用户名: 密码: 验证码:
膜技术应用于饮用水处理的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低压膜分离技术被认为是当今制备优质安全饮用水的重要技术之一,其在饮用水处理领域已得到了普遍的认可。本研究通过中试规模的试验研究,从出水水质及稳定性、有机物去除、系统运行稳定性和经济性等指标,分析论证混凝-沉淀-超滤(简称沉淀-超滤)和混凝-沉淀-砂滤-超滤(简称砂滤-超滤)两种工艺的可行性。为了提高中试膜系统产水率,采用将膜反洗水预处理后回流至调节池的回收方案,并设计安装了两套小试混凝-微滤膜系统,一套处理混配水(预处理后的反洗水与滦河水按1:9的比例混合),另一套作为参比系统处理滦河水。
     在中试膜系统运行过程中,预氯化加化学强化反洗(CEB)的运行方式对维持系统稳定运行较为有效,两种工艺膜出水水质稳定,处理效果安全可靠,出水水质均满足《生活饮用水卫生标准》(GB5749-2006)的要求。在采用较低浓度次氯酸钠进行预氯化时,并不会对膜出水水质造成安全隐患。沉淀-超滤工艺中膜出水中CODMn、UV254和运行成本均高于砂滤-超滤工艺,但是出水浊度略低。两工艺的产水率分别为88.2%和91.8%。
     中试膜系统采用预氯化工艺可以延缓膜污染的增长,CEB工艺能够有效地恢复膜比通量。采用草酸进行化学清洗效果较好,铁和溶解性有机物是导致中试系统膜污染的主要因素。
     两种工艺的膜反洗水中CODMn和DOC浓度均明显高于同时期的滦河水,而UV254较低。膜反洗水中DOC主要分布在MW>30 kDa和MW<1 kDa,UV254主要分布在MW<1 kDa区间。在膜反洗水预处理中单独混凝提高了原水中DOC、UV254和CODMn的去除率。就DOC而言,在混凝/PAC吸附过程中,MW>30 kDa的有机物得到了大幅度去除,但是由于混凝处理增加了小分子有机物含量消耗了部分PAC吸附容量使得MW<10 kDa的有机物去除效果较差。
     在膜反洗水预处理中,混凝/PAC吸附工艺比单独混凝工艺改善了混配水系统的出水水质。膜反洗水经混凝/PAC吸附预处理后回流对整个膜系统出水水质及膜污染没有明显的影响。反洗水经过预处理后回流能够将中试膜系统的产水率提高至99%左右。
Low pressure membrane separation technology is essential for the preparation of safe drinking water and is universally recognized in the field of drinking water treatment. To investigate the feasibility of coagulation - sedimentation - ultrafiltration (CSU) and coagulation - sedimentation - sand filtration - ultrafiltration (CSSU) processes, a pilot-scale of membrane system was set up, and the quality and stability of treated water, removal of organics, stability of system, operation costs of system and other indicators were analyzed and compared. In addition, in order to improve the productivity of the pilot-scale membrane system, a scheme of recovering membrane backwash water (MBW) was applied,which was to pre-treat MBW and recycle the effuent into the equalization tank. Two lab-scale coagulation microfiltration (MF) membrane systems were installed. The raw water of one membrane system was a blend water (pre-treated MBW blended with Luan River water (LRW) in a 1:9 ratio), and a separate membrane system was used to treat LRW.
     In the operation process of pilot-scale membrane system, the mode of pre-chlorination plus chemically enhanced backwash (CEB) was more effective to maintain system stability. The quality of treated water from the CSU and CSSU processes was safe and reliable, and met the requirement of the Standards for Drinking Water Quality (GB5749-2006). The mode of pre-chlorination with a low concentration of NaOCl was not cause security problems. The value of CODMn and UV254 in the treated water and costs by CSU were higher than those by CSSU, but turbidity in the treated water was lower. The productivities of CSU and CSSU processes were 88.2% and 91.8% respectively.
     Membrane fouling could slow down by pre-chlorination process which the CSU and CSSU process used. CEB could recover the membrane specific flux effectively. The effect of chemical cleaning with oxalic acid was better, and iron and dissolved organic matter were the main factors which leading to the pilot-scale membrane fouling.
     Compared to LRW, the concentration of DOC and CODMn in the two MBWs from CSU and CSSU processes was higher, but the value of UV254 was lower. Organic matter characterized by DOC in MBWs consisted primarily of compounds with a MW greater than 30 kDa and substances with a MW less than 1 kDa, whereas UV_(254) represented compounds with a MW less than 1 kDa. The removal rate of CODMn, DOC and UV254 in the MBWs was improved due to addition of powdered activated carbon (PAC) in the pre-treatment. In the process of coagulation/PAC, the organics characterized by DOC with a MW greater than 30 kDa was removed substantially, but an increase in the removal efficiency of DOC with MW<10 kDa were not observed due to the enrichment of low MW organic matter during the coagulation process, which adsorbed more efficiently to PAC.
     Compared to the coagulation pre-treatment, the quality of finished water in the mixed water system had been improved by coagulation/PAC process. There was no obvious difference in water quality of the finished water form two lab-scale membrane systems. And the membrane fouling was not deteriorated after recovering MBW which was pre-treated by coagulation/PAC. The productivity of CSU and CSSU was reached 99% by recovering MBW.
引文
[1]何文杰.饮用水安全保障技术原理[M].北京:中国建筑工业出版社,2006.
    [2]安哥拉·乔菲特.水污染吞噬中国发展成果[J].海外文摘,2008(5):56.
    [3]任数海.水资源保护[M].北京:中国水利水电出版社,2003.
    [4]中国国家环境保护总局. 2008年中国环境状况公报[EB/OL]. http://www.1000efya.cn/download/20090720.pdf.
    [5]严煦世,范瑾初.给水工程(第四版)[M].北京:中国建筑工业出版社,1999.
    [6]王占山,刘文君.微污染水源饮用水处理[M].北京:中国建筑工业出版社,1999.
    [7] Gang D C,Clevenger T E,Banerji S K. Relationship of chlorine decay and THMs formation to NOM size[J]. Journal of Hazardous Materials,2003,96(1):1-12.
    [8] Bashtan S Y,Goncharuk V V,Chebotareva R D,et al. Production of sodium hypochlorite in an electrolyser equipped with a ceramic membrane[J]. Desalination,1999,126(1-3):77-82.
    [9] Chizuko M,Kouichi S,Shinichi M,et al. Disinfection potential of electrolyzed solutions containing sodium chlorite at low concentrations[J]. Journal of Virological Methods,2000,85(1-2):163-174.
    [10]梁好,盛选军,刘传胜.饮用水安全保障技术[M].北京:化学工业出版社,2007.
    [11]熊毅.天然有机物(NOM)与膜[J].西南给排水,2001,23(5):18-21.
    [12] Kabsch K M. Impact of pre-coagulation on ultrafiltration process performance[J]. Desalination,2006,194(1-3):232-238.
    [13]罗欢,刘广立,刘杰,等.不同超滤膜过滤天然有机物的膜污染特性研究[J].环境污染治理技术与设备,2005,6(5):23-26.
    [14] Aoustin E,Schafer A I,Fane A G,et al. Ultrafiltration of natural organic matter[J],Separation and Purification Technology,2001,22-23(1-3):63-78.
    [15]李芙蓉.天然饮用水源中腐殖质的去除[J].工业安全与环保,2002,28(7):8-10.
    [16]梁霖,徐旭,刘永斌,等.长江水体氯化过程中强致突变物前驱物的筛选[J].环境科学,1998,19(1):21-24.
    [17]王志伟,王增长.水源水中有机物的类别与处理方法[J].科技情报开发与经济,2007,17(3):154-155.
    [18]徐志诚,罗微,洪义国,等.腐殖质在环境污染物生物降解中的作用研究进展[J].微生物学通报,2006,33(6):122-127.
    [19]胡江泳,张锡辉,王占生.强化传统工艺处理微污染水源水的试验研究[J].给水排水,1996,22(2):18-20.
    [20]黄晓东,孙伟,庄汉平,等.强化混凝处理微污染源水[J].中国给水排水,2002,18(12):45-17.
    [21]曲久辉.饮用水安全保障技术原理[M].北京:科学出版社,2007.
    [22]黄怡,高乃云,周雪松.改性滤料除氟技术的探讨[J].工业水处理,2003,23(4):6-9.
    [23]易小萍,邓慧萍.改性滤料在水处理中的应用及机理探讨[J].净水技术,2000,18(1):25-27.
    [24] Camel V, Bermond A. The use of ozone and associated oxidation processes in drinking water treatment[J]. Water Research,1998,32(11):3208-3222.
    [25]肖乾芬,黄宏,王晓栋,等.饮用水微污染处理技术研究进展[J].环境科学与技术,2005,28(增刊):162-164.
    [26]肖华,周荣丰.微污染水源水处理技术的现状与发展[J].北方环境,2005,30(1):62-66.
    [27]肖羽堂,许建华.生物接触氧化法净化微污染原水的机理研究[J].环境科学,1999,20(5):85-88.
    [28]吴为中,王占生.水库水源水生物陶粒滤池预处理中试研究[J].环境科学研究,1999,12(1):10-14.
    [29] Hagen K. Removal of particles, bacteria and parasites with ultrafiltration for drinking water treatment[J]. Desalination,1998,119(1-3):85-91.
    [30] Lipp P,Baldauf G,Schick R,et al. Integration of ultrafiltration to conventional drinking water treatment for a better particle removal-efficiency and costs? [J]. Desalination,1998,119(1-3):133-142.
    [31]西蒙·贾德,布鲁斯·杰斐逊.肖膜技术与工业废水回用[M].蔡邦译.北京:化学工业出版社,2006.
    [32] Hochstrat R, Wintgens T, Melin T. Development of integrated water reuse strategies[J]. Desalination,2008,218(1-3):208-217.
    [33] Reissmann F G,Schulze E,Albrecht V. Application of a combined UF/RO system for the reuse of filter backwash water from treated swimming pool water[J]. Desalination,2005,178(1-3):41-49.
    [34]郑少平.滤池反冲洗废水处理研究进展[J].山西建筑,2007,33(34):185-186.
    [35] United States Environmental Protection Agency. Filter Backwash Recycling Rule Technical Guidance Manaul [EB/OL]. http://www.epa.gov/safewater/mdbp/pdf/filterbackwash/fbrr_techguidance.pdf.
    [36] Willemse R J N,Brekvoort Y. Full-scale recycling of backwash water from sand filters using dead-end membrane filtration[J]. Water Research,1999,33(15):3379-3385.
    [37] Ressmann F G,Uhl W. Ultrafiltration for the reuse of spent filter backwash water from drinking water treatment [J]. Desalination,2006,198(1-3):225-235.
    [38] Walsh M E,Gagnon G A,Alam Z,et al. Biostability and disinfectant by-product formation in drinking water blended with UF-treated filter backwash water[J]. Water Research,2008,42(8-9):2135-2145.
    [39] Balaban M,Schippers J C. Application of microfiltration for reuse of backwash water in a conventional water treatment plant-a case study[J]. Membranes in Drinking and Industrial Water Production,2001,1(5-6):199-206.
    [40] Li Weiying,Akira Y,Dong Bingzhi,et al. Study on backwash wastewater from rapid sand-filter monolith ceramic membrane[J]. Desalination,2010,250(2):712-715.
    [41] Magara Y,Kunikane S,Itoh M. Advanced membrane technology for application to water treatment[J]. Water Science and Technology,1998,37(10):91-99.
    [42] Fiksdal L,Leiknes T. The effect of coagulation with MF/UF membrane filtration for the removal of virus in drinking water[J]. Journal of Membrane Science,2006,279(1-2):364-371.
    [43] Lee S,Kweon J H,Choi Y H,et al. Effects of flocculent aggregates on microfiltration with coagulation pretreatment of high turbidity waters[J]. Water Science and Technology,2006,53(7):191-197.
    [44] Kim H S, Takizawa S, Ohgaki S. Application of microfiltration systems coupled with powdered activated carbon to river water treatment[J]. Desalination,2007,202(1-3):271-277.
    [45] Panglisch S,Dautzenberg W,Kiepke O,et al. Ultra- and microfiltration pilot plant investigations to treat reservoir water[J]. Desalination,1998,119(1-3):277-288.
    [46]董秉直,曹达文,陈艳.饮用水深度处理技术[M].北京:化学工业出版社,2006.
    [47] Qina J J,Oo M H,Kekrea K A,et al. Reservoir water treatment using hybrid coagulation-ultrafiltraion[J]. Desalination,2006,193(1-3):344-349.
    [48]李圭白,杨艳玲.超滤-第三代城市饮用水净化工艺的核心技术[J].供水技术,2007,1(1):1-3.
    [49] Jian-jun Qin,Maung Htun Oo,Ying Li. Hollow fiber ultrafiltration membranes with enhanced flux for humic acid removal[J]. Journal of Membrane Science,2005,247(1):119-125.
    [50] Rautenbach R,Linn T,Al-Gobaisi D M K. Present and future pretreatment concepts strategies for reliable and low maintenance reverse osmosis desalination [J]. Desalination,1997,110(1):97-106.
    [51]何文杰,顾金辉,王东,等.浸入式膜工艺处理滦河水中试研究[J].供水技术,2007,1(1):4-8.
    [52]何文杰,李玥,康华.浸入式连续微滤工艺处理微污染水源水的中试研究[J].供水技术,2007,1(3):1-4.
    [53] Pikkarainena A T,Judda S J,Jokelab J,et al. Pre-coagulation for microfiltration of an uplandsurface water[J]. Water Research,2004,38(2):455-465.
    [54] Laine J M,Campos C,Baudin I,et al. Understanding membrane fouling: a review of over a decade of research[J]. Water Science and Technology-Water Supply,2003,3(5-6):155-164.
    [55] Wiesner M R,Clark M M,Mallevialle J. Membrane filtration of coagulated suspensions[J]. Journal of Environmental Engineering,1989,115(1):20-40.
    [56] Hiavacek M,Reniy J F. Simple relationships among zeta potential, particle size distribution, and cake specific resistance for colloid suspensions coagulated with ferric chloride[J]. Separation Science and Technology,1995,30(4):549-563.
    [57] Lee J D,Lee S H,Jo M H,et al. Effect of coagulation conditions on membrane filtration characteristics in coagulation-microfiltration process for water treatment[J]. Environmental Science and Technology,2000,34(17):3780-3788.
    [58] Judd S J,Hillis P. Optimisation of combined coagulation and microfiltration for water treatment[J]. Water Research,2001,35(12):2895-2904.
    [59] Min H C,Chung H L,Sangho L. Effect of flocculation conditions on membrane permeability in coagulation–microfiltration[J]. Desalination,2006,191(1-3):386-396.
    [60] Xia Shengji,Li Xing,Yao Ji,et al. Application of membrane techniques to produce drinking water in China[J]. Desalination,2008,222(1-3):497-501.
    [61] Wang J,Guan J,Santiwong S R, et al. Characterization of floc size and structure under different monomer and polymer coagulants on microfiltration membrane fouling[J]. Journal of Membrane Science,2008,321(2):132-138.
    [62]张艳,李圭白.混凝沉淀-浸没式超滤膜处理东江水的中试研究[J].中国给水排水,2009,25(11):37-39.
    [63] Choi K Y J,Dempsey B A. In-line coagulation with low-pressure membrane filtration[J]. Water Research,2004,38(19):4271-4281.
    [64] Wang J,Wang XC. Ultrafiltration with in-line coagulation for the removal of natural humic acid and membrane fouling mechanism[J]. Journal of Environmental Sciences-China,2006,18(5):880-884.
    [65] Tran T,Gray S,Naughton R,et al. Polysilicato-iron for improved NOM removal and membrane performance[J]. Journal of Membrane Science,2006,280(1-2):560-571.
    [66] Wang Lin,Wang B Z,Li W G,et al. Performance of a full scale advanced treatment plant using ozonation, BAC and Muyushi mineral filtration processes[J]. European Water Management,1999,2(2).
    [67]王琳,王宝贞,王欣泽,等.活性炭与超滤组合工艺深度处理饮用水[J].中国给水排水,2002,18(2):1-4.
    [68]朴芬淑,傅金祥,隋学军,等. MF与PAC协同处理微污染饮用水源水试验[J].沈阳建筑大学学报(自然科学版),2009,25(2):338-341.
    [69]王晓莲,彭永臻,王宝贞. PAC-UF组合系统对水中污染物去除研究[J].哈尔滨工业大学学报,2005,37(12):1739-1742.
    [70] Matsui Y,Murase R,Sanogawa T,et al. Micro-ground powdered activated carbon for effective removal of natural organic matter during water treatment[J]. Water Science and Technology-Water Supply,2004,4(4):155-163.
    [71] Matsui Y,Murase R,Sanogawa T,et al. Rapid adsorption pretreatment with submicrometre powdered activated carbon particles before microfiltration[J]. Water Science and Technology,2005,51(6-7):249-256.
    [72] Pirbazari M,Badriyha B N,Ravindran V. MF-PAC for treating waters contaminated with natural and synthetic organics[J]. Journal of the American Water Works Association,1992,84(12):95-103.
    [73] Matsui Y,Hasegawa H,Ohno K,et al. Effects of super-powdered activated carbon pretreatment on coagulation and trans-membrane pressure buildup during microfiltration[J]. Water Research,2009,43(20):5160-5170.
    [74]于海琴,杨成永,张惠.粉末活性炭导入超滤系统去除水中天然有机物的性能研究[J].膜科学与技术,2009,26(2):85-89.
    [75] Lin C F,Liu S H,Hao O J. Effect of functional groups of humic substances on UF performance[J]. Water Research,2001,35(10):2395-2402.
    [76] Lin C F,Huang Y J,Hao I J. Ultrafiltration processes for removing humic substances: effect of molecular weight fractions and PAC treatment[J]. Water Research,1999,33(5):1252-1264.
    [77] Mozia S , Tomaszewska M , Morawski A W. Application of an ozonation–adsorption–ultrafiltration system for surface water treatment[J]. Desalination,2006,190(1-3):308-314.
    [78] Karnik B S,Davies S,H, Baumann M J,et al. The effects of combined ozonation and filtration on disinfection by-product formation[J]. Water Research,2005,39(13):2839-2850.
    [79] Hashino M , Mori Y , Fujii Y , et al. Pilot plant evaluation of an ozone-microfiltration system for drinking water treatment[J]. Water Science and Technology,2000,41(10-11):17-23.
    [80] Hashino M,Mori Y,Fujii Y,et al. Advanced watertreatment system using ozone and ozone resistant microfiltration module[J]. Water Science and Technology-Water Supply,2001,1(5-6):169-175.
    [81]田宝义,何文杰,黄廷林,等.预氯化对混凝/超滤工艺处理滦河高藻原水的影响[J].中国给水排水,2009,25(21):56-58.
    [82] Decarolis J,Hong S K,Taylor J. Fouling behavior of a pilot scale inside-out hollow fiber UF membrane during dead-end filtration of tertiary wastewater[J]. Journal of Membrane Science,2001,191(1-2):165-178.
    [83] Chae S R,Yamamura H,Ikeda K,et al. Comparison of fouling characteristics of two different poly-vinylidene fluoride microfiltration membranes in a pilot-scale drinking water treatment system using pre-coagulation/sedimentation, sand filtration, and chlorination[J]. Water Research,2008,42(8-9):2029-2042.
    [84] Choo K H,Lee H,Choi S J. Iron and manganese removal and membrane fouling during UF in conjunction with prechlorination for drinking water treatment[J]. Journal of Membrane Science,2005,267(1-2):18-26.
    [85] Chang Y J,Choo K H,Benjamin M M,et al. Combined adsorption/UF process increases TOC removal[J]. Journal of the American Water Works Association,1998,90(5):90-102.
    [86] Lee K W,Choo K H,Choi S J,et al. Development of an integrated iron oxide adsorption/membrane separation system for water treatment[J]. Water Science and Technology-Water Supply,2002,2(5-6):293-300.
    [87]胡红梅,董秉直,宋亚丽.高锰酸钾预氧化与微滤膜联用去除微污染物的研究[J].城市公用事业,2007,21(2):25-28.
    [88] Best G,Singh M,Mourato D,et al. Application of immersed ultrafiltration membranes for organic removal and disinfection by-product reduction[J]. Water Science and Technology-Water Supply,2001,1(5-6):221-231.
    [89]孙丽华,李星,夏圣骥,等.高锰酸钾强化混凝/砂滤/超滤组合工艺处理松花江水试验研究[J].膜科学与技术,2008,28(1):77-85.
    [90] Verbych S,Bryk M,Zaichenko M. Water treatment by enhanced ultrafiltration[J]. Desalination,2006,198(1-3):295-302.
    [91]刘昌胜,邬行彦,潘德维,等.膜的污染及其清洗[J].膜科学与技术,1996,16(2):25-30.
    [92] Vandenberg G B,Smolders C A. Flux decline in ultrafiltration process[J]. Desalination,1990,77:101-133.
    [93] Mallevialle J,Anselme C,Marsigny O. Effect of humic substances on membrane process[M]. France:Advances in Chemistry,1989.
    [94] Hong S,Elimelech M. Chemical and physical aspects of natural organic matter (NOM) fouling of nanofiltration membranes[J]. Journal of Membrane Science,1997,132(2-3):159-181.
    [95] Maartens A,Swart P,Jacobs E P. Humic membrane foulants in natural brown water: characterization and removal[J]. Desalination,1998,115(3):215-227.
    [96] Manttari M L,Puro J,Jokinen N,et al. Fouling effects of polysaccharides and humic acid in nanofiltration[J]. Journal of Membrane Science,2000,165(1):1-17.
    [97] Schafer A I,Fane A G, Waite T D. Fouling effects on rejection in the membrane filtration of natural waters[J]. Desalination,2000,131(1-3):215-224.
    [98] Thurman E M. Organic Geochemistry of Natural Waters[M]. USA:Kluwer Academic publishers,1985.
    [99] Combe C,Molis E,Lucas P,et al. The effect of CA membrane properties on adsorptive fouling by humic acid[J]. Journal of Membrane Science,1999,154(1):73-87.
    [100] Wiesner M R,Aptel P. Water Treatment Membrane Processes: Chapter 4 Mass transport and permeate flux and fouling in pressure driven process[M]. USA:American Water Works Association,1996.
    [101] Jones K L,O’Melia C R. Protein and humic acid adsorption onto hydrophilic membrane surfaces: effects of pH and ionic strength[J]. Journal of Membrane Science,2000,165(1):31-46.
    [102] Yuan W,Zydney A L. Humic acid fouling during microfiltration[J]. Journal of Membrane Science,1999,157(1):1-12.
    [103] Schafer A I,Schwicker U,Fisher M M,et al. Microfiltration of colloids and natural organic matter[J]. Journal of Membrane Science,2001,171(2):151-172.
    [104] Turcaud V L,Wiesner M R,Bottero J Y. Fouling in tangential-flow ultrafiltration: the effect of colloid size and coagulation pretreatment[J]. Journal of Membrane Science,1990,52(2):173-190.
    [105] Cho J,Amy G,Pellegrino J. Membrane filtration of natural organic matter: comparison of flux decline, NOM rejection and foulants during filtration with three UF membranes[J]. Desalination,1999,127(3):283-298.
    [106] Howe K J,Clark M M. Fouling of microfiltration and ultrafiltration membranes by natural waters[J]. Environmental Science and Technology,2002,36(16):3571-3576.
    [107] Mo L , Xiao H. Fouling characteristics and cleaning strategies in a coagulation-microfiltration combination process for water purification[J]. Desalination,2003,159(1):1-9.
    [108] Fan L H,Harris J L,Roddick F A,et al. Influence of the characteristics of natural organic matter on the fouling of microfiltration membranes[J]. Water Research,2001,35(18):4455-4463.
    [109] Lin C F,Lin T Y,Hao O J. Effects of humic substance characteristics on UF performance[J]. Water Research,2000,34(4):1097-1106.
    [110] Carroll T,King S,Gray S R,et al. The fouling of microfiltration by NOM after coagulation treatment[J]. Water Research,2000,34(11):2861-2868.
    [111] Lee N H,Amy G,Croue J P,et al. Identification and understanding of fouling in low-pressure membrane (MF/UF) filtration by natural organic matter (NOM)[J]. Water Research,2004,38(20):4511-4523.
    [112] Jarusutthirak C,Amy G.,Croue J P. Fouling charateristics of wastewater effluent organic matter (EFOM) isolates on NF and UF membranes[J]. Desalination,2002,145(1-3):247-255.
    [113]董秉直,冯晶,陈艳.有机物的特性对超滤膜通量的影响[J].同济大学学报(自然科学版),2007,35(3):356-360
    [114] Yuan W,Zydney A L. Effects of solution environment on humic acid fouling during microfiltration[J]. Desalination,1999,122(1):63-76.
    [115] Costa A R,Pinho M N D,Elimelech M. Mechanisms of colloidal natural organic matter fouling in ultrafiltration[J]. Journal of Membrane Science,2006,281 (1-2):716-725.
    [116] Jucker C,Clark M M. Adsorption of aquatic humic substances on hydrophobic ultrafiltration membranes[J]. Journal of Membrane Science,1994,97:37-52.
    [117] Howell J A. Sub-critical flux operation of microfiltration[J]. Journal of Membrane Science,1995,107(1-2):165-171.
    [118] Defrance L , Jaffrin M Y. Comparison between filtrations at fixed transmembrane pressure and fixed permeate flux: application to a membrane bioreactor used for wastewater treatment[J]. Journal of Membrane Science,1999,152(2):203-210.
    [119] Field R W,Wu D,Howell J A,et al. Critical flux concept for microfiltration fouling[J]. Journal of Membrane Science,1995,100(3):259-272.
    [120] Howell J A,Arnot T C,Chua H C,et al. Controlled flux behaviour of membrane processes[J]. Macromolecylar Symposia,2002,188(1):23-35.
    [121] Thomas H,Judd S,Murrer J. Fouling characteristics of membrane filtration in membrane bioreactors[J]. Membrane Technology,2000,2000(122):10-13.
    [122] Bouhabila E H,Aim B R,Buisson H. Fouling characterization in membrane bioreactors[J]. Separation and Purification Technology,2001,22-23(1-3):123-132.
    [123]张国俊,刘忠洲.膜过程中膜清洗技术研究进展[J].水处理技术,2003,29(4):187-190.
    [124]康华,何文杰,王胜江. PVDF膜污染及清洗试验研究[J].给水排水,2008,34(14):12-16.
    [125] Bowen W R,Sabuni H A M. Pulsed electrokinetic cleaning of cellulose nitrate microfiltration membranes[J]. Industrial Engineering Chemistry Research,1992,31(2):515-523.
    [126] Kobayashi T , Kobayashi T , Hosaka Y , et al. Ultrasound-enhanced membrane-cleaning processes applied water treatments: influence of sonic frequency on filtration treatments[J]. Ultrasonics,2003,41(3):185-190.
    [127] Lorimer J P,Mason T J. Sonochemistry: the uses of ultrasound in chemistry[M]. England:Royal Society of Chemistry,1990.
    [128] Chai X J,Kobayashi T,Fujii N. Ultrasound associated cleaning of polymeric membranes for water treatment[J]. Separation and Purification Technology,1999,15(2):139-146.
    [129] Pontie M,Chassemy X,Lemordant D,et al. The streaming potential method for the characterization of ultrafiltration organic membranes and the control of cleaning treatments[J]. Journal of Membrane Science,1997,129(1):125-133.
    [130] Masselin I,Chasseray X,Durand B,et al. Effect of sonication on polymeric membranes[J]. Journal of Membrane Science,2001,181(2):213-220.
    [131]张国俊,刘忠洲.超滤膜的超声波助清洗研究[J].环境科学,2003,24(6):129-134.
    [132] Strugholtz S,Sundaramoorthy K,Panglisch S,et al. Evaluation of the performance of different chemicals for cleaning capillary membranes[J]. Desalination,2005,179(1-3):191-202.
    [133] Zondervan E,Roffel B. Evaluation of different cleaning agents used for cleaning ultrafiltration membranes fouled by surface water[J]. Journal of Membrane Science,2007,304(1-2):40-49.
    [134] Liu C,Caothien S,Hayes J,et al. Membrane chemical cleaning: from art to science[C]. Proceedings of AWWA Membrane Technology Conference,2001,1-25.
    [135] Tragardh G. Membrane cleaning[J]. Desalination,1989,71 (3):325-335.
    [136] Al-Amoudi A,Lovitt R W. Fouling strategies and the cleaning system of NF membranes and factors affecting cleaning efficiency[J]. Journal of Membrane Science, 2007,303(1-2):6-28.
    [137] Liang H,Gong W,Chen J,et al. Cleaning of fouled ultrafiltration (UF) membrane by algae during reservoir water treatment[J]. Desalination,2008,220(1-3):267-272.
    [138] Kim K J,Sun P,Chen V,et al. The cleaning of ultrafiltration membranes fouled by protein[J]. Journal of Membrane Science,1993,80(1):241-249.
    [139] Bartlett M,Bird M R,Howell J A. An experimental study for the development of a qualitative membrane cleaning model[J]. Journal of Membrane Science,1995,105(1-2):147-157.
    [140] Vaisanen P,Bird M R,Nystrom M. Treatment of UF membranes with simple and formulated cleaning agents[J]. Food and Bioproducts Processing,2002,80(2):98-108.
    [141] Huang H,Lee N,Young T,et al. Natural organic matter fouling of low-pressure, hollow-fibre membranes: effects of NOM source and hydrodynamic conditions[J]. Water Research,2007,41(17):3823-3832.
    [142]朱建文,顾渊,代荣.饮用水深度处理中膜清洗方式的研究[J].中国给水排水,2009,25(23):41-44.
    [143] Guojun Zhang, Zhongzhou Liu. Membrane fouling and cleaning in ultrafiltration of wastewater from banknote printing works[J]. Journal of Membrane Science,2003,211(2): 235-249.
    [144] Zhang L L , Yang D , Zhong Z J, et al. Application of hybrid coagulation–microfiltration process for treatment of membrane backwash water from waterworks [J]. Separation and Purification Technology,2008,62(2):415-422.
    [145] Cai Z X,Kim J S,Benjamin M M. NOM removal by adsorption and membrane filtration using heated aluminum oxide particles[J]. Environmental Science and Technology,2008,42(2):619-623.
    [146] Lin Y L,Chiang P C,Chang E E. Removal of small trihalomethane precursors from aqueous solution by nanofiltration[J]. Journal of Hazardous Materials,2007,146(1-2):20-29.
    [147]国家环境保护总局,水和废水监测分析方法编委会.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002.
    [148]石健,朱永刚,王东升,等.活性硅酸的助凝作用[J].工业水处理,2008,28(7):39-42.
    [149]霍明昕.低温低浊水质特性的分析[J].中国给水排水,1998,14(6):33-34.
    [150]许保玖,安鼎年.给水处理理论与设计[M].北京:中国建筑工业出版社,1992.
    [151]陈培康,裘本昌.给水净化新工艺[M].北京:学术书刊出版社,1990.
    [152]朱普霞.给水中的浊度问题[J].净水技术,2004,23(5):22-25.
    [153]吴卿,赵新华.饮用水细菌总数及相关指标关系[J].中国公共卫生,2006,22(3):280-283.
    [154] Ates N,Kitis M,Yetis U. Formation of chlorination by-products in waters with low SUVA-correlations with SUVA and differential UV spectroscopy[J]. Water Research,2007,41(18):4139-4148.
    [155] Wong H,Mok K M,Fan X J. Natural organic matter and formation of trihalomethanes in two water treatment processes[J]. Desalination,2007,210(1-3):44-51.
    [156]于凌琪,刘洪亮,冯利红,等.天津市引滦河水中隐孢子虫污染情况的调查[J].中国卫生检验杂志,2003,13(2):211.
    [157] Wang Y X,Reardon E J. Activation and regeneration of a soil sorbent for deflouridation of drinking water[J]. Applied Geochemistry,2001,16(5):531-539.
    [158] Kimbrough D E,Suffet I H. Electrochemical process for the removal of bromide from California State project water[J]. Journal of Water Supply Research and Technology-AQUA,2006,55(3):161-167.
    [159] Cowman G,Singer P C. Effect of bromide ion on haloacetic acid speciation: resulting from chlorination and chloramination of aquatic humic substances[J]. Environmental Science and Technology,1996,30(1):16-24.
    [160]胡保安.混凝微滤工艺处理微污染原水和低放废水的应用研究[D].天津:天津大学环境学院,2008.
    [161]刘忠洲,续曙光,李锁定.微滤、超滤过程中的膜污染与清洗[J].水处理技术,1997,23(4):187-193.
    [162] Shimizu Y,Okuno Y,Uryu K,et al. Filtration characteristics of hollow fiber microfiltration membranes used in membrane bioreactor for domestic wastewater treatment[J]. Water Research,1996,30(10):2285-2392.
    [163]刘峰刚,混凝-微滤饮用水处理工艺的中试研究[D].天津:天津大学环境学院,2007.
    [164] Kamp P C,Kruithof J C,Folmer H C. UF/RO treatment plant Heemskerk: from challenge to full scale application[J]. Desalination,2000,131(1-3):27-35.
    [165] Faust S D,Aly O. Chemistry of Water Treatment[M]. USA:CRC,1998.
    [166] Lee H,Amy G,Cho J,et al. Cleaning strategies for flux recovery of an ultrafiltration membrane fouled by natural organic matter[J]. Water Research, 2001,35(14):3301-3308.
    [167] Arnal J M,Garcia-Fayos B,Sancho M,et al. Cleaning ultrafiltration membranes by different chemical solutions with air bubbles[J]. Desalination and Water Treatment. 2009,10(1-3):175-180.
    [168] Presdee J,Veerapaneni S,Darby H S,et al. Integration of Membrane Filtration into Water Treatment Systems[M]. USA:American Water Works Association,2006.
    [169] Cheryan M. Ultrafiltration and Microfiltration Handbook[M]. USA:CRC,2000.
    [170] Lee S,Cho J W,Shin H,et al. Investigation of NOM size, structure and functionality (SSF): impact on water treatment process with respect to disinfection by-products formation[J]. Journal of Water Supply Research and Technology-AQUA,2003,52(8):555-564.
    [171] Sundaramoorthy K,Brügger A,Panglisch S,et al. Studies on the minimization of NOM fouling of MF/UF membranes with the help of a submerged“single”capillary membrane apparatus[J]. Desalination,2005,179(1-3):355-367.
    [172] Hua G H,Reckhow D A. Characterization of disinfection byproduct precursors based on hydrophobicity and molecular size[J]. Environmental Science and Technology,2007,41(9):3309-3315.
    [173] Hwang C J,Sclimenti M J,Krasner S W,et al. Characterization and reactivity of hydrophilic natural organic matter (NOM) in a low-humic water[C]. Process of Water Quality Technology Conference,1999,1222-1239.
    [174] Edzwald J K. Coagulation in drinking water treatment: particles, organics and coagulants[J]. Water Science and Technology,1993,27(11):21-35.
    [175] Shin H S, Monsallier J M, Choppin G R. Spectroscopic and chemical characterizations of molecular size fractionated humic acid[J]. Talanta,1999,50(3):641-647.
    [176] Choi S I,Kim S G,Yoon J,et al. Particle behavior in air agitation submerged membrane filtration[J]. Desalination,2003,158(1-3):181-188.
    [177] Lerch A,Panglisch S,Gimbe R. Research experiences in direct potable water treatment using coagulation/ultrafiltration [J]. Water Science end Technology,2005,51(6-7):6-7.
    [178] Goren U,Aharoni A,Kummel M,et al. Role of membrane pore size in tertiary flocculation/adsorption/ultrafiltration treatment of municipal wastewater[J]. Separation and Purification Technology,2008,61(2):193-203.
    [179] Liang L,Singer P C. Factors influencing the formation and relative distribution of haloacetic acids and trihalomethanes in drinking water[J]. Environmental Science and Technology,2003,37(13):2920-2928.
    [180] Xu B,Gao N Y,Sun X F,et al. Characteristics of organic material in Huangpu River and treatability with the O3-BAC process[J]. Separation and Purification Technology,2007,57(2):348-355.
    [181] Tan L,Amy G L. Comparing ozonation and membrane separation for color removal and disinfection by-product control[J]. Journal of the American Water Works Association,1991,83(5):74-79.
    [182] Zhang L L,Gu P,Zhong Z J,et al. Characterization of organic matter and disinfection by-products in membrane backwash water from drinking water treatment[J]. Journal of Hazardous Materials,2009,168(2-3):753-759.
    [183]董秉直,曹达文,范瑾初,等. UF膜与混凝粉末活性炭联用处理微污染原水[J].环境科学,2001,22(1):37-40.
    [184]张玲玲.混凝-微滤工艺制备饮用水的试验研究[D].天津:天津大学环境学院,2008.
    [185] Ho C C,Zydney A L. A combined pore blockage and cake filtration model for protein fouling during microfiltration[J]. Journal of Colloid and Interface Science,2000,232(2):389-399.
    [186] Maartens A,Swart P,Jacobs E P. Feed-water pretreatment: methods to reduce membrane fouling by natural organic matter[J]. Journal of Membrane Science,1999,163(1):51-62.
    [187]钟璟,徐南平,时钧.颗粒粒径和膜孔径对陶瓷膜微滤微米级颗粒悬浮液的影响[J].高校化学工程学报,2000,14(3):230-234.
    [188] Mo L , Huang X. Fouling characteristics and cleaning strategies in a coagulation-microfiltration combination process for water purification[J]. Desalination,2003,159(1):1-9.
    [189] Kennedy M D,Kamanyi J,Heijman B,et al. Collodial organic matter fouling of UF membrane: role of NOM composition & size[J]. Desalination,2008,220(1):200-213.
    [190] Li S,Heijman S G J,Verberk J Q J C,et al. Influence of Ca and Na ions in backwash water on ultrafiltration fouling control[J]. Desalination,2010,250(2):861-864.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700