transfermodel. Journal of Membrane Science,2001,186(1):133-143.
    [100] Kweon J H, Lawler D F. Fouling mechanisms in the integrated system with softening andultrafiltration. Water Research,2004,38(19):4164-4172.
    [101] Klomfas G, Konieczny K. Fouling phenomena in unit and hybrid processes for potable watertreatment. Desalination,2004,163(1-3):311-322.
    [102] Costa A R, de Pinho M N. Effect of membrane pore size and solution chemistry on theultrafiltration of humic substances solutions. Journal of Membrane Science,2005,255(1-2):49-56.
    [103] Kim H. C. H J H L. The fouling of ultrafiltration membranes by natural organic matter afterchemical coagulation treatment with different initial mixing conditions. Water Sci. Technol.Water Supply,2006,6:117-124.
    [104] Lee N, Amy G, Crou J. Low-pressure membrane (MF/UF) fouling associated withallochthonous versus autochthonous natural organic matter. Water Research,2006,40(12):2357-2368.
    [105] Yamamura H, Chae S, Kimura K, et al. Transition in fouling mechanism in microfiltration of asurface water. Water ResearchMembranes,2007,41(17):3812-3822.
    [106] Vela M C V, Blanco S á, García J L, et al. Fouling dynamics modelling in the ultrafiltration ofPEGs. DesalinationEuropean Desalination Society and Center for Research and TechnologyHellas (CERTH), Sani Resort22-25April2007, Halkidiki, Greece, European DesalinationSociety and Center for Research and Technology Hellas (CERTH), Sani Resort,2008,222(1-3):451-456.
    [107] Yu C, Wu C, Lin C, et al. Hydrophobicity and molecular weight of humic substances onultrafiltration fouling and resistance. Separation and Purification Technology,2008,64(2):206-212.
    [108] Wang L, Wang X, Fukushi K. Effects of operational conditions on ultrafiltration membranefouling. Desalination,2008,229(1-3):181-191.
    [109] Gray S R, Ritchie C B, Tran T, et al. Effect of membrane character and solution chemistry onmicrofiltration performance. Water Research,2008,42(3):743-753.
    [110] Li S, Heijman S G J, Verberk J Q J C, et al. Influence of Ca and Na ions in backwash water onultrafiltration fouling control. Desalination,2010,250(2):861-864.
    [111] Zularisam A W, Ismail A F, Salim M R, et al. The effects of natural organic matter (NOM)fractions on fouling characteristics and flux recovery of ultrafiltration membranes. Desalination,2007,212(1-3):191-208.
    [112] Cho J, Amy G, Pellegrino J, et al. Characterization of clean and natural organic matter (NOM)fouled NF and UF membranes, and foulants characterization. DesalinationConferenceMembranes in Drinking and Industrial Water Production,1998,118(1-3):101-108.
    [113] Costa A R, de Pinho M N. The role of membrane morphology on ultrafiltration for naturalorganic matter removal. Desalination,2002,145(1-3):299-304.
    [114] Jermann D, Pronk W, K gi R, et al. Influence of interactions between NOM and particles on UFfouling mechanisms. Water Research,2008,42(14):3870-3878.
    [115] Aimar P, Howell J A, Clifton M J, et al. Concentration polarisation build-up in hollow fibers: amethod of measurement and its modelling in ultrafiltration. Journal of Membrane Science,1991,59(1):81-99.
    [116] Bouchard C R, Carreau P J, Matsuura T, et al. Modeling of ultrafiltration: Predictions ofconcentration polarization effects. Journal of Membrane Science,1994,97:215-229.
    [117] Nunes S P, Sfor a M L, Peinemann K. Dense hydrophilic composite membranes forultrafiltration. Journal of Membrane Science,1995,106(1-2):49-56.
    [118] Qin J, Wong F. Hypochlorite treatment of hydrophilic hollow fiber ultrafiltration membranes forhigh fluxes. Desalination,2002,146(1-3):307-309.
    [119] Byhlin H, J nsson A S. Influence of adsorption and concentration polarisation on membraneperformance during ultrafiltration of a non-ionic surfactant. Desalination,2003,151(1):21-31.
    [120] Jung B. Preparation of hydrophilic polyacrylonitrile blend membranes for ultrafiltration. Journalof Membrane Science,2004,229(1-2):129-136.
    [121] J nsson A, J nsson B. The influence of nonionic and ionic surfactants on hydrophobic andhydrophilic ultrafiltration membranes. Journal of Membrane Science,1991,56(1):49-76.
    [122] Duclos-Orsello C, Li W, Ho C. A three mechanism model to describe fouling of microfiltrationmembranes. Journal of Membrane Science,2006,280(1-2):856-866.
    [123] Xu Z, Li L, Wu F, et al. The application of the modified PVDF ultrafiltration membranes infurther purification of Ginkgo biloba extraction2005.125-131.
    [124] Luo M, Zhao J, Tang W, et al. Hydrophilic modification of poly(ether sulfone) ultrafiltrationmembrane surface by self-assembly of TiO2nanoparticles. Applied Surface Science,2005,249(1-4):76-84.
    [125]李晓,陆晓峰,段伟,等.射线辐照接枝丙烯酸改性PVDF超滤膜.膜科学与技术,2007,27(02):49-52.
    [126]沈红梅,俞丽芸,许振良. TiO_2溶胶改性PVDF中空纤维超滤膜的亲水化研究.膜科学与技术,2009,29(06):1-4.
    [127]刘春涛,金政,侯海鸽,等. PVDF超滤膜相转化制备方法及其改性的研究进展.化学与粘合,2009,31(06):54-57.
    [128]冷云飞,潘凯,原涛,等.聚砜超滤膜的表面化学改性.北京化工大学学报(自然科学版),2009,36(03):65-69.
    [129]湛含辉,曹江.不同性能的双亲性纳米TiO_2复合粒子改性聚偏氟乙烯超滤膜结构与性能的研究.功能材料,2011,42(01):92-95.
    [130] Xia S, Li X, Zhang Q, et al. Ultrafiltration of surface water with coagulation pretreatment bystreaming current control. DesalinationEuroMed2006-Conference on Desalination Strategies inSouth Mediterranean Countries,2007,204(1-3):351-358.
    [131] Ho L, Newcombe G. Effect of NOM, turbidity and floc size on the PAC adsorption of MIBduring alum coagulation. Water Research,2005,39(15):3668-3674.
    [132] Pizarro J, Belzile N, Filella M, et al. Coagulation/sedimentation of submicron iron particles in aeutrophic lake. Water Research,1995,29(2):617-632.
    [133]孙丽华,李星,杨艳玲,等.浸没式超滤膜运行中膜污染控制方法试验研究.哈尔滨商业大学学报(自然科学版),2009,25(06):664-667.
    [134]韩宏大,王东升,顾平,等.浸入式超滤膜工艺稳定运行影响因素研究.环境科学,2008,29(10):2273-2276.
    [135]黄明珠,叶挺进,李冬梅,等.关于浸没式超滤膜运行维护的几个值得注意的问题.给水排水,2010,26(10):44-47.
    [136]于海琴,杨成永,张慧,等.腐殖酸污染膜的超声波强化清洗.北京交通大学学报,2009,33(01):95-98.
    [137]邓雁平,叶亚平,钱维兰,等.不同物理清洗方式对一体式膜生物反应器过滤特性的影响.环境科学研究,2005,18(06):58-63.
    [138] Zeng J, Ye H, Liu H, et al. Characterization of a hollow-fiber ultrafiltration membrane andcontrol of cleaning procedures by a streaming potential method. Desalination,2006,195(1-3):226-234.
    [139] Nigam M O, Bansal B, Chen X D. Fouling and cleaning of whey protein concentrate fouledultrafiltration membranes. DesalinationAQUAREC2006-Integrated Concepts for Reuse ofUpgraded Wastewater, AQUAREC2006; CHEMECA2006-The34th Annual AustralasianChemical and Process Engineering Conference, CHEMECA2006,2008,218(1-3):313-322.
    [140] Paugam L, Delaunay D, Rabiller-Baudry M. Cleaning efficiency and impact on productionfluxes of oxidising disinfectants on a pes ultrafiltration membrane fouled with proteins. Food andBioproducts ProcessingSpecial Issue on Fouling and cleaning in food processing2010,2010,88(4):425-429.
    [141] Mu oz-Aguado M J, Wiley D E, Fane A G. Enzymatic and detergent cleaning of a polysulfoneultrafiltration membrane fouled with BSA and whey. Journal of Membrane Science,1996,117(1-2):175-187.
    [142] Tian J, Chen Z, Yang Y, et al. Consecutive chemical cleaning of fouled PVC membrane usingNaOH and ethanol during ultrafiltration of river water. Water Research,2010,44(1):59-68.
    [143] Laine J, Joel M M C. Ultrafiltrationof Lake Water:Effect of Pretreatment on the PartitioningofOrganics,THMFP,and Flux. Jour.AWWA,1990,82(12):82-89.
    [144] Wend C F, Stewart P S, Jones W, et al. Pretreatment for membrane water treatment systems: alaboratory study. Water Research,2003,37(14):3367-3378.
    [145] Li X, Chu H P. Membrane bioreactor for the drinking water treatment of polluted surface watersupplies. Water Research,2003,37(19):4781-4791.
    [146] Kim J, Davies S H R, Baumann M J, et al. Effect of ozone dosage and hydrodynamic conditionson the permeate flux in a hybrid ozonation-ceramic ultrafiltration system treating natural waters.Journal of Membrane Science,2008,311(1-2):165-172.
    [147] Mozia S, Tomaszewska M, Morawski A W. Application of anozonation-adsorption-ultrafiltration system for surface water treatment. Desalination,2006,190(1-3):308-314.
    [148] Vickers J C, Thompson M A, Kelkar U G. The use of membrane filtration in conjunction withcoagulation processes for improved NOM removal. DesalinationProceedings of the AmericanDesalting Association1994Biennial Conference and Exposition Membrane and DesaltingTechnologies,1995,102(1-3):57-61.
    [149] Yuasa A. Drinking water production by coagulation-microfiltration andadsorption-ultrafiltration. Water Science and Technology,1998,37(10):135-146.
    [150] Choksuchart P, Héran M, Grasmick A. Ultrafiltration enhanced by coagulation in an immersedmembrane system. Desalination,2002,145(1-3):265-272.
    [151] Choi K Y, Dempsey B A. In-line coagulation with low-pressure membrane filtration. WaterResearch,2004,38(19):4271-4281.
    [152] Pikkarainen A T, Judd S J, Jokela J, et al. Pre-coagulation for microfiltration of an uplandsurface water. Water Research,2004,38(2):455-465.
    [153] Konieczny K, Bodzek M, Kopec A, et al. Coagulation-submerge membrane system for NOMremoval from water. DesalinationEuromembrane2006,2006,200(1-3):578-580.
    [154] Haberkamp J, Ruhl A S, Ernst M, et al. Impact of coagulation and adsorption on DOC fractionsof secondary effluent and resulting fouling behaviour in ultrafiltration. WaterResearchMembranes,2007,41(17):3794-3802.
    [155] Barbot E, Moustier S, Bottero J Y, et al. Coagulation and ultrafiltration: Understanding of thekey parameters of the hybrid process. Journal of Membrane Science,2008,325(2):520-527.
    [156] Dong B, Chen Y, Gao N, et al. Effect of coagulation pretreatment on the fouling ofultrafiltration membrane. Journal of Environmental Sciences,2007,19(3):278-283.
    [157]闫昭辉,董秉直.混凝/超滤处理微污染原水的试验研究.净水技术,2005,24(06):4-6.
    [158]王锦,王晓昌.直接超滤和混凝—超滤组合工艺的膜污染比较.上海环境科学,2002,21(02):83-85.
    [159] Lee B, Choo K, Chang D, et al. Optimizing the coagulant dose to control membrane fouling incombined coagulation/ultrafiltration systems for textile wastewater reclamation. ChemicalEngineering Journal,2009,155(1-2):101-107.
    [160] Bergamasco R, Konradt-Moraes L C, Vieira M F, et al. Performance of acoagulation-ultrafiltration hybrid process for water supply treatment. Chemical EngineeringJournal,2011,166(2):483-489.
    [161] Kabsch-Korbutowicz M. Impact of pre-coagulation on ultrafiltration process performance.Desalination,2006,194(1-3):232-238.
    [162] Cho M, Lee C, Lee S. Effect of flocculation conditions on membrane permeability incoagulation-microfiltration. DesalinationInternational Congress on Membranes and MembraneProcesses,2006,191(1-3):386-396.
    [163] Linton M A. The Effect of Inflation upon Life Insurance. Proceedings of the Annual Meeting,1933,1:1-10.
    [164] Costa A R, de Pinho M N. Effect of membrane pore size and solution chemistry on theultrafiltration of humic substances solutions. Journal of Membrane Science,2005,255(1-2):49-56.
    [165] Allegre C, Maisseu M, Charbit F, et al. Coagulation-flocculation-decantation of dye houseeffluents: concentrated effluents. Journal of Hazardous Materials,2004,116(1-2):57-64.
    [166] Kim J S, Lee S J, Yoon S H, et al. Competitive adsorption of trace organics on membranes andpowdered activated carbon in powdered activated carbon-ultrafiltration system. Water Scienceand Technology,1996,34(9):223-229.
    [167] Lin C, Huang Y, Hao O J. Ultrafiltration processes for removing humic substances: effect ofmolecular weight fractions and PAC treatment. Water Research,1999,33(5):1252-1264.
    [168] Matsui Y, Colas F, Yuasa A. Removal of a synthetic organic chemical by PAC-UF systems. II:model application. Water Research,2001,35(2):464-470.
    [169] Tomaszewska M, Mozia S. Removal of organic matter from water by PAC/UF system. WaterResearch,2002,36(16):4137-4143.
    [170] Mozia S, Tomaszewska M. Treatment of surface water using hybrid processes--adsorption onPAC and ultrafiltration. Desalination,2004,162:23-31.
    [171] Oh H, Yu M, Takizawa S, et al. Evaluation of PAC behavior and fouling formation in anintegrated PAC-UF membrane for surface water treatment. DesalinationInternational Congresson Membranes and Membrane Processes,2006,192(1-3):54-62.
    [172] Sagbo O, Sun Y, Hao A, et al. Effect of PAC addition on MBR process for drinking watertreatment. Separation and Purification Technology,2008,58(3):320-327.
    [173] Campinas M, Rosa M J. Removal of microcystins by PAC/UF. Separation and PurificationTechnology,2010,71(1):114-120.
    [174]夏圣骥,徐斌,姚娟娟,等.粉末活性炭-超滤膜工艺净化松花江水.华南理工大学学报(自然科学版),2007,35(06):133-136.
    [175] A. Braghetta M P C H. Impact of pretreatment on UF operation and removal of dissolvedorganics. Water Science and Technology: Water Supply,2001,1(5/6):331-339.
    [176]董秉直,陈艳,高乃云,等.粉末活性炭-超滤膜处理微污染原水试验研究.同济大学学报(自然科学版),2005,33(06):777-780.
    [177] Lin C, Huang Y, Hao O J. Ultrafiltration processes for removing humic substances: effect ofmolecular weight fractions and PAC treatment. Water Research,1999,33(5):1252-1264.
    [178] Li C, Chen Y. Fouling of UF membrane by humic substance: Effects of molecular weight andpowder-activated carbon (PAC) pre-treatment. Desalination,2004,170(1):59-67.
    [179]于海琴,杨成永,张惠.粉末活性炭导入超滤系统去除水中天然有机物的性能研究.2009,29(6):85-89.
    [180] Campinas M, Rosa M J. Assessing PAC contribution to the NOM fouling control in PAC/UFsystems. Water Research,2010,44(5):1636-1644.
    [181]郝爱玲,陈永玲,顾平.微污染水处理中混合液特性对膜污染的影响.水处理技术,2006,32(02):30-33.
    [182]袁哲,陈卫,王维红,等.以超滤为核心的一体化净水工艺对比试验研究.新疆农业大学学报,2010,33(02):162-166.
    [183] Andersson A, Laurent P, Kihn A, et al. Impact of temperature on nitrification in biologicalactivated carbon (BAC) filters used for drinking water treatment. Water Research,2001,35(12):2923-2934.
    [184] Ovez B, Ozgen S, Yuksel M. Biological denitrification in drinking water using Glycyrrhizaglabra and Arunda donax as the carbon source. Process Biochemistry,2006,41(7):1539-1544.
    [185] Aslan S, Cakici H. Biological denitrification of drinking water in a slow sand filter. Journal ofHazardous Materials,2007,148(1-2):253-258.
    [186] Pokhrel D, Viraraghavan T. Biological filtration for removal of arsenic from drinking water.Journal of Environmental Management,2009,90(5):1956-1961.
    [187]崔志广,刘彩彩,关晶,等.沸石生物滤池/混凝沉淀/超滤工艺处理微污染源水.中国给水排水,2010,26(07):34-36.
    [188]杨亚红,王瑛,谢刚.超滤和组合填料滤池预处理微污染原水研究.环境科学与技术,2009,32(02):138-140.
    [189] Hallé C, Huck P M, Peldszus S, et al. Assessing the performance of biological filtration aspretreatment to low pressure membranes for drinking water. Environmental Science andTechnology,2009,43(10):3878-3884.
    [190] Jin Y, Dong Y, Zhang Z. The simultaneous removal of DOC and ammonia nitrogen fromsurface water by hybrid process. Proceedings-2009International Conference on EnvironmentalScience and Information Application Technology, ESIAT2009,2009,2:36-39.
    [191] Tian J, Liang H, Li X, et al. Membrane coagulation bioreactor (MCBR) for drinking watertreatment. Water Research,2008,42(14):3910-3920.
    [192]许航,陈卫,李为兵,等.臭氧-生物活性炭与超滤膜联用技术试验研究.华中科技大学学报(自然科学版),2009,37(02):125-128.
    [193] Servais P, Billen G, Hasco t M. Determination of the biodegradable fraction of dissolvedorganic matter in waters. Water Research,1987,21(4):445-450.
    [194] Joret J C L Y D T. Rapid method for estimating bioeliminable organic carbon in water. Proc.AWWA Ann. Conf., Orlando, Florida,1988:1715-1725.
    [195] Block J C, Mathieu L, Servais P, et al. Indigenous bacterial inocula for measuring thebiodegradable dissolved organic carbon (BDOC) in waters. Water Research,1992,26(4):481-486.
    [196]鲁威.给水管网细菌生长特性及其控制的研究:[博士学位论文].北京:清华大学,2005.
    [197]刘文君.饮用水中可生物降解有机物和消毒副产物特性研究:[博士学位论文].北京:清华大学,1999.
    [198]刘建广.组合工艺处理高氨氮受污染水源水的研究:[博士学位论文].北京:清华大学,2004
    [199] Ho L, Newcombe G, Crou J. Influence of the character of NOM on the ozonation of MIB andgeosmin. Water Research,2002,36(3):511-518.
    [200]欧阳二明,张锡辉,王伟.常规净水工艺去除有机物效果的三维荧光光谱分析法.光谱学与光谱分析,2007,27(07):1373-1376.
    [201]宋晓娜,于涛,张远,等.利用三维荧光技术分析太湖水体溶解性有机质的分布特征及来源.环境科学学报,2010,30(11):2321-2331.
    [202]傅平青,刘丛强,尹祚莹,等.腐殖酸三维荧光光谱特性研究.地球化学,2004,33(03):301-308.
    [203] Chen W, Westerhoff P, Leenheer J A, et al. Fluorescence Excitation-Emission Matrix RegionalIntegration to Quantify Spectra for Dissolved Organic Matter. Environmental Science andTechnology,2003,37(24):5701-5710.
    [204]董秉直,李伟英,秦祖群,等.用超滤膜处理长江水.膜科学与技术,2005,25(01):34-37.
    [205]韩宏大,吕晓龙,何文杰,等.微絮凝—超滤工艺处理黄河水的试验研究.中国给水排水,2008,24(21):85-87.
    [206] Dong B, Chen Y, Gao N, et al. Effect of coagulation pretreatment on the fouling ofultrafiltration membrane. Journal of Environmental Sciences,2007,19(3):278-283.
    [207]顾夏声.废水生物处理数学模式北京:清华大学出版社,1997.
    [208]刘锋刚,胡保安,何文杰,等.微滤膜法饮用水处理工艺中膜污染控制的研究.给水排水,2007,33(11):16-20.
    [209]张晓健,陈超,何文杰,等.安全氯化消毒工艺的消毒副产物控制.中国给水排水,2004,20(09):13-16.
    [210]王云,鲁巍,张晓健.氯及氯胺灭活大肠杆菌的消毒动力学模型.环境科学,2005,26(05):100-104.
    [211]王丽莎,张彤,胡洪营.污水氯、二氧化氯消毒处理中水质及毒性变化的比较.环境科学,2005,26(06):75-78.
    [212]张永吉,刘文君.紫外线消毒对光复活时大肠杆菌活性的影响.中国给水排水,2006,22(17):46-49.
    [213]郄燕秋,朱晓辉,吕东明,等.饮用水紫外线消毒——实施安全消毒的重要技术选择.给水排水,2008,34(06):9-13
    [214]翟旭,陈忠林,刘小为,等.臭氧氧化去除饮用水消毒副产物二氯乙酸.中国给水排水,2010,26(11):139-141
    [215]边凌飞,杜璋璋.饮用水的消毒技术及发展.济宁师范专科学校学报,2004,25(06):9-11.
    [216]刘文君,孙文俊.农村地区饮用水消毒技术的应用.中国水利,2005,(19):23-25.
    [217]崔利峰,仇芳,李潮思,等.农村地区饮用水水质污染调查及控制对策研究.现代农业科技,2008,(19):323-324.
    [218]黄霞,莫罹. MBR在净水工艺中的膜污染特征及清洗.中国给水排水,2003,19(05):8-12.
    [219]何文杰,顾金辉,康华,等.混凝—超滤工艺处理滦河水的中试研究.中国给水排水,2007,23(09):73-76.
    [220]何攀,何凤华,王海燕,等.操作条件对浸没式超滤膜污染影响的中试研究.给水排水,2010,36(03):12-17.
    [221]郝爱玲,张光辉,张颖,等. MBR、MCR处理微污染水的膜污染比较.中国给水排水,2004,20(07):49-53.
    [222]田家宇,张宇,施雪华,等.超滤膜/混凝生物反应器去除饮用水中有机物的效能.中国给水排水,2009,(05).
    [223]董浩,杨新新,王建良,等.超滤技术在农村饮用水处理中的应用.中国农村水利水电,2007,(02):61-64.
    [224]王利平.水工程概预算与技术经济评价北京:化学工业出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700