用户名: 密码: 验证码:
富水基岩单层冻结井壁受力规律及设计理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据孔隙含水岩层中冻结法凿井特点和条件,通过理论分析、数值计算、物理模型试验、现场实测相结合的方法,研究了含水基岩单层冻结井壁的受力规律,提出了含水冻结基岩单层井壁的设计理论,并给出了计算公式。
     首先,根据冻结壁解冻及生产期基岩单层井壁的受力特点,建立了较符合实际的基岩单层冻结井壁力学模型,开展解析分析研究,获得了井壁和围岩体严格的应力与位移解析解;获得了基岩单层冻结井壁受径向外载、井壁与围岩间径向相互作用力的解析解;掌握了井壁与围岩相互作用规律。
     其次,按照井壁的施工过程,建立了较符合实际的基岩单层冻结井壁受力数值计算模型,获得了井壁所受径向外载,以及井壁与围岩径向相互作用力的数值解。对比分析研究表明:理论解析解与数值解符合很好,表明解析解是正确的,可用之进行井壁设计计算。在含水围岩条件下,围岩体弹性模量、围岩体孔隙率和泊松比的取值对井壁受力和井壁与围岩体接触面特性有较大影响。因此,含水孔隙围岩体冻结前、后的物理力学参数的取值是一个需要高度重视的问题。
     第三,开展了井壁与孔隙岩体相互作用的模型试验研究。首先,借助正交试验,配制出了由中粗砂、透水混凝土增强剂、水泥和水组成的满足5个相似系数近似等于1的一种多孔隙岩体相似材料。运用环氧型植筋胶配制出了模型井壁材料。然后,运用模拟岩体材料和模型井壁材料制作模型试件,成功进行了富水条件下多孔隙岩体与井壁结构受孔隙水压作用的大型模型试验,获得了孔隙水作用下井壁的受力规律。试验研究表明:在井壁与围岩体界面有一定压应力的条件下,孔隙水压加载过程,井壁受力可明显分为2个阶段。第一阶段,在孔隙水压增大到一定值前,井壁内缘应变基本保持不变或略微增大;超出此定值时,井壁内缘应变与孔压线性变化。
     第四,针对基岩单层冻结井壁,在内蒙古鄂尔多斯地区马泰壕煤矿风井开展井壁受力的现场实测,获得了井壁在施工期、解冻期、运行期井壁混凝土应变、钢筋受力、井壁外载的变化规律。实测研究表明:实测的井壁未发生与围岩剥离现象,井壁受力较小,井壁是安全的。在冻结壁解冻前后井壁受力的变化规律与理论分析结果相符。
     最后,综合上述研究成果,提出了富水基岩单层冻结井壁的设计理论与计算方法,并在实际工程的井壁结构设计中得到成功应用。
     论文有图93幅,表47个,参考文献173篇。
Based on the characteristic and conditions of sinking shaft by freezing method in pore water-bearing rock strata, the research on the stress regulation of monolayer freezing shaft lining in water-bearing bedrock was carried out through theoretical analysis, numerical analysis, physical simulation experiment and field measurement. The design theory and calculation methods were put forward for the monolayer freezing shaft lining in water-rich bedrock, as well as the calculation formula.
     Firstly, according to the stress characteristics of the monolayer shaft lining in the bedrock during the frozen wall thawing period and production period, a relatively practical mechanical model of monolayer freezing shaft lining in the bedrock was established to conduct the analytical analysis research. And consequently, some research results were obtained including the strict stress analytical solutions of shaft lining and surrounding rock, the analytical solutions of the shaft lining with radial load and interaction force between shaft lining and the surrounding rock applied and the change rules of interaction force.
     Secondly, on the basis of the construction process of the shaft lining, a relatively practical numerical model was established to analyze the stress regulation of the monolayer freezing shaft lining in the bedrock. In addition, the numerical solutions of the shaft lining were also obtained with radial load and interaction force applied. Contrast analysis shows that analytical solutions are consistent with numerical solutions, indicating that the analytical solutions are correct, which can be used to design the shaft lining. Under the conditions of water-bearing surrounding rock, its elastic modulus, porosity and Poisson's ratio greatly influence the shaft lining stress and the characteristics of contact surfaces between shaft lining and surrounding rock. Therefore, for the pore water-bearing surrounding rock, the different values of physical and mechanical parameters in ex- frozen and post-frozen period need to be paid great attention.
     Thirdly, the physical simulation study was carried out on the interaction between the shaft lining and pore rock. First, a kind of similar material of porous rock was prepared with the orthogonal test method, which was made of coarse sand, permeable concrete strength additive, cement and water. And its five similarity coefficient is approximately equal to 1. At the same time, the similar material of shaft lining was prepared using epoxy anchorage adhesive. Then, using the simulation model made by with the similar materials, a large-scale simulation experiment was conducted on the characteristics of porous rock and shaft lining with water pressure loaded under water-bearing conditions. And the stress regulation of the shaft lining was obtained with the pore water pressure applied. The experimental studies have shown: when certain compressive stress exist in the interfaces between the shaft lining and the surrounding rock, the stress regulation of the shaft lining can be divided into two stages during the pore water pressure loading. In the first stage, the shaft lining strain in the inner edge remains unchanged or slightly increases before the pore water pressure increases to a certain value; when exceeding this value, the shaft lining strain in the inner edge changes linearly with the pore pressure.
     Fourthly, aiming at the monolayer freezing shat lining in the bedrock, the field measurement was conducted to monitor the stress on the air shaft in Ma Tai-Hao coal mine, Ordos, Inner Mongolia. The change rules of the concrete strain, reinforcement stress and the load was monitored during construction, thawing and operation period. The measurement studies have shown: the monitored shaft lining didn’t separate from the surrounding rock, which was secure with small stress. The stress regulation of the shaft lining in ex-thaw and post-thaw period was consistent with the theoretical analysis.
     In the end, based on the above research results, the design theory and calculation methods were put forward for the monolayer freezing shaft lining in water-rich bedrock. The theory of the monolayer freezing shat lining in the bedrock been successfully applied in practical engineering.
     The paper have figure of 93, table 47, 173 references.
引文
[1]崔广心,杨维好,吕恒林.深厚冲积层中的冻结壁和井壁[M].徐州:中国矿业大学出版社,1998.
    [2]周晓敏,陈建华,罗晓青.孔隙型含水基岩段竖井井壁厚度拟设计研究[J].煤炭学报,2009,34(9):1174-1178.
    [3]姚直书,程桦,荣传新.西部地区深基岩冻结井筒井壁结构设计与优化[J].煤炭学报,2010,35(5):760-764.
    [4]中国煤炭建设协会.GB50384-2007煤矿立井井筒及硐室设计规范[S].北京:中国计划出版社,2007.
    [5] H.Link,H.O.Lutgendorf,K.Stoss.不稳定岩层的井壁计算原则[M].北京:煤炭工业出版社,1979.
    [6]何满潮,谢和平,彭苏萍,等.深部开采岩体力学研究[J],岩石力学与工程学报,2005,24(16):2803-2813.
    [7]杨维好.单层冻结井壁技术研究与应用(内部资料).
    [8]王衍森.特厚冲积层中冻结井外壁强度增长及受力与变形规律研究[D].徐州:中国矿业大学,2005.
    [9]陈晓祥.新型单层冻结井壁关键技术与设计理论研究[D].徐州:中国矿业大学,2007.
    [10]任彦龙.径向可缩井壁的力学特性和设计理论研究[D].徐州:中国矿业大学,2007.
    [11]周小文,蹼家骆,殷昆亭,等.南水北调穿黄隧洞衬砌土压力离心试验研究[J].水利水电技术,1999,30(5):58-60.
    [12]姚燕明,杨龙才,刘建国.地铁车站施工对地面沉降影响的试验分析[J].城市轨道交通研究,2002,5(1):70-73.
    [13]张杰,骆建军,吴波.地铁区间二连拱隧道施工地表沉降的数值模拟及模型试验研究[J].隧道建设,2005,25(2):3-6.
    [14]孙钧,候学渊.地下结构[M].北京:科学出版社,1988.
    [15]程桦,孙钧,吕渊.软弱围岩复合式隧道衬砌模型试验研究[J].岩石力学与工程学报,1997,16(2):162-170.
    [16]李志业,王明年,翁汉民.大跨度公路隧道结构模型试验研究[J].铁道学报,1996,18(2):114-120.
    [17]钟新樵.土质偏压隧道衬砌模型试验分析[J].西南交通大学学报,1996,31(6):602-606.
    [18]林刚,何川.双连拱公路隧道支护结构体系试验研究[J].西南交通大学学报,1997,39(3):362-365.
    [19]唐志成,何川,林刚.地铁盾构隧道管片结构力学行为模型试验研究[J].岩土工程学报,2005,27(1):85-89.
    [20]周乐凡.考虑外水荷载作用的铁路隧道衬砌结构设计研究[D].铁道科学研究院,2004.
    [21]何英杰,张述琴,吕国梁.穿黄隧道内外衬联合受力结构模型试验研究[J].长江科学院院报,2002,19(增刊):64-68.
    [22]来弘鹏,林永贵,谢永利,杨晓华.不同应力场下软弱围岩公路隧道的力学特征试验[J].中国公路学报,2008,(21):4,81-87.
    [23]黄宏伟,徐凌,严佳梁,等.盾构隧道横向刚度有效率的研究[J].岩土工程学报,2006,28(1):11–18.
    [24]鞠杨,徐广泉,毛灵涛,等.盾构隧道衬砌结构应力与变形的三维数值模拟与模型试验研究[J].工程力学,2005,22(3):157–165.
    [25]何川,张建刚,杨征.层状复合地层条件下管片衬砌结构力学特征模型试验研究[J].岩土工程学报,2008,30(10):1537-1543.
    [26]汪成兵,朱合华.埋深对软弱隧道围岩破坏影响机制试验研究[J].岩石力学与工程学报,2010,29(12):2442-2448.
    [27]谭忠盛,李健,薛斌,等.岩溶隧道衬砌水压力分布规律研究[J].中国工程科学,2009,11(12):87-92.
    [28] Kimura T ,Takemura J,Hiro A,et al.Excavation in soft clay using an in-flight excavator[A].In:Leung,Lee,Tan ed.Centrifuge 94[C].Rotterdam:A A Balkema,1994.
    [29] Adam B,Joost V der S.The influence of a bored tunnel on pile foundations[A].In:Leung,Lee,Tan ed.Centrifuge 94[C].Rotterdam:A A Balkema,1994.
    [30] Yos himura H,Miyake K,Tohda J.Response of a tunnel lining due to an adjacent twin shield tunneling[A].In.Leung,Lee,Tan ed.Centrifuge 94[C].Rotterdam:A A Balkema,1994.
    [31] Im amura S,Hagiwara T ,Tosh i K,et al. Settlement trough abore a model shield observed in a centrifuge[A].In:KimuraL,Kusakbe H,Takemura J ed. Centrifuge 98[C].Rotterdam:A A Balkema,1998.
    [32] Davies M C R.Dynamic soil structural soil interaction resulting from blast loading[A].In:Leung,Lee,Tan ed.Centrifuge 94[C].Rotterdam:A A Balkema,1994.
    [33] Davies M C R.Modeling of dynamic soil structure interaction resulting from impulsive surface loading [A].In:Ko H Y ed.Centrifuge 91[C].Rotterdam:A A Balkema,1991.
    [34] Sato M,Zhang J M.Li Qu.Action -induced damage to caisson-type quaywall and its neighboring pile foundation [A].In :KimuraL,Kusakbe H,Takemura J ed.Centrifuge 98 [C].Rotterdam:A A Balkema,1998.
    [35]曹杰,黄茂松,余行.硬质土层中隧道结构动力离心模型试验[J].岩土工程学报,2010,32(7):1101-1108.
    [36]刘光磊,宋二祥,刘华北,等.饱和砂土地层中隧道结构动力离心模型试验[J].岩土力学,2008,29(8):2070-2076.
    [37] Yousef M,Hashash A,Jeffrey Hook J,et al.Seismic design and analysis of underground structures[J].Tunneling and Underground Space Technology,2001,16(4):247-293.
    [38]刘华北,宋二祥.可液化土中地铁结构的地震响应[J].岩土力学,2005,26(3):381-386.
    [39]佘才高.南京地铁南北线隧道地基的地震液化问题[J].城市轨道交通研究,2001,4(3):38-42.
    [40]漆泰岳,高波,马亮.富水软土地层地铁开挖地表沉降离心模型试验[J].西南交通大学学报,2006,41(2):84-89.
    [41]崔广心.冻结凿井的摸拟试验原理[J].中国矿业大学学报,1989,18(1),59-68.
    [42]周国庆,崔广心.地下工程问题三轴模拟试验台及其应用[J].岩土工程学报.1999,21(6):715-718.
    [43] Cui G X,Yang W H.Stress analysis of freezing pipes by modelling[J].Journal of China University of Mining and Technolog,1992,3(1):82-92.
    [44]崔广心,杨维好.冻结管受力的模拟试验研究[J].中国矿业大学学报,1990:19(2):57-65.
    [45] Cheng X L,Yang W H,Zhou G Q,et a1.Predicting the stress state of shaft lining lying in thick overburden by simuladation test.In:Proceeding of international Symposium on Application of Computer-Method in Rock Mechanics and Engineering,Xi’an,1993.
    [46]周国庆,程锡禄,崔广心.粘土层中立井井壁附加力的模拟研究[J].中国矿业大学学报,1991,20(3):86-91.
    [47]周国庆,程锡禄.特殊地层中的井壁应力计算问题[J].中国矿业大学学报,1995,74(4):24-30.
    [48]崔广心,程锡禄.徐淮地区井壁破坏原因的初步研究[J].煤炭科学技术,1991,19(8):46-50.
    [49]吕恒林,杨维好,周国庆.底部含水层疏水时端部嵌固长桩的负摩擦力[J].土木工程学报,1996,29(5):36-42.
    [50]杨维好.深厚表土层井壁垂直附加力变化规律的研究[D].徐州:中国矿业大学,1993.
    [51]崔广心,卢清国.冻结壁厚度和变形规律研究[J].煤炭学报,1992,19(3):57-65.
    [52]崔广心,杨维好,柯昌松.厚表土中竖井沥青夹层复合井壁的试验研究[J].中国矿业大学学报,1995,24(4):11-17.
    [53]杨维好,崔广心,周国庆等.特殊地层条件下井壁破裂机理与防治技术的研究(之一) [J].中国矿业大学学报,1996,25(4):1-5.
    [54]周国庆.特殊地层含水层注浆加固参数与井壁竖直附加力关系的研究[D].徐州:中国矿业大学,1996.
    [55]周国庆,崔广心.含水层注浆加固后井壁与围岩相互作用的数值分析[J].中国矿业大学学报,l998,27(2):135-139.
    [56]姚直书,孙文若.不均匀侧压力下冻结井壁混凝土井壁结构试验研究[J].阜新矿业学院学报,1995,14(3):30-33.
    [57]郁楚侯,杨平.冻结壁三轴流变的模拟试验研究[J].煤炭学报,1991,(16)2:53-62.
    [58]郭力.深厚表土中立井井壁水平侧压力不均匀性研究[D].徐州:中国矿业大学,2010.
    [59]杨天鸿,唐春安等.岩石破裂过程的渗流特性-理论、模型与应用[M].北京:科学出版社,2004:1-10.
    [60]盛金宝,速宝玉.裂隙岩体渗流-应力耦合研究综述[J].岩土力学,1998,19(2):92-98.
    [61] Blot M A.General theory of three-dimensional consolidation [J].Appl. Phys,1941,12:155-164.
    [62] Biot M A.Theory of elasticity and consolidation for a porous isotropic solid[J].Jour Appl Phys,1954,26:182-191.
    [63] Biot M A.General solution of the equation of elasticity and consolidation for porous material[J].Jour Appl Mech,1956,78:91-96.
    [64] Verrijt.Elastic storage of aquifers[A].In: Flow Through Porous Media[C].R. J. M. New York:Tihoo wily,1969:5-65.
    [65] Brace W F , Walsh J B , Frangos W T . Permeability of granite under high pressure[J].Geophys. Res.,1978,73(6):2225-2236.
    [66] Patsouls G,Gripps J C.An investigation of the permeability of Yorkshire chalk under differing pore water and confining pressure conditions[J].Energy gourees,1982,6(4):321-334.
    [67] Gangi A F . Variation of whole and fractured porous rock permeability with confining pressure[J].Int. J. Rock Mech. Min. Sci. Geomech. Abstr. ,1978,15(5):249-257.
    [68] Walsh J B.Effect of pore pressure and confining pressure on fracture permeability[J].Int. J. Rock Mech.Min.Sci,Geomech.Abstr.,1981,18(5):429-435.
    [69] Ghaboussi J,Dikmen S.Effective stress analysis of seismic response and liquefaction:case studies.Journal of Geotechnical Engineering,1984,110(5):645-658.
    [70] Kranz R L . The permeability of whole and jointed barre granite[J].Int.J.RockMech.Min.Sci.Geomech.Abstr.,1979,16(4):225-234.
    [71] Jones F O.A laboratory study of the effects of confining pressure on fracture flow and storage capacity in carbonate rock[J].Int.J.Rock Mech.Min Sci Geomech Abstr.,1975,27:21-27.
    [72] Keighin C W,Sampath K.Evaluation of pore geometry of some low-permeability sandstone-Uinta Basin[J].Journal of Petroleum Technology,1982,34:65-70.
    [73] Zoback M D,Byerlee J D.The effect of microcrack dilatancy on the permeability of WesterlyGranite[J].Journal of Geophysical Research,1975,80:752-755.
    [74] Senseny P E et a1.Influence of deformation history on permeability and specific storage of masaverde sandstone[S].Proceeding of 24th US symposium on Rock Mechanics,1983:525-531.
    [75]王明斌.有压隧洞结构稳定性力学模型研究[D].济南:山东大学,2009.4.
    [76] International Tunnelling Association(ITA).Views on structural design models for tunnelling:Synopses of answers to a Questionnaire[D].International Tunnelling Association,1982.
    [77] Duddeck.H.Application of numerical analyses for tunneling [J].Int.J.Num.Analysis. Meth.Geomech.1991,25(4):223-239.
    [78]刘建航,侯学渊.盾构法隧道[M].北京:中国地铁出版社,1991.
    [79] Krishna R,Copsey J,Algeo R G,Shirlaw J N.Design of the civil works for Singapore’s northeast Line[J].Tunnelling & Underground Space Technology,1992,(17)3:433-448.
    [80] Yurkevich P . Development in segmental concrete linings for subway tunnels in Belarus[J].Tunnelling and Underground Space Technology,1995,10(3):10-17.
    [81] Hudoba I.Contribution to static analysis of load-bearing concrete tunnel lining built by shield-driven technology[J].Tunnelling and Underground Space Technology,1997,12(1):55-58.
    [82]肖明.盾构隧洞装配式衬砌三维非线性有限元分析[J].岩土工程学报,1997,19(2):107-111.
    [83] Einstein H H,C W Schwartz.Simplified analysis for tunnel supports[J].Journal of the Geotechnical Engineering Division,ASCE,April,1979,105(GT4):499-518.
    [84]朱合华,丁文其,杨林德.盾构衬砌受力设计的现状与再认识[M].中国土木工程学会隧道及地下工程分会第十届年会论文集,铁道工程学报(增刊),1998:355-359.
    [85]张凤祥,杨宏燕,顾德昆,余伟民,黎燕.对我国发展盾构技术的一点看法[J].岩石力学与工程学报,1999,3(9):61-68.
    [86]章青,卓家寿.盾构式输水隧洞的计算模型及其工程应用[J].水利学报,1999,30(2):19-22.
    [87]张厚美,过迟,付德明.圆形隧道装配式衬砌接头刚度模型研究[J].岩土工程学报,2000,22(3):309-313.
    [88]朱合华,丁文其,李晓军.盾构隧道施工力学性态模拟及工程应用[J].土木工程学报,2000, 33(3):98-103.
    [89] Zhang Y J,Xiong C Y.2D FEM numerical simulation for tunnels of Wuhan subway system planned to be constructed with shield method[J].Rock and Soil Mechanics,2001,22(1):51-55.
    [90] Lee K M,Hou X Y,Ge X W,Tang Y.An analytical solution for a jointed shield-driven tunnel lining[J].Int.J.Num.Analy.Meth.Geomech,2001,25(4):365-390.
    [91]蒋忠信.隧道工程与水环境的相互作用[J].岩石力学与工程学报,2005,24(1):121-126.
    [92]张有天,张武功.隧道水荷载的静力计算[J].水利学报,1980,11(3):52-62.
    [93]张有天,张武功,王镭.再论隧道水荷载的静力计算[J].水利学报,1983,14(3):22-32.
    [94]王建秀,杨立中,何静.深埋隧道衬砌水荷载计算的基本理论[J].岩石力学与工程学报,2002,21(9):1339-1343.
    [95]王秀英,王梦恕,张弥.计算隧道排水量及衬砌外水压力的一种简化方法[J].北方交通大学学报,2004,28(1):8-10.
    [96]崔京浩,崔岩,陈肇元.地下结构外水压力综述[J].工程力学,1998,15(增):108-124.
    [97]张有天.岩石隧道衬砌外水压力问题的讨论[J].现代隧道技术,2003,40(3):l-4.
    [98]王建宇.再谈隧道衬砌水压力[J].现代隧道技术,2003,40(6):5-10.
    [99]王建宇,胡元芳.对岩石隧道衬砌结构防水问题的讨论[J].现代隧道技术,2001,38(1):20-25.
    [100]崔岩,吴世江,宋二祥.排水渗流对地下结构外水压的影响[J].工程力学,1997,14(增):624-628.
    [101]周乐凡.考虑外水荷载作用的铁路隧道衬砌结构设计研究[D].北京:铁道科学研究院,2003.
    [102]王飞.隧道不透水层确定方法模型试验研究[D].成都:西南交通大学,2006.
    [103]吕明,Grov E,Nilsen B,等.挪威海底隧道经验[J].岩石力学与工程学报,2005,24 (23):4219-4225.
    [104] Nam S W,Bobet A·Liner Stresses in Deep Tunnels below the Water Table [J].Tunnelling and Underground Space Technology,2006,21(6):626-635.
    [105] Bobet A·Effect of Pore Water Pressure on Tunnel Support during Static and Seismic Loading[J].Tunnelling and Underground Space Technology,2003,18(4):377-393.
    [106] Miurak.Design and Construction of Mountain Tunnels in Japan[J].Tunnelling and Underground Space Technology,2003,18(2-3):115-126.
    [107]蔡海兵,程桦.基岩破碎带段立井井壁受力状况的长期监测[J].建井技术,2008,29(6):23-26.
    [108]李昆.深冻结井筒基岩段水压特征[J].建井技术,1997,18(5):30-31.
    [109]储国平.立井冻结基岩井壁结构设计与施工[J].江苏煤炭,1999,24(4):3-4.
    [110]王渭明,冯豫.立井基岩段井壁设计问题的研究[J].山东矿业学院学报,1992,11(3):220-225.
    [111]林鸿苞.高强混凝土及薄壁筒结构在付村矿主井冻结基岩段井壁结构中的应用[J].煤矿设计,1998,45(10):5-9.
    [112]江新春.冻结基岩井筒井壁结构设计[J].煤矿设计,1992,39(1):1-3.
    [113]周晓敏,陈建华,罗晓青.孔隙型含水基岩段竖井井壁厚度拟设计研究[J].煤炭学报,2009,34(9):1174-1178.
    [114]顾慰慈.渗流计算原理及应用[M].北京:中国建材出版社,1986.
    [115]毛昶熙.渗流计算分析与控制[M].北京:水利电力出版社,1990.
    [116]徐芝伦.弹性力学[M].北京:高等教育出版社,2004.
    [117]孔祥言.高等渗流力学[M].合肥:中国科学技术大学出版社, 2010.
    [118]徐志英,岩石力学,北京:水利电力出版社,1993
    [119]王瑁成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,1997.
    [120]庄茁,由小川,岑松等.基于ABAQUS的有限元分析和应用[M].北京:清华大学出版社,2009.
    [121]陈卫忠,伍国军,贾善坡.ABAQUS在隧道及地下工程中的应用[M].北京:水利水电出版社,2010.
    [122]费康,张建伟.ABAQUS在岩土工程中的应用[M].北京:水利水电出版社,2010.
    [123]内蒙古自治区煤田地质局一五三勘探队.内蒙古鄂尔多斯永煤矿业投资公司马泰壕井田矿井井筒检查钻孔勘查地质报告,2008.
    [124]内蒙古自治区煤田地质局一一七勘探队.内蒙古自治区东胜煤田葫芦素矿井井筒检查钻孔地质报告,2008.
    [125]陕西省煤田地质局一八五队.内蒙古自治区鄂尔多斯市呼吉尔特矿区门克庆矿井井筒检查孔地质报告,2008.
    [126]林韵梅.实验岩石力学—模拟研究[M].北京:煤炭工业出版社,1984.
    [127]沈泰.地质力学模型试验技术的进展[J].长江科学院院报,2001,18(5):32-36.
    [128]李树忱,冯现大,李术才,等.新型固流耦合相似材料的研制及其应用[J].岩石力学与工程学报,2010,29(2):281-288
    [129]陈安敏,顾金才,沈俊.地质力学模型试验技术应用研究[J].岩石力学与工程学报,2004,23(22):3785–3789.
    [130]李晓红,卢义正,康勇,等.岩石力学实验模拟技术[M]北京:科学出版社,2007.
    [131]林韵梅.试验岩石力学模拟研究[M].北京:煤炭工业出版社,1984.
    [132]陈陆望,白世伟.脆性岩体岩爆倾向性的相似材料配比试验研究[J],岩土力学,2006,27(增):1050-1054.
    [133]李连贵,徐文胜,许迎年,等.岩爆模拟材料研制及模拟试验分析[J].华中科技大学学报,2001,29(6):80-82.
    [134]潘一山,章梦涛,王来贵,等.地下硐室岩爆的相似材料模拟试验研究[J].岩土工程学报,1997,19(4):49–56.
    [135]徐文胜,许迎年,王元汉,等.岩爆模拟材料的筛选试验研究[J].岩石力学与工程学报,2000,19(增):873–877.
    [136] Burgert W,Lippman M.Models of translator rock bursting in coal[J].International Journal of Rock Mechanics and Mining Sciences & Geomechanics,abstracts,1981,18:285-294.
    [137]刘宇军,黄戡,张可能,等.模拟岩石性能的试验研究[J].建筑技术开发,2003,30(8):62–63.
    [138]范鹤,刘斌,王成等.高填土涵洞相似材料的试验研究[J].东北大学学报(自然科学版),2007,28(8):1914-1917.
    [139]黄庆享,张文忠,侯志成,固液耦合试验隔水层相似材料的研究[J].岩石力学与工程学报,2010,29(增1):2813-2818.
    [140]黄庆享.浅埋煤层保水开采隔水层稳定性的模拟研究[J].岩石力学与工程学报,2009,28(5):988-992.
    [141]左保成,陈从新,刘才华.相似材料试验研究[J].岩土力学,2004,25(11):1805-1808.
    [142]韩伯鲤,陈霞龄,宋一乐.岩体相似材料的研究[J].武汉水利电力大学学报,1997,30(2):6-9.
    [143]彭海明,彭振斌,韩金田.岩土相似材料研究[J].广东土木与建筑,2002,12(12):13-17.
    [144]马芳平,李仲奎,罗光福.NIOS模型材料及其在地质力学相似模型试验中的应用[J].水力发电学报,2004,23(1):48-52.
    [145]张强勇,李术才,郭小红等.铁晶砂胶结新型岩土相似材料的研制及其应用[J].岩土力学,2008,29(8):2126-2130.
    [146]王汉鹏,李术才,张强勇,等.新型地质力学模型试验相似材料的研制[J].岩石力学与工程学报,2006,25(9):1842-1847.
    [147]张强勇,刘德军,贾超,等.盐岩油气储库介质地质力学模型相似材料的研制[J].岩土力学,2009,30(12):3581-3586.
    [148]胡耀青,赵阳升,杨栋.采场变形破坏的三维固流耦合模拟试验研究[J].辽宁工程技术大学学报(自然科学版),2007,26(4):520-523.
    [149]黎良杰,钱鸣高,殷有泉.采场底板突水相似材料模拟研究[J].煤田地质与勘探,1996,25(1):33-36.
    [150]龚召熊.地质力学模型材料试验研究[J].长江水利水电科学研究院院报,1984,10(1):32-46.
    [151]周青春,李海波,杨春和,等.南水北调西线一期工程砂岩温度、围岩和水压耦合试验研究[J].岩石力学与工程学报,2005,24(20):3639-3645.
    [152] BRACE W F , WALSH J B , FRANGEOS W T . Permeability of granite under high pressure[J].Journal of Geophysical Research,1987,73(6):2225-2236.
    [153]彭海明,彭振斌,韩金田,等.岩性相似材料研究[J].广东土木与建筑,2002,12(12):13-17.
    [154]黄国军,周澄,赵海涛.牛头山双曲拱坝整体稳定三维地质力学模型试验研究[J].西北水电,2004,23(2):49-52.
    [155]张宁,李术才,李明田,等.新型岩石相似材料的研制[J].山东大学学报(工学版),2009,39(4):149-154.
    [156]叶源新,刘光廷.岩石渗流应力耦合特性研究[J].岩石力学与工程学报,2005,24(14):2518-2527.
    [157] Schulze O,Popp T,Kern H.Development of damage and permeability in deforming rock salt[J].Engineering Geology,2001,61(3):163-180.
    [158] Zhang S Q,Tullis T E,Scruggs V J.Implications of permeability and its anisotropy in a mica gouge for pore pressure in fault zones[J].Tectono Physics,2001,335(1):37-50.
    [159]徐德敏,黄润秋,张强等.高围压条件下孔隙介质渗透特性试验研究[J].工程地质学报,2007,15(6):752-756.
    [160]贺玉龙,杨立中.围压升降过程中岩体渗透系数变化特性的试验研究[J].岩石力学与工程学报,2004,23(3):415-419.
    [161]王衍森,杨维好,黄家会等.龙固副井冻结凿井期外壁混凝土应变的实测研究[J],煤炭学报.2006,31(3):296-300.
    [162]王衍森,张开顺,李炳胜.深厚冲积层中冻结井外壁钢筋应力的实测研究[J].中国矿业大学学报,2007.36(3):287-291.
    [163]王衍森,薛利兵,程建平,等.特厚冲积层竖井井壁冻结压力的实测与分析[J].岩土工程学报,2009,31(2):207-212.
    [164] YAO Zhi shu,CHANG Hua,RONG Chuan xin.Research on st ress and st rength of high st rength reinforced concrete drilling shaft lining in thick topsoils[J].Journal of China University of Mining &Technology,2007,17(3):432~435.
    [165]侯景鹏.钢筋混凝土早龄期约束收缩性能研究[D].上海:同济大学,2006.
    [166]袁勇.混凝土结构早期裂缝控制[M].北京:科学出版社,2004.
    [167] Ahmed loukili, et al. A new approach to determine autogenous shrinkage of mortar at an early age considering temperature history. Cement and concrete research,2000(30):915~922.
    [168] Larrard F, Roy R. The influence of mix-composition on the mechanical properties of silica-fume high-performance concrete. The 4th CANMET/ACI international conference on Fly Ash,Silica Fume,slag,and natural Pozzolans in concrete.Istanbul,Turkey,ACI 1992.
    [169]中华人民共和国建设部.GB50010-2002,混凝土结构设计规范[S].北京:中国建筑工业出版社,2002.
    [170] Somsak S,Lu H R,Wee T H. Direct tension test and tensile strain capacity of concrete at early age[J].Cement and Concrete Research,2003,33:2077-2084.
    [171]杨杨,江晨晖,许四法.高性能混凝土早龄期抗拉性能试验研究[J].建筑材料学报,2008,11(1):94-99.
    [172] Sellevold E J.Early age cracking,pore structure and durability.High-performance concrete (ACISP159),Bangkok,1994:193-208.
    [173]王铁梦.工程结构裂缝控制[M].北京:中国建筑工业出版社,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700