用户名: 密码: 验证码:
水稻铬胁迫耐性的遗传分析与还原型谷胱甘肽缓解铬毒害的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铬(Cr)是一种过渡金属元素,在土壤、水体和大气中均有分布,具有多种氧化态,以三价和六价最为稳定。随着环境污染的加剧,农田十壤的铬含量逐渐提高,对农业生产与农产品安全造成了严重威胁。本研究以亲本在铬积累存在明显差异的杂交组合(ZYQ8/JX17)构建的一个水稻DH群体为材料,确定与铬耐性相关的数量性状位点和鉴定耐铬性差异显著的株系:进而以耐铬株系117和铬敏感株系41为材料,通过外源添加还原型谷胱甘肽(reduced Glutathione, GSH)的方式,研究其对铬形态、吸收、转运、累积和分布的影响,并从抗氧化系统、细胞活性和超微结构、巯基化合物、水分与养分吸收以及有机酸分泌等方面了解水稻铬毒害的缓解作用和相关机理。主要研究结果如下:
     1铬胁迫下水稻DH群体各株系的生长表现和铬耐性相关性状的QTL定位
     以一个水稻双单倍体(Double Haploid, DH)群体为材料,利用数量性状位点(Quantitative Trait Loci, QTL)定位分析,研究了铬胁迫下不同株系的生长和铬含量差异。结果表明,铬处理下,亲本ZYQ8和JX17的株高、根长、叶绿素含量和地上部干重均降低,而根干重稍有增加;群体的平均株高、根长和地上部干重均表现下降,而平均根干重和叶绿素含量影响较小。水稻铬含量根显著高于地上部,且群体各株系间差异显著。鉴定到多个与铬耐性相关的QTL位点,但它们只能解释不到10%的表型变异;鉴定到两个与铬含量相关的QTL位点,它们均位于第10号染色体的同一遗传区间,可解释近11%的表型变异。另外,锌含量与铬含量呈正相关,但相关的QTL位点只能解释很小的含量变异。
     2水稻DH群体不同铬耐性株系的鉴定
     利用权重分析法对铬胁迫下水稻DH群体各株系的生长表现进行了研究,从中鉴定到铬耐性差异显著的株系。在考察的生长性状中,铬胁迫对地上部干重的影响最大,对叶绿素含量的影响最小。株系117和101的加权综合分值最高,41和49的分值最低。根部铬含量株系117显著大于41,而根部铬累积量两株系恰好相反。铬胁迫显著抑制两亲本及群体各株系的锌含量,亲本的地上部锌含量下降较多,而根部含量受影响较小。由此可以认为,株系117和101的耐铬性较强,而株系41和49耐铬性较弱。
     3外源谷胱甘肽对水稻铬毒害的缓解效应与最适浓度筛选
     研究了外源添加GSH对缓解水稻铬毒害的效应。结果显示,在无铬胁迫条件下,外源GSH并不影响水稻生长和叶绿素含量。在铬胁迫培养液下,外源添加GSH具有缓解铬胁迫抑制水稻生长的作用,且在一定范围内随着GSH浓度的增加,缓解效果增强,在铬离子与GSH浓度比为1:3或1:5时效果较好,当两者的浓度比超过1:10时,水稻根系生长受到抑制。外源GSH提高水稻根的铬含量,但降低地上部的铬含量。结果表明,适宜浓度的GSH可缓解水稻的铬毒害,铬离子与GSH的浓度比为1:3(100μM Cr6+/300μM GSH),具有最佳的缓解作用。
     4GSH缓解铬胁迫对水稻抗氧化系统、细胞活性和超微结构的影响
     从抗氧化系统、细胞活性和亚细胞水平上研究了水稻DH株系117和41对铬胁迫的响应和外源GSH的缓解作用。结果表明,铬胁迫下,水稻DH群体的两株系(117和41)的光合色素含量显著下降,而丙二醛含量显著上升;外源添加GSH后,以上两种性状均得到明显恢复。铬胁迫影响抗氧化酶活性,且影响程度因株系和组织而异,株系117的抗氧化能力强于株系41。外源添加GSH缓解铬毒害对抗氧化酶活性的影响。铬胁迫严重影响水稻根尖细胞活性,而外源添加GSH可使这种影响明显减小。铬胁迫导致水稻叶肉细胞叶绿体肿胀变形,基粒数目减少、片层结构松散;根系细胞结构变形,胞质变疏,液泡体积剧增和核仁消失;外源添加GSH后,以上水稻超微结构均得到不同程度的恢复。
     5GSH对铬胁迫下水稻巯基化合物含量、水分和养分吸收以及根系有机酸分泌的影响
     研究了铬胁迫下水稻DH群体的两个铬胁迫耐性不同的株系(117和41)的水分和养分吸收、植株含巯基化合物含量和根系有机酸分泌的影响,并分析了外源添加GSH对上述性状在铬胁迫下的缓解作用。结果显示,GSH显著改善铬胁迫下水稻对水分的吸收,并明显减轻铁(Fe)和锰(Mn)的吸收抑制。铬胁迫下根部锌含量增加,说明铬损伤了根细胞,使其失去完整性和选择性。铬胁迫影响水稻根际有机酸分泌,且株系间差异显著;外源添加GSH增加根系分泌乙酸和苹果酸,且耐性株系117的增加幅度明显大于敏感株系41,启示出GSH对铬毒害的缓解作用与这两种有机酸分泌有关。本研究未检测到植物螯合肽(Phytochelatins, PCs),但发现铬胁迫影响水稻体内GSH和半胱氨酸(Cys)水平,并在叶片中发现了一种与PC3出峰时间相近的物质,值得进一步对此进行化学鉴定。
     6GSH对水稻根际铬形态及其吸收、转运、累积和分布的影响
     研究了外源GSH对铬离子形态变化以及在水稻组织、细胞、亚细胞水平分布的影响。结果表明,添加GSH显著降低培养液中的Cr6+含量,启示出GSH可能具有改变铬离子形态的作用。水稻根系对铬离子的吸收存在时间效应,外源添加GSH后,水稻根的铬含量增加,而地上部的铬含量减少,从而间接证明铬的吸收和转运并非以Cr6+为主。水稻根系表皮、皮层以及维管束组织中均有铬的分布,而外源添加GSH后,使铬离子主要分布在根表,证明表皮细胞能固定和区隔一部分铬离子,从而缓解其对植物的毒性。铬主要累积在细胞壁上,其次在可溶性成分(以液泡为主)中,说明细胞壁和液泡是水稻体内Cr的主要分布器官。外源添加GSH后,地上部各亚细胞组分以及根部可溶性成分中的铬离子含量下降,细胞壁中的铬含量变化较小,说明GSH抑制植物对铬的转运,但对吸收无影响。
As a kind of transition metal element, Chromium (Cr) is widely located in soil, water and air. It has several oxidation states with+3and+6being the most stable forms. Recently, Cr concentration in agricultural land increase dramatically for the aggravation of environment pollution. Therefore, current experiments were carried out to find the quantitative trait loci (QTLs) related to the Cr tolerance by using a rice DH population developed a cross of ZYQ8/JX17with difference in Cr-tolerance, and to identify the lines with significantly different Cr-tolerance. Further more, alleviating effect and mechanism of exogenous GSH to the Cr toxicity on antioxidative system, cell viability and ultra-structure, sulfhydryl compound concentration, water-uptake, nutrition balance and organic acid excretion were also studied by using the Cr-tolerant DH line117and Cr-sensitive line41. The major results are summarized as follows:
     1QTL mapping of growth traits and Cr-tolerance of a rice DH population under Cr stress
     The results showed the differences caused by Cr stress on the growth and the Cr concentration among the lines of a rice DH population as well as the two parents. For the parents ZYQ8and JX17, plant height (PH), root length (RL), chlorophyll content (SPAD value) and shoot dry weight (SDW) were all inhibited under Cr stress, while root dry weight (RDW) was slightly increased. For the DH population, PH, RL and SDW were also decreased, while RDW and SPAD values were weakly affected. Cr concentration in roots was much higher than in shoot and varied significantly among DH lines. QTL analysis identified several loci related to the growth traits under Cr stress, while each one explained less than10%of the phenotypic variation. Two QTLs linked to the Cr concentration and translocation was also found, each one explained more than10%of the variation. Additionally, positive correlation existed between Zn and Cr concentrations, so QTL mapping was also conducted.
     2Identification of different Cr-tolerance lines in a rice DH population
     Current experiment studied the growth variation of all DH lines by using the weighted analysis under Cr tress, then identified the lines with high and low Cr-tolerance. Among the observed growth traits, SDW was most significantly affected by Cr stress, while SPAD value was less affected. The integrated scores of the lines117and101were the highest, while the lines41and49were the lowest. Cr concentration in roots of the line117was significantly higher than that of the line41, but Cr accumulation in root (RCC) was just opposite for the two lines. Cr stress affected the zinc concentration among DH lines and parents, with shoot Zn concentration (SZC) being reduced much more than root Zn concentration (RZC) for the two parents. Hence, it may be suggested that the lines117and101were high Cr tolerant, while the lines41and49were Cr sensitive.
     3Alleviating effect of exogenous GSH on Cr toxicity to rice plants and the identification of the optimal GSH concentration
     The two experiments were conducted to investigate the alleviating effect of exogenous GSH on Cr toxicity. The results showed that addition of GSH into the culture solution, without Cr addition, did not affect growth and chlorophyll content of rice seedlings, while GSH addition could greatly alleviate the growth inhibition caused by Cr exposure. The greatest alleviating effect occurred when the concentration ratio of Cr6+and GSH was1:3or1:5, while root elongation was significantly inhibited when the ratio was up to1:10. GSH addition increased Cr concentration in roots and reduced it in shoots, while Cr concentration in both roots and shoots was reduced when the ratio was1:10. It may be suggested that suitable GSH addition in culture solution may alleviate Cr toxicity to rice.
     4The influence of Cr stress on anti-oxidative system, cell viability and ultra structure, and its alleviation by GSH
     The response of rice DH lines117and41to Cr stress and its alleviation by exogenous GSH were examined. The results showed that Cr stress reduced the concentration of photosynthetic pigment, and increased MDA content, affected activities of anti-oxidative enzymes. The difference could be found in the extent of the influence between lines, with117having higher activities of oxidative enzymes under Cr stress. Exogenous GSH alleviated Cr toxicity, being characterized by higher anti-oxidative capacity In addition, GSH improved cell viability in rice roots relative to the Cr treatment alone. Cr stress caused chloroplast deformation and chloroplast lamellae loose in mesophyll cells, and cell structure disintegration, matrix thinning, vacuole larger and nucleolus disappearing in root tip cells, while GSH addition alleviated these changes of cell ultra-structure.
     5Alleviation of exogenous GSH on Cr toxicity to thiol-compound synthesis, water and nutrient uptake, and organic acid secretion in rice seedlings
     The present study showed Cr toxicity to thiol-compound synthesis (concentration), water and nutrient uptake, and organic acid secretion in the two rice DH lines117and41, while addition of exogenous GSH in the culture solution could alleviate these toxicity caused by Cr stress. GSH ameliorated Cr inhibition on the uptake of water, Fe and Mn. Cr affected the pattern of organic acid secretion in rice roots, however the difference existed between lines117and41. Addition of GSH dramatically increased level of acetic acid and malic acid, with line117having more increase than line41, and there was a close association between the two organic acid contents and alleviation of GSH to Cr toxicity. Although no PCs was found in this study, it was clearly showed that Cr stress affected GSH and Cys levels in rice seedlings. Moreover, the compound with the similar retention time as PC3was identified and waits for further identification.
     6Effect of GSH on Cr form in rice rhizosphere and its absorption, translocation and accumulation
     This experiment determined the effect of GSH on Cr form in rice rhizosphere and its distribution in rice tissular, cellular and subcellular levels. Addition of GSH caused a dramatic decrease of Cr6+in the cultural solution. Meanwhile, GSH addition increased Cr concentration in roots, but reduced it in shoots, suggesting that most Cr was not absorbed in the form of Cr6+. In the treatment of100pM Cr6+, Cr was mainly located in epidermis, cortices and vascular bundles of rice roots, but in the treatment of100μM Cr6+and300μM GSH, Cr was mainly found in epidermis, indicating that epidermic cells can alleviate Cr toxicity to the plants. The results at sub-cellular level showed that Cr was mainly presented on cell walls, followed by soluble composition. Exogenous GSH reduced Cr concentration in all subcellular components of shoots, and in the soluble composition of roots, while no effect was found on cell walls. It may be suggested that GSH inhibited Cr translocation, but did not affect Cr uptake.
引文
Aebi H.,1984. Catalase in vitro. Methods in Enzymology 105,121-126.
    Anderson A.J., Meyer D.R., Mayer F.K.,1972. Heavy metal toxicities:levels of nickel, cobalt and chromium in the soil and plants associated with visual symptoms and variation in growth of an oat crop. Australian Journal of Agricultural Research 24,557-571.
    Asada K.,1999. The water-water cycle in chloroplasts:scavenging of active oxygens and dissipation of excess photons. Annual Review of Plant Physiology and Plant Molecular Biology 50,601-639.
    Bai T.H., Li C.Y., Ma F.W., Shu H.R., Han M.Y.,2009. Exogenous salicylic acid alleviates growth inhibition and oxidative stress induced by hypoxia stress in Malus robusta Rehd. Journal of Plant Growth Regulation 28,358-366.
    Baker A.J.M., Brooks R.R.,1989. Terrestrial higher plants which hyperaccumulate metallicelements-a review of their distribution, ecology and phytochemistry. Biorecovery 130, 81-126.
    Baker N.R., Rosenqvist E.,2004. Applications of chlorophyll fluorescence can improve crop production strategies:an examination of future possibilities. Journal of Experimental Botany 55,1607-1621.
    Barcelo J., Poschenrieder C., Gunse B.,1986. Water relations of chromium VI treated bush bean plants (Phaseolus vulgaris L. cv Contender) under both normal and water stress conditions. Journal of Experimental Botany 37,178-187.
    Barcelo J., Poschenriender C., Ruano A., Gunse B.,1985. Leaf water potential in Cr (VI) treated bean plants (Phaseolus vulgaris L.). Plant Physiology Supplement 77,163-164.
    Barton L.L., Johnson G.V., O'Nan A.G., Wagener B.M.,2000. Inhibition of ferric chelate reductase in alfalfa roots by cobalt, nickel, chromium, and copper. Journal of Plant Nutrition 23,] 833-1845.
    Barnhart J.,1997. Occurrences, uses and properties of chromium. Regulatory Toxicology and Pharmacology 26,3-7.
    Beauchamp C., Fridovich I.,1971. Superoxide dismutase:improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry 44,276-287.
    Becquer T., Quantin C., Sicot M., Boudot J.P.,2003. Chromium availability in ultramafic soils from New Caledonia. Science of the Total Environment 301,251-261.
    Biacs P.A., Daood H.G., Kadar I.,1995. Effect of Mo, Se, Zn and Cr treatments on the yield, element concentration and carotenoid content of carrot. Journal of Agricultural and Food Chemistry 43,589-591.
    Blum R., Beck A., Korfte A., Stengel A., Letzel T., Lendzian K., Grill E.,2007. Function of phytochelatin synthase in catabolism of glutathione-conjugates. The Plant Journal 49, 740-749.
    Blum R., Meyer K.C., Wunschmann J., Lendzian K.J., Grill E.,2010. Cytosolic action of phytochelatin synthase. Plant Physiology 153,159-169.
    Bogs J., Bourbouloux A., Cagnac O., Wachter A., Rausch T., Delrot S.,2003. Functional characterization and expression analysis of a glutathione transporter, BjGT1, from Brassica juncea:evidence for regulation by heavy metal exposure. Plant, Cell and Environment 26, 1703-1711.
    Bradford M.M.,1976. Arapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72,248-254.
    Brune A., Urbach W., Dietz K. J.,1994. Compartment and transport of zinc in barley leaves as basic mechanism involved in zinc tolerance. Plant, Cell and Environmental 17,153-162.
    Bourbouloux A., Shahi P., Chakladar A., Delrot S., Bachhawat A.K.,2000. Hgtlp, a high affinity glutathione transporter from the yeast Saccharomyces cerevisiae. Journal of Biological Chemistry 275,13259-13265.
    Brazier-Hicks M., Evans K.M., Cunningham O.D., Hodgson D.R.W., Steel P.G., Edwards R., 2008. Catabolism of glutathione-conjugates in Arabidopsis thaliana. Role in metabolic reactivation of the herbicide safener fenchlorim. The Journal of Biological Chemistry 283, 21102-21112.
    Breusegem V.F., Vranova E., Dat F.J., Inze D.,2001. The role of active oxygen species in plant signal transduction. Plant Science 161,405-414.
    Cai Y., Cao F.B., Cheng W.D., Zhang G.P., Wu F.B.,2010. Modulation of exogenous glutathione in phytochelatins and photosynthetic performance against Cd stress in the two rice genotypes differing in Cd tolerance. Biological Trace Element Research DOI: 10.1007/s 12011-010-8929-1.
    Cairns N.G., Pasternak M., Watcher A., Cobbett C.S., Meyer A.J.,2006. Maturation of arabidopsis seeds is dependent on glutathione biosynthesis within the embryo. Plant physiology 141,446-455.
    Carrier P., Baryla A., Havaux M.,2003. Cadmium distribution and microlocalization in oilseed rape (Brassica napus) after long-term growth on cadmium-contaminated soil. Planta 216, 939-950.
    Cervantes C, Campos-Garcia J., Devars S., Gutierrez-Corona F., Loza-Tavera H., Torres-guzman J. C., Moreno-Sanchez R.,2001. Interactions of chromium with micro-organisms and plants. FEMS Microbiology Review 25,335-347.
    Chandra P..2004. Chromium accumulation and toxicity in aquatic vascular plants. The Botanical Review 70,313-327.
    Chatterjee J., Chatterjee C., 2000. Phytotoxicity of cobalt, chromium and copper in cauliflower. Environmental Pollution 109,69-74.
    Chen F., Wang F., Zhang G.P., Wu F.B.,2008. Identification of barley varieties tolerant to cadmium toxicity. Biological Trace Element Research 121,171-179.
    Chen N.C., Kanazawa S., Horiguchi T., Chen N.C.,2001. Effect of chromium on some enzyme activities in the wheat rhizosphere. Soil Microorganisms 55,3-10.
    Chen Y.X., Zhu Z.X., He Z.Y.,1994. Mechanisms of chromium transformations in soils and its effects on rice growth. Journal of Zhejiang Agricultural University 20,1-7.
    Chiang P.N., Wang M.K., Chiu C.Y., Chou S.Y.,2006. Effects of cadmium amendments on low-molecular-weight organic acid exudates in rhizosphere soils of tobacco and sunflower. Environmental Toxicity 21,479-488.
    Choudhury S., Panda S. K., 2004. Induction of oxidative stress and ultrastructural changes in moss Taxithelium nepalense (Schwaegr.) Broth, under lead and arsenic phytotoxicity. Current Science 87.342-348.
    Cieslinski G., Van Rees K.C.J., Szmigielska A.M., Krishnamurti G.S.R., Huang M. P.,1998. Low-molecular-weight organic acids in rhizosphere soils of durum wheat and their effect on cadmium bioaccumulation. Plant and Soil 203,109-117.
    Clemens S.,2001. Molecular mechallisms of plant metal tolerance and homeostasis. Planta 212, 475-486.
    Clijsters I., Van Assche F.,1985. Inhibition of photosynthesis by heavy metals. Photosythesis Research 7,31-40.
    Cobbett C., Goldsbrough P.,2002. Phytochelatins and metallothioneins:roles in heavy metal detoxification and homeostasis. Annual Review of Plant Biology 53,159-182.
    Cobbett C.S.,2000. Phytochelatins and their roles in heavy metal detoxification. Plant Physiology 123,825-833.
    Cobbett C.S., May M.J., Howden R., Rolls B.,1998. The glutathione-deficient, cadmium-sensitive mutant, cad2-1, of Arabidopsis thaliana is deficient in γ-glutamylcysteine synthetase. The Plant Journal 16,73-78.
    Costa M.,2000. Chromium and nickel. In:Zalups R.K., Koropatnick J. (Eds.). Molecular biology and toxicology of metals. Taylor and Francis, Great Britain, pp,113-114.
    Creissen G., Firmin J., Fryer M., Kular B., Leyland N., Reynolds H., Pastori G., Wellburn F., Baker N., Wellburn A., Mullineaux P.,1999. Elevated glutathione biosynthetic capacity in the chloroplasts of transgenic tobacco paradoxically causes increased oxidative stress. The Plant Cell 11,1277-1291.
    Dasgupta T., Hossain S.A., Meharg A.A., Price A.H.,2004. An arsenate tolerance gene on chromosome 6 of rice. New Phytologist 163,45-49.
    Datta J.K., Bandhyopadhyay A., Banerjee A., Mondal N.K.,2011. Phytotoxic effect of chromium on the germination, seedling growth of some wheat (Triticum aestivum L.) cultivars under laboratory condition. Journal of Agricultural Technology 7,395-402.
    Davies F.T., Puryear J.D., Newton R.J., Egilla J.N., Grossi J.A.S.,2002. Mycorrhizal fungi increase chromium uptake by sunflower plants:influence on tissue mineral concentration, growth, and gas exchange. Journal of Plant Nutrition 25,2389-2407.
    Daud M.K., Sun Y.Q., Dawood M., Hayat Y., Variath M.T., Wu Y.X., Raziuddin M. U., Najeeb U., Zhu S.J.,2009. Cadmium-induced functional and ultrastructural alterations in roots of two transgenic cotton cultivars. Journal of Hazardous Materials 161,463-473.
    Deniau A.X., Pieper B., Bookum W.T., Lindhout P., Aarts M.G.M., Schat H.,2006. QTL analysis of cadmium and zinc accumulation in the heavy metal hyperaccumulator Thlaspi caerulescens. Theoretical and Applied Genetics 113,907-920.
    Desikan R., Hancock T.J., Bright J., Harrison J., Weir I., Hooley R., Neill J.S., 2005. A role for ETR1 in hydrogen peroxide signaling in stomatal guard cells. Plant Physiology 137, 831-834.
    Diaz V. P., Dong Y.P., Ziegler K., Markovic J., Pallardo F., Pellny T.K., Verrier P., Foyer C.H., 2010a. Recruitment of glutathione into the nucleus during cell proliferation adjusts whole cell redox homeostasis in Arabidopsis thaliana and lowers the oxidative defence shield. The Plant Journal 64,825-838.
    Diaz V. P., Wolff T., Markovic J., Pallard O.F.V., Foyer C.H.,2010b. A nuclear glutathione cycle within the cell cycle. Biochemical Journal 431,169-178.
    Diwan H., Khan I., Ahmad A., Iqbal M.,2010. Induction of phytochelatins and antioxidant defence system in Brassica juncea and Vigna radiata in response to chromium treatments. Plant Growth Regulation 61,97-107.
    Dixit V., Pandey V., shyam R.,2002. Chromium ions inactivate electron transport and enhance superoxide generation in vivo in pea (Pisum sativum L. cv. Azad) root mitochondria. Plant Cell Enviroment 25,687-693.
    Dong Y., Ogawa T., Lin D., Koh H., Kamiunten H, Matsuo M., Cheng S.,2006. Molecular mapping of quantitative trait loci for zinc toxicity tolerance in rice seedling (Oryza sativa L.). Field Crops Research 95,420-425.
    Edwards R., Dixon D. P., Walbo T. V.,2000. Plant glutathione S-transferases:enzymes with multiple functions in sickness and in health. Trends in Plant Science 5,193-198.
    Fay C.D.,1978. The physiology of metal toxicity in plants. Annual Review of Plant Physiology. 29.511-566.
    Foyer C.H., Noctor G.,2003. Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiologia Plantarum 119,355-364.
    Foyer C. H., Noctor G., 2005a. Redox homeostasis and antioxidant signaling:a metabolic interface between stress perception and physiological responses. Plant Cell 17,1866-1875.
    Frottin F., Espagne C., Traverso J.A., Mauve C., Valot B., Lelarge-Trouverie C, Zivy M., Noctor G., Meinnel T., Giglione C.,2009. Cotranslational proteolysis dominates glutathione homeostasis for proper growth and development. The Plant Cell 21,3296-3314.
    Golovatyj S.E., Bogatyreva E.N.,1999. Effect of levels of chromium content in a soil on its distribution in organs of corn plants. Soil Research Fertilizer 197-204.
    Gomez L. D., Noctor G., Knight M., Foyer C. H.,2004. Regulation of calcium signaling and gene expression by glutathione. Journal of Experimental Botany 55,1851-1859.
    Gorsuch J.W., Ritter M.L., Anderson E.R.,1995. Comparative toxicities of six heavy metals using root elongation and shoot growth in three plant species. In:Hughes SJ, Biddinger GR, Mones E (eds). The symposium on environmental toxicology and risk assessment, Atlanta, GA, USA, pp,377-393.
    Grzam A., Tennstedt P., Clemens S., Hell R., Meyer A.J.,2006. Vacuolar sequestration of glutathione S-conjugates outcompetes a possible degradation of the glutathione moiety by phytochelatin synthase. FEBS Letters 580,6384-6390.
    Guo W., Meetam M., Goldsbrough P.,2008. Examining the specific contributions of individual Arabidopsis metallothioneins to copper distribution and metal tolerance. Plant Physiology 146,1697-1706.
    Guo B., Liang Y.C., Zhu Y.G.,2009. Does salicylic acid regulate antioxidant defense system, cell death, cadmium uptake and partitioning to acquire cadmium tolerance in rice. Journal of Plant Physiology 166.20-31.
    Ha S.B., Smith A.P., Howden R., Dietrich W.M., Bugg S.,1999. Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomyes pombe. The Plant Cell 11,1153-1163.
    Hall J.L.,2002. Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany 53,1-11.
    Han F.X., Su Y., Maruthi-Sridhar B.B., Monts D.L.,2004. Distribution, transformation and bioavailability of trivalent and hexavalent chromium in contaminated soil. Plant and Soil 265.243-252.
    Harms K., Von Ballmoos P., Brunold C., Hofgen R., Hesse H.,2000. Expression of a bacterial serine acetyltransferase in transgenic potato plants leads to increased levels of cysteine and glutathione. The Plant Journal 22,335-343.
    Hanus J., Tomas J.,1993. An investigation of chromium content and its uptake from soil in white mustard. Acta Fytotech.48,39-47.
    Hayat S., Khalique G., Irfan M., Wani S.A., Tripathi N.B., Ahmad A.,2011. Physiological changes induced by chromium stress in plants:an overview. Protoplasma, doi: 10.1007/s00709-011-0331-0
    Heikal M.M.D., Berry W.L., Wanllance A., Herman D.,1989. Alleviation of nickel toxicity by calcium salinity. Soil Science 147,389-479.
    Heumann G.H.,1987. Effects of heavy metals on growth and ultrastructure of chara vulgaris. Protoplasma 136,37-48.
    Hodges D.M., DeLong J.M., Forney C.F., Prange R.K.,1999. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207,604-611.
    Howden R., Goldsbrough P.B., Andersen C.R., Cobbett C.S.,1995. Cadmium-sensitive, cad1, mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiology 107, 1059-1066.
    Hossner L.R., Loeppert R.H., Newton R.J., Szaniszlo P.J., Attrep M.,1998. Literature review: phytoaccumulation of chromium, uranium, and plutonium in plant systems. Amarillo National Resource Center for Plutonium, USA, pp,15-24.
    Huffman Jr E.W.D., Allaway W.H.,1973a. Growth of plants in solution culture containing low levels of chromium. Plant Physiology 52,72-75.
    Huffman Jr E.W.D., Allaway H.W.,1973b. Chromium in plants:distribution in tissues, organelles, and extracts and availability of bean leaf Cr to animals. Journal of Agricultural and Food Chemistry B 21,982-986.
    Isaure P.M., Fayard B., Sarret G., Pairis S.,2006. Localization and chemical forms of cadmium in plant samples by combining analytical electron microscopy and X-ray spectromicroscopy. Jacques Bourguignon Spectrochimica Acta Part B 61,1242-1252.
    Ishikawa S., Ae N., Yano M.,2005. Chromosomal regions with quantitative trait loci controlling cadmium concentration in brown rice (Oryza sativa). New Phytologist 168,345-350.
    Jain R., Srivastava S., Madan V.K., Jain R.,2000. Influence of chromium on growth and cell division of sugarcane. Indian Journal of Plant Physiology 5,228-231.
    Jamai A., Tommasini R., Martinoia E., Delrot S.,1996. Characterization of glutathione uptake in broad bean leaf protoplasts. Plant Physiology 111,1145-1152.
    Jean L., Bordas F., Bollinger J.C.,2007. Chromium and nickel mobilization from a contaminated soil using chelants. Environmental Pollution 147,729-736.
    Jones L.D.,1998. Organic acids in the rhizosphere - a critical review. Plant and Soil 205,25-44.
    Kaya C., Tuna A. L., Sonmez O., Ince F., Higgs D.,2009. Mitigation effects of silicon on maize plants grown at high zinc. Journal of Plant Nutrition 32,1788-1798.
    Khan S., Ullah S.M., Sarwar K.S.,2001. Interaction of chromium and copper with nutrient elements in rice (Oryza sativa cv. BR-11). Bulletin of the Institute of Tropical Agriculture Kyushu University 23,35-39.
    Kleiman I.D., Cogliatti D.H.,1998. Chromium removal from aqueous solutions by different plant species. Environmental Technology 19,1127-1132.
    Klonowska A., Clark M. E., Thieman S. B., Giles B. J., Wall J. D, Fields M. W.,2008. Hexavalent chromium reduction in Desulfovibrio vulgaris Hildenborough causes transitory inhibition of sulfate reduction and cell growth. Applied Microbiology and Biotechnology 78, 1007-1016.
    Koprivova A., Mugford S.T., Kopriva S.,2010. Arabidopsis root growth dependence on glutathione is linked to auxin transport. Plant Cell Reports 29,1157-1167.
    Kramer U., Ingrid J.P., Roger C.P., Raskin I., Salt D.E.,2000. Subcellular localization and speciation 141 of nickel in hyperaccumulator and non-accumulator Thlaspe species. Plant Physiology 122,1343-1353.
    Langard S., Vigander T.,1983. Occurrence of lung cancer in workers producing chromium pigments. British Journal of Industrial Medicine 40,71-74.
    Lei M., Chen T.B., Huang Z.C., Wang Y.D., Huang Y.Y.,2008. Simultaneous compartmentalization of lead and arsenic in co-hyperaccumulator Viola Principis H. de Boiss.:An application of SRXRF microprobe. Chemosphere 72,1491-1496.
    Li T. Q., Yang X. E., Yang J. Y., He Z. L.,2006. Zn accumulation and subcellular distribution in the Zn hyperaccumulator Sedum alfredii Hance. Pedosphere 16,616-623.
    Li Z.K., Pinson S.R.M., Stansel J.W., Park W.D.,1995. Identification of quantitative trait loci (QTL) for heading date and plant height in rice using RFLP markers. Theoretical and Applied Genetics 91,374-381.
    Liang Y.C., Wong J. W. C., Wei L.,2005. Silicon-mediated enhancement of cadmium tolerance in maize (Zea mays L.) grown in cadmium contaminated soil. Chemosphere 58,475-483.
    Liang Y.C., Yang C.G., Shi H.H.,2001. Effects of silicon on growth and mineral composition of barley grown under toxic levels of aluminum. Journal of Plant Nutrition 24,229-243.
    Lichtenthaler H.K.,1987. Chlorophylls and carotenoids:pigments of photosynthetic biomembranes. Methods in Enzymology 148,350-382.
    Liu D.H., Zou J.H., Wang M., Jiang W.S.,2008. Hexavalent chromium uptake and its effects on mineral uptake, antioxidant defence system and photosynthesis in Amaranthus viridis L. Bioresource Technology 99,2628-2636.
    Liu J., Duan C.Q., Zhang X.H., Zhu Y.N., Hu C.,2009. Subcellular distribution of chromium in accumulating plant Leersia hexandra Swartz. Plant and Soil 322,187-195.
    Liu J.G., Qian M., Cai G.L., Zhu Q.S., Wong M.H.,2007. Variations between rice cultivars in root secretion of organic acids and the relationship with plant cadmium uptake. Environmental Geochemistry and Health 29,189-195.
    Liu D.H., Kottke I.,2004. Subcellular localization of copper in the root cells of Allium sativum by electron energy loss spectroscopy (EELS). Bioresource Technology 94,153-158.
    Lu C., Shen L., Tan Z., Xu Y., He P., Chen Y., Zhu L., 1996. Comparative mapping of QTLs for agronomic traits of rice across environments using a doubled haploid population. Theoretical and Applied Genetics 93,1211-1217.
    Lyon G.L., Peterson P.J., Brooks R.R., Butler G.W.,1971. Calcium, magnesium and trace elements in a New Zealand serpentine flora. Journal of Ecology 59,421-429.
    Ma J. F., Miyake Y., Takahashi E.,2001. Silicon as a beneficial element for crop plants. In: Datnoff L, Snyder G, Korndorfer G (eds.) Silicon in Agriculture 2001. Elsevier Science, New York, pp,17-39.
    Ma J.F., Shen R., Zhao Z., Wissuwa M., Takeuchi Y., Ebitani T., Yano M.,2002. Response of rice to Al stress and identification of quantitative trait loci for Al tolerance. Plant Cell Physiology 43,652-659.
    Ma J.F., Furukawa J.,2003. Recent progress in the research of external Al detoxification in higher plants, a minireview. Journal of Inorganic Biochemistry 97,46-51.
    Mao C.Z., Yang L., Zheng B.S., Wu Y.R., Liu F.Y., Yi K.K., Wu P.,2004. Comparative mapping of QTLs for Al tolerance in rice and identification of positional Al-induced genes. Journal of Zhejiang University Science 5,634-643.
    Markovic J., Borras C., Ortega A., Sastre J., Vina J., Pallardo F.V.,2007. Glutathione is recruited into the nucleus in early phases of cell proliferation. Journal of Biological Chemistry 282, 20416-20424.
    Marschner P., Crowley D., Yang C.H.,2004. Development of specific rhizosphere bacterial communities in relation to plant species, nutrition and soil type. Plant and Soil 261,199-208.
    Maughan S.C., Pasternak M., Cairns N., Kiddle G., Brach T., Jarvis R., Haas F., Nieuwland J., Lim B., Muller C., Salcedo-Sora E., Kruse C., Orsel M., Hell R., Miller J.A., Bray P., Foyer H.C., Murray A.H.J., Meyer J.A., Cobbett S.C.,2010. Plant homologs of the Plasmodium falciparum chloroquinoneresistance transporter, PfCRT, are required for glutathione homeostasis and stress responses. Proceedings of the National Academy of Sciences of the United States of America 107,2331-2336.
    Mateo A., Muhlenbock P., Rusterucci C., Chang C. C. C, Miszalski Z., Karpinska B., Parker J. E., Mullineaux P. M., Karpinski S.,2004. LESION SIMULATING DISEASE 1 is required for acclimation to conditions that promote excess excitation energy. Plant Physiology 136, 2818-2830.
    McGrath S.P., Smith S.,1990. Chromium and nickel. In:Heavy Metals in Soils (Alloway, B.J., Ed.), pp,125-150.
    McLaughlin M.J., Parkerb D.R., Clarke J.M.,1999. Metals and micronutrients-food safety issues. Field Crops Research 60,143-163.
    Megateli S., Semsari S., Couderchet M.,2009. Toxicity and removal of heavy metals (cadmium, copper, and zinc) by Lemna gibba. Ecotoxicology and Environmental Safety 72,1774-1780.
    Mei B., Puryear J.D., Newton R.J.,2002. Assessment of Cr tolerance and accumulation in selected plant species. Plant and Soil 247,223-231.
    Mench M., Martin E.,1991. Mobilization of cadmium and other metals from two soils by root exudates of Zea mays L, Nicotiana tabacum L. and Nicotiana rustica L. Plant Soil 132, 187-196.
    Mhamdi A., Hager J., Chaouch S., Queval G., Han Y., Taconnat L., Saindrenan P., Gouia H., Issakidis-Bourguet E., Renou P.J., Noctor G.,2010a. Arabidopsis GLUTATHIONE REDUCTASE 1 plays a crucial role in leaf responses to intracellular H2O2 and in ensuring appropriate gene expression through both salicylic acid and jasmonic acid signaling pathways. Plant Physiology 153,1144-1160.
    Mishra S., Singh V, Srivastava R., Srivastava M.M., Dass S., Satsangi G.P., Prakash S.,1995. Studies on uptake of trivalent and hexavalent chromium by maize (Zea mays). Food and chemical toxicology 33,393-397.
    Mishra S., Shanker K., Srivastava M.M., Srivastava S., Shrivastav R., Dass S., Prakash S.,1997. A study on the uptake of trivalent and hexavalent chromium by paddy (Oryza sativa): possible chemical modifications in rhizosphere. Agriculture Ecosystems and Environment 62, 53-58.
    Molassiotis A., Sotiropoulos T., Tanou G., Diamantidis G., Therios L.,2006. Boron-induced oxidative damage and antioxidant and nucleolytic responses in shoot tips culture of the apple rootstock EM9 (Malus domestica Borkh). Environmental and Experimental Botany 56, 54-62.
    Moore M.D., Kaplan S.,1992. Identification of intrinsic high-level resistance to rare-earth oxides and oxyanions in members of the class Proteobacteria:characterization of tellurite, selenite, and rhodium sesquioxide reduction in Rhodobacter sphaeroides. The Journal of Bacteriology 174,1505-1514.
    Moral R., Pedreno J.N., Gomez I., Mataix J.,1995. Effects of chromium on the nutrient element content and morphology of tomato. Journal of Plant Nutrition 18,815-822.
    Moral R.. Gomez I., Pedreno J.N., Mataix J.,1996. Absorption of Cr and effects on micronutrient content in tomato plant (Lycopersicum esculentum M.). Agrochimica 40,132-138.
    Mullineaux P.M., Rausch T.,2005. Glutathione, photosynthesis and the redox regulation of stress-responsive gene expression. Photosynthesis Research 86,459-474.
    Munoz A.H., Corona F.G., Wrobel K., Soto G.M., Wrobel K.,2005. Subcellular distribution of aluminum, bismuth, cadmium, chromium, copper, iron, manganese, nickel, and lead in cultivated mushrooms (Agaricus bisporus and Pleurotus ostreatus). Biological Trace Element Research 106,265-277.
    Nagalakshmi N., Prasad M.N.V.,2001. Responses of glutathione cycle enzymes and glutathione metabolism to copper stress in Scenedesmus bijugatus. Plant Science 160,291-299.
    Narasimhamoorthy B., Bouton H.J., Olsen M.K., Sledge K.M.,2007. Quantitative trait loci and candidate gene mapping of aluminum tolerance in diploid alfalfa. Theoretical and Applied Genetics 114,901-913.
    Neunann D., zur Nieden U.,2001. Silicon and heavy metal tolerance of higher plants. Phytochemistry 56,685-692.
    Nguyen V.T., Burow M.D., Nguyen H.T., Le BT, Le T.D., Paterson A.H,2001. Molecular mapping of genes conferring aluminum tolerance in rice (Oryza sativa L.). Theoretical and Applied Genetics 102,1002-1010.
    Ni C.Y., Chen Y.X., Lin Q., Tian G.M.,2005. Subcellular localization of copper in tolerant and 146 non-tolerant plant. Journal of Environmental Sciences 17,452-456.
    Noctor G., Arisi A.C.M., Jouanin L., Valadie M.H., Roux Y., Foyer C.H.,1997. The role of glycine in determining the rate of glutathione synthesis in poplars. Possible implications for glutathione production during stress. Physiologia Plantarum 100,255-263.
    Noctor G.. Foyer C. H.,1998. Ascorbate and glutathione:keeping active oxygen under control. Annual Review of Plant Physiology and Plant Molecular Biology,49,249-279.
    Noctor G., Gomez L., Vanacker H., Foyer C. H.,2002a. Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling. Journal of Experimental Botany 53,1283-1304.
    Noctor G., Mhamdi A., Chaouch S., Han Y., Neukermans J., Marquez-Garcia B, Queval G., Foyer H.C.,2011. Glutathione in plants:an integrated overview. Plant, Cell and Environment doi: 10.1111/j.1365-3040.2011.02400.x.
    Noji M., Saito K.,2002. Molecular and biochemical analysis of serine acetyltransferase and cysteine synthase towards sulfur metabolic engineering in plants. Amino Acids 22,231-243.
    Norseth T.,1981. The carcinogenicity of chromium. Environmental Health Perspectives 40, 121-130.
    Norton J.G., Aitkenhead J.M., Khowaja S.F., Whalley R.W., Price H.A.,2008. A bioinformatic and transcriptomic approach to identifying positional candidate genes without fine mapping: an example using rice root-growth QTLs. Genomics 92,344-352.
    Nriagu J.O., Nieboer E.,1988. Chromium in the natural and human environments. Wiley-Interscience, New York, pp,267-304
    Ogawa K., Hatano-Iwasaki A., Yanagida M., Iwabuchi M.,2004. Level of glutathione is regulated by ATP-dependent ligation of glutamate and cysteine through photosynthesis in Arabidopsis thaliana:mechanism of strong interaction of light intensity with flowering. Plant and Cell Physiology 45,1-8.
    Ogawa K.,2005. Glutahione-associated regulation of plant growth and stress responses. Antioxidants and Redox Signaling 7,973-981.
    Ohkama-Ohtsu N., Sasaki-Sekimoto Y., Oikawa A., Jikumaru Y., Shinoda S., Inoue E., Kamide Y., Yokoyama T., Hirai Y.M., Shirasu K., Kamiya Y., Oliver J.D., Saito K.,2011. 12-oxo-phytodienoic acid-glutathione conjugate is transported into the vacuole in Arabidopsis. Plant and Cell Physiology 52,205-209.
    Panda S.K., Choudhury S.,2005a. Changes in nitrate reductase activity and oxidative stress response in the moss Polytrichum commune subjected to chromium, copper and zinc toxicity. Brazilian Journal of Plant Physiology 17,191-197.
    Panda S.K., Choudhury S.,2005b. Chromium stress in plants. Brazilian Journal of Plant Physiology 17,95-102.
    Panda S.K., Patra H.K.,1997. Physiology of chromium toxicity in plants-a review. Plant Physiology and Biochemistry 24,10-17.
    Panda S.K., Patra H.K.,2000. Does of Cr3+ produces oxidative damage in excised wheat leaves. Journal of Plant Biology 27,105-110.
    Panda S.K., Chaodhury 1., Khan M.H.,2003. Heavy metal phytotoxicity induces lipid peroxidation and affect antioxidants in wheat leaves. Biology of Plants 46,289-294.
    Panda S.K., Khan M.H.,2003. Antioxidant efficiency in rice (Oryza sativa L.) leaves under heavy metal toxicity. Journal of Plant Biology 30,23-29.
    Panda S.K., Patra H.K.,2007. Effect of salicylic acid potentiates cadmium-induced oxidative damage in Oryza sativa L. leaves. Acta Physiologiae Plantarum 29,567-575.
    Pandey N., Sharma C.P.,2003. Chromium interference in iron nutrition and water relations of cabbage. Environmental and Experimental Botany 49,195-200.
    Pandey V., Dixit V., Shyam R.,2009. Chromium effect on ROS generation and detoxification in pea (Pisum sativum) leaf chloroplasts. Protoplasma 236,85-95.
    Panou-Filotheou H., Bosabalidis A. M., Karataglis S.,2001. Effects of Copper Toxicity on Leaves of Oregano (Origanum vulgare subsp. hirtum). Annals of Botany 88,207-214.
    Parr P.D., Taylor Jr F.G.,1982. Germination and growth effects of hexavalent chromium in Orocol TL (a corrosion inhibitor) on Phaseolus vulgaris. Environmental International 7, 197-202.
    Pasternak M., Lim B., Wirtz M., Hell R., Cobbett C. S., Meyer A. J.,2008. Restricting glutathione biosynthesis to the cytosol is sufficient for normal plant development. The Plant Journal 53, 999-1012.
    Patterson R.R., Fendorf S., Fendorf M.,1997. Reduction of hexavalent chromium by amorphous iron sulfide. Environmental Science and Technology 31,2039-2044.
    Pellny T.K., Locato V., Diaz-Vivancos P., Markovic J., De Gara L., Pallardo F.V., Foyer C.H., 2009. Pyridine nucleotide cycling and control of intracellular redox state in relation to poly (ADPribose) polymerase activity and nuclear localization of glutathione during exponential growth of Arabidopsis cells in culture. Molecular Plant 2,442-456.
    Peng H.Y., Yang X.E., Tian S.K.,2005. Accumulation and ultrastructural distribution of copper in Elsholtzia splendens. Journal of Zhejiang University Science B 6,311-318.
    Peralta J.R., Gardea-Torresdey J.L., Tiemann K.J., Gomez E., Arteaga S., Rascon E., Parsons G. J.,2001. Uptake and effects of five heavy metals on seed germination and plant growth in alfalfa (Medicago sativa L.). Bulletin of Environmental Contamination and Toxicology 66.727-734.
    Pinto A.P., Simoes I., Mota, A.M.,2008. Cadmium impact on root exudates of sorghum and maize plant:a speciation study. Journal of Plant Nutrition 31,1746-1755.
    Pradoa C., Rodriguez-Montelongob L., Gonzalezc J.A., Paganod E.A., Hilala M., Pradoa F. E., 2010. Uptake of chromium by Salvinia minima:Effect on plant growth, leaf respiration and carbohydrate metabolism Journal of Hazardous Materials 177,546-553.
    Qiu B.Y., Zhou W.H., Xue D.W., Zeng F.R.,Ali S., Zhang G.P.,2010. Identification of Cr-tolerant lines in a rice (Oryza sativa) DH population. Euphytica 174,199-207.
    Raab A., Feldmann J., Meharg A.A.,2004. The nature of arsenic-phytochelatin complexes in Holcus lanatus and Pteris cretica. Plant Physiology 134,1113-1122.
    Rai V., Vajpayee P., Singh S.N., Mehrotra S.,2004. Effect of chromium accumulation on photosynthetic pigments, oxidative stress defense system, nitrate reduction, proline level and eugenol content of Ocimum tenuiflorum L. Plant Science 167,1159-1169.
    Ramachandran V., D'Souza T.J., Mistry K.B.,1980. Uptake and transport of chromium in plants. Journal of Nuclear Agriculture and Biology 9,126-129.
    Rauser W.E.,1995. Phytochelatins and related peptides:structure, biosynthesis, and function. Plant Physiology 109,1141-1149.
    Rauser W.E.,1999. Structure and function of metal chelators produced by plants:the case for organic acids, amino acids, phytin and metallothioneins. Cell Biochemistry and Biophysics 31, 19-48.
    Reichheld J.P., Khafif M., Riondet C., Droux M., Bonnard G., Meyer Y.,2007. Inactivation of thioredoxin reductases reveals a complex interplay between thioredoxin and glutathione pathways in Arabidopsis development. The Plant Cell 19,1851-1865.
    Rocchetta I., Mazzuca M., Conforti V., Ruiz L.. Balzaretti V., Rios de Molina M.C.,2006. Effect of chromium on the fatty acid composition of two strains of Euglena gracilis. Environmental Pollution 141,353-358.
    Rout G.R., Samantaray S., Das P.,1997. Differential chromium tolerance among eight mungbean cultivars grown in nutrient culture. Journal of Plant Nutrition 20,473-483.
    Rout R.G., Samantaray S., Das P.,2000. Effects of chromium and nickel on germination and growth in tolerant and non-tolerant populations of Echinochloa colona (L.) Link. Chemosphere 40,855-859.
    Queval G., Jaillard D., Zechmann B., Noctor G.,2011. Increased intracellular H2O2 availability preferentially drives glutathione accumulation in vacuoles and chloroplasts. Plant, Cell and Environment 34,21-32.
    Salt D. E., Prince R. C., Pickering I. J., Raskin I.,1995. Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiology 109,1427-1433.
    Samantary S.,2002. Biochemical responses of Cr-tolerant and Cr-sensitive mung bean cultivars grown on varying levels of chromium. Chemosphere 47,1065-1072.
    Schiavon M., Pilon-Smits E.A., Wirtz M., Hell R., Malagoli M.,2008. Interactions between chromium and sulfur metabolism in Brassica juncea. Journal of Environmental Quality 37, 1536-1545.
    Schmoger M.E.V., Oven M., Grill E.,2000. Detoxification of arsenic by phytochelatins in plants. Plant Physiology 122,793-801.
    Schneider A., Martini N., Rennenberg H.,1992. Reduced glutathione (GSH) transport in cultured tobacco cells. Plant Physiology and Biochemistry 30,29-38.
    Schneider S., Bergmann L.,1995. Regulation of glutathione synthesis in suspension cultures of parsley and tobacco. Botanica Acta 108,34-40.
    Sen C. K., Packer L.,1996. Antioxidant and redox regulation of gene transcription. FASEB Journal 10,709-720.
    Seo J.P., Park M.J., Seok K.S., Kim G.S., Park M.C.,2011. An Arabidopsis senescence-associated protein SAG29 regulates cell viability under high salinity. Planta 233,189-200.
    Shahandeh H., Hossner L.R.,2000. Plant screening for chromium phytoremediation. International Journal of Phytoremediation 2,31-51.
    Shanker A.K.,2003. Physiological, biochemical and molecular aspects of chromium toxicity and tolerance in selected crops and tree species. PhD Thesis, Tamil Nadu Agricultural University, Coimbatore, India.
    Shanker A.K., Cervantes C., Loza-Tavera H., Avudainayagam S.,2005. Chromium toxicity in plants. Environmental International 31,739-753.
    Shanker A.K., Djanaguiraman M., Sudhagar R., Chandrashekar C.N., Pathmanabhan G.,2004. Differential antioxidative response of ascorbate glutathione pathway enzymes and metabolites to chromium speciation stress in green gram (Vigna radiata L.) R. Wilczek. Cv CO 4) roots. Plant Science 166,1035-1043.
    Sharma D.C., Sharma C.P.,1993. Chromium uptake and its effects on growth and biological yield of wheat. Cereal Research Communications 21,317-321.
    Sharma S.S., Dietz K.J.,2006. The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. Journal of Experimental Botany 57, 711-726.
    Shen R.F., Iwashita T., Ma J.F.,2004. Form of Al changes with Al concentration in leaves of buckwheat. Journal of Experimental Botany 55,131-136.
    Shewry P.R., Peterson J.P.,1974. The uptake of chromium by barley seedlings (Hordeum vulgare L.). Journal of Experimental Botany 25,785-797.
    Shi G.R., Cai Q.S., Liu C.F., Wu L.,2010. Silicon alleviates cadmium toxicity in peanut plants in relation to cadmium distribution and stimulation of antioxidative enzymes. Plant Growth Regulation 61,45-62.
    Shi Q.H., Bao Z.Y., Zhu Z.J., He Y., Qian Q.Q., Yu J.Q.,2005a. Silicon-mediated alleviation of Mn toxicity in Cucumis sativus in relation to activities of superoxide dismutase and ascorbate peroxidase. Phytochemistry 66,1551-1559.
    Singh A.K.,2001. Effect of trivalent and hexavalent chromium on spinach (Spinacea oleracea L.). Environ Ecology 19,807-810.
    Sinha S., Saxena R., Singh S..2002. Comparative studies on accumulation of Cr from metal solution and tannery effluent under repeated metal exposure by aquatic plants:its toxic effects. Environmental Monitoring and Assessment 80,17-31.
    Sinha S., Saxena R., Singh S.,2005. Chromium induced lipid peroxidation in the plants of Pistia stratiotes L.:role of antioxidants and antioxidant enzymes. Chemosphere 58,595-604.
    Skeffington R.A., Shewry P.R., Peterson P.J.,1976. Chromium uptake and transport in barley seedlings (Hordeum vulgare L.). Planta 132,209-214.
    Song A. L., Li Z. J., Zhang J., Xue G. F., Fan F.L,, Liang Y.C.,2009. Silicon-enhanced resistance to cadmium toxicity in Brassica chinensis L. is attributed to Si-suppressed cadmium uptake and transport and Si-enhanced antioxidant defense capacity. Journal of Hazardous Materials 172,74-83.
    Srivalli S., Khanna-Chopra R.,2008. Role of glutathione in abiotic stress tolerance. In:Khan NA, Singh S, Umar S (eds), Sulfur assimilation and abiotic stress in plants, Springer-Verlag Berlin Heidelberg, pp,207-225.
    Srivastava S., Mishra S, Tripathi D. R, Dwivedi, S., Trivedi, K. P., Tandon K.P.,2007. Phytochelatins and antioxidant systems respond differentially during arsenite and arsenate stress in Hydrilla verticillata (L.) Royle. Environmental Science and Technology 41, 2930-2936.
    Strobel B.W.,2001. Influence of vegetation on low-molecular-weight carboxylic acids in soil solution-a review. Geoderma 99.169-198.
    Su T., Xu J., Li Y., Lei L., Zhao L., Yang H.. Feng J., Liu G., Ren D.,2011. Glutathione-indole-3-acetonitrile is required for camalexin biosynthesis in Arabidopsis thaliana. The Plant Cell 23,364-380.
    Subrahmanyam D.,2008. Effects of chromium toxicity on leaf photosynthetic characteristics and oxidative changes in wheat (Triticum aestivum L.). Photosynthetica 46,339-345.
    Teng S., Qian Q., Zeng D.L., Kunihiro Y., Fujimoto K., Huang D.N., Zhu L.H.,2004. QTL analysis of leaf photosynthetic rate and related physiological traits in rice (Oryza sativa L.). Euphytica 135,1-7.
    Tappero R., Peltier E., Grafe M., Heidel K., Ginder-Vogel M., Livi T.J.K., Rivers L.M., Marcus A.M., Chaney L.R., Sparks L.D.,2007. Hyperaccumulator Alyssum murale relies on a different metal storage mechanism for cobalt than for nickel. New Phytologist 175,641-654.
    Tripathi A.K., Tripathi, S.,1999. Changes in some physiological and biochemical characters in Albizia lebbek as bio-indicators of heavy metal toxicity. Journal of Environmental Biology 20, 93-98.
    Ueno D., Emi-Koyama E., Kono I., Ando T., Yano M., Ma J.F.,2009. Identification of a novel major quantitative trait locus controlling distribution of Cd between roots and shoots in rice. Plant Cell Physiology 50,2223-2233.
    Ullman P., Gondet L., Potier S., Bach T.J.,1996. Cloning of Arabidopsis thaliana glutathione synthetase (GSH2) by functional complementation of a yeast gsh2 mutant. European Journal of Biochemistry 236,662-669.
    Vajpayee P., Rai U.N., Ali M.B., Tripathi R.D., Yadav V., Sinha S., Singh S.N.,2001. Chromium induced physiological changes in Vallisneria spiralis L. and its role in phytoremediation of tannery effluent. Bulletin of Environmental Contamination and Toxicology 67,246-256.
    Vajpayee P., Sharma S.C., Tripathi R.D., Rai U.N., Yunus M.,1999. Bioaccumulation of chromium and toxicity to photosynthetic pigments, nitrate reductase activity and protein content of Nelumbo Nucifera Graertn. Chemosphere 39,2159-2169.
    Vatamaniuk O. K., Mari S, Lu Y., Rea P. A.,2000. Mechanism of heavy metal ion activation of phytochelatin (PC) synthase. Journal of Biological Chemistry 275,31451-31459.
    Vazquez M.D., Poschenrieder C.H., Barcelo J.,1987. Chromium VI induced structural and ultrastructural changes in bushbean plants (Phaseolus vulgaris L.). Annals of Botany 59, 427-438.
    Verkleij J. A. C., Schat H.,1990. Mechanisms of metal tolerance in higher plants. In:Heavy metal tolerance in plants:Evolutionary Aspects (Eds A. J. Shaw), CRC Press, Inc. Boca Raton, Florida, pp.179-194.
    Vernay P., Gauthier-Moussard C., Hitmi A.,2007. Interaction of bioaccumulation of heavy metal chromium with water relation, mineral nutrition and photosynthesis in developed leaves of Lolium perenne L. Chemosphere 68,1563-1575.
    Vernoux T., Wilson R. C., Seeley K. A., Reichheld J. P., Muroy S., Brown S., Maughan S. C., Cobbett C. S., Montagu M. V., Inze D., May M. J., Sung Z. R.,2000. The root meristemless 1/cadmium sensitive gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development. Plant Cell 12,97'-110.
    Viamajala S., Peyton B.M., Apel W.A., Petersen J.N.,2002. Chromate reduction in Shewanella oneidensis MR-1 is an inducible process associated with anaerobic growth. Biotechnology Progress 18,290-295.
    Wallace A., Soufi M. S., Cha W. J., Romney M. E.,1976. Some effects of chromium toxicity on bush bean plants grown in soil. Plant and Soil 44,471-473.
    Wan J., Zhai H., Wan J., Ikehashi H.,2003. Detection and analysis of QTLs ferrous iron toxicity tolerance in rice. Euphytica 131,201-206.
    Wang X.Y., Wu P., Wu Y.R., Yan X.L.,2002. Molecular marker analysis of manganese toxicity tolerance in rice under green house conditions. Plant Soil 238,227-233.
    Watanabe T., Osaki M., Yoshihara T., Tadano T.,1998. Ditribution and chemical speciation of aluminum resistance in the Al accumulator plant, Melastoma malabathricum L.. Plant and Soil 201,165-173.
    Widodo-Broadley, M.R., Rose T., Frei M., Pariasca-Tanaka J., Yoshihashi T., Thomson M., Hammond J.P., Aprile A., Close T.J., Ismail A.M., Wissuwa M.,2010. Response to zinc deficiency of two rice lines with contrasting tolerance is determined by root growth maintenance and organic acid exudation rates, and not by zinc-transporter activity. New Phytologist 186,400-414.
    Wild H.,1974. Indigenous plants and chromium in Rhodesia. Kiekia 9,233-241.
    Wirtz M., Hell R.,2007. Dominant-negative modification reveals the regulatory function of the multimeric cysteine synthase protein complex in transgenic tobacco. The Plant Cell 19, 625-639.
    Wissuwa M., Ismail M.A., Yanagihara S.,2006. Effects of zinc deficiency on rice growth and genetic factors contributing to tolerance. Plant Physiology 142,731-741.
    Wittbrodt P.R., Palmer C.D.,1995. Reduction of Cr (VI) in the presence of excessive soil fulvic acid. Environmental Science and Technology29,255-263.
    Wittbrodt P.R., Palmer C.D.,1996. Effect of temperature, ionic strength, background electrolytes and Fe (Ⅲ) on the reduction of hexavalent chromium by soil humic substance. Environmental Science and Technology 30,2470-2477.
    Wolf A.E., Dietz K.J., Schroder P.,1996. Degradation of glutathione S-conjugates by a carboxypeptidase in the plant vacuole. FEBS Letters 384,31-34.
    Wu F.B., Chen F., Wei K., Zhang G.P.,2004. Effect of cadmium on free amino acid, glutathione and ascorbic acid concentrations in two barley genotypes (Hordeum vulgare L.) differing in cadmium tolerance. Chemosphere 57,447-454.
    Wu P., Luo A., Zhu J., Yang J., Huang N., Senadhira D.,1997. Molecular markers linked to genes underlying seedling tolerance for ferrous iron toxicity. Plant Soil 196,317-320.
    Xu Y.B., Shen L.S., McCouch S.R., Zhu L.H.,1998. Extension of the rice DH population genetic map with microsatellite markers. Chinese Science Bulletin 42,149-152.
    Xue D.W., Chen M.C., Zhang G.P.,2009. Mapping of QTLs associated with cadmium tolerance and accumulation during seedling stage in rice (Oryza sativa L.). Euphytica 165,587-596.
    Xue Y, Wan J.M., Jiang L., Liu L.L., Su N., Zhai H.Q., Ma J.F.,2006. QTL analysis of aluminum resistance in rice (Oryza sativa L.). Plant Soil 287,375-383.
    Yadava S.K., Dhotea M., Kumarb P., Sharmaa J., Chakrabartia T., Juwarkara A.A.,2010. Differential antioxidative enzyme responses of Jatropha curcas L. to chromium stress. Journal of Hazardous Materials 180,609-615.
    Yamamoto T.. Yonemaru J., Yano M.,2009. Towards the understanding of complex traits in rice: substantially or superficially? DNA Research 16,141-154.
    Yamazaki D., Motohashi K., Kasama T., Hra Y., Hisabori T.,2004. Target proteins of the cytosolic thioredoxins in Arabidopsis thaliana. Plant and Cell Physiology 45,18-27.
    Yang J., Zhu J.,2005. Predicting superior genotypes in multiple environments based on QTL effects. Theoretical and Applied Genetics 110,1268-1274.
    Yang Z.M., Wang J., Wang S.H., Xu L.L.,2003. Salicylic acid-induced aluminum tolerance by modulation of citrate efflux from roots of Cassia tor a L. Planta 217,168-174.
    Yoshida S., Forna D.A., Cock J.H., Gomez K.A.,1976. Laboratory manual for physiological studies of rice. International Rice Research Institute, Los Banos, Philippines, pp 62-63.
    Zayed A., Lytle C.M., Jin-Hong Q., Terry N., Qian J.H.,1998. Chromium accumulation, translocation and chemical speciation in vegetable crops. Planta 206,293-299.
    Zayed A.M., Terry N.,2003. Chromium in the environment:factors affecting biological remediation. Plant and Soil 249,139-156.
    Zechmann B., Mauch F., Sticher L., Miiller M.,2008. Subcellular immunocytochemical analysis detects the highest concentrations of glutathione in mitochondria and not in plastids. Journal of Experimental Botany 59,4017-4027.
    Zeid I.M.,2001. Responses of Phaseolus vulgaris to chromium and cobalt treatments. Biologia Plantarum 44,111-115.
    Zeng F.R., Mao Y., Cheng W.D., Wu F.B., Zhang G.P.,2008a. Genotypic and environmental variation in chromium, cadmium and lead concentrations in rice. Environmental Pollution 153,309-314.
    Zeng F. R., Chen S., Miao Y., Wu F.B., Zhang G. P.,2008b. Changes of organic acid exudation and rhizosphere pH in the rice plants under chromium stress. Environmental Pollution 155, 284-289.
    Zeng F.R., Qiu B.Y., Ali S., Zhang G.P.,2010. Genotypic differences in nutrient uptake and accumulation in rice under chromium stress. Journal of Plant Nutrition 33,518-528.
    Zhang C., Wang L., Nie Q., Zhang W., Zhang F..2008. Long-term effects of exogenous silicon on cadmium translocation and toxicity in rice (Oryza sativa L.). Environmental and Experimental Botany 62,300-307.
    Zhang J., Zhu Y.G., Zeng D.L., Cheng W.D., Qian Q., Duan G.L.,2008. Mapping quantitative trait loci associated with arsenic accumulation in rice (Oryza sativa). New Phytologist 177, 350-356.
    Zhang M. Y., Bourbouloux A., Cagnac O., Srikanth C. V., Rentsch D., Bachhawat A. K., Delrot S.,2004. A novel family of transporters mediating the transport of glutathione derivatives in plants. Plant Physiology 134,482-491.
    Zhao X.J., Sucoff E., Stadelmann E.J.,1987. Al3+ and Ca2+ alteration of membrane permeability of Quercus rubra root cortex cells. Plant Physiology 83,159-162.
    Zhu L.H., Chen Y., Xu Y.B., Xu J.C., Cai H.W., Ling Z.Z.,1993. Construction of a molecular map of rice and gene mapping using a double haploid population of a cross between Indica and Japonica varieties. Rice Genetics Newsletter 10,132-134.
    Zhu Y. L., Pilon-Smits E. A. H., Jouanin L., Terry N.,1999a. Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance. Plant physiology 119,73-79.
    Zhu Y. L., Pilon-Smits E. A. H., Tarun A. S., Weber S. U., Jouanin L., Terry N.,1999b. Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing y-glutamylcysteine synthetase. Plant physiology 121,1169-1177.
    Zou J.H., Yu K.L., Zhang Z.G., Jiang W.S., Liu D.H.,2009. Antioxidant response system and chlorophyll fluorescence in chromium (Ⅵ)-treated Zea mays L. seedlings. Acta Biologica Cracoviensia Series Botanica 51,23-33.
    陈碧德,朱建勇,2010.水杨酸对番茄种子萌发及幼苗生长铬胁迫的缓解效应.北方园艺2,13-16.
    陈坤明,宫海军,王锁民,2004.植物谷胱甘肽代谢与环境胁迫.西北植物学报24,1119-1130.
    陈龙池,廖利平,2002.根系分泌物生态学研究.生态学杂志21,57-62.
    陈晓玲,余土元,秦华明,梁雪莲,吴培钿,伦锦华,周玲艳,2009.钙对铬胁迫下玉米幼苗生长及生理特性的影响.玉米科学17,74-78.
    陈玉胜,陈亚华,王桂萍,沈振国,2007.硫对水稻种子萌发过程中铜毒害的缓解效应.南京农业大学学报30,44-48.
    郭彦,杨洪双,侯连真,2009.水杨酸、过氧化氢对铬胁迫下小麦幼苗生长与生理活性的影响.江苏农业科学2,90-91.
    黄建凤,吴昊,2008.植物根系分泌的有机酸及其作用.现代农业科技20,323-324.
    刘传平,郑爱珍,田娜,沈振国,2004.外源GSH对青菜和大白菜镉毒害的缓解作用.南京农业大学学报27,26-30.
    刘婉,李泽琴,2007.水中铬污染治理的研究进展.广东微量元素科学14,5-9.
    罗亚平,刘杰,张学洪,黄华苑,胡澄,孙家君,蔡湘文,2009.铬胁迫下李氏禾显微结构的变化.安徽农业科学37,8931-8934.
    麦维军,王颖,梁承邺,张明永,2005.谷胱甘肽在植物抗逆中的作用.广西植物25,570-575.
    邱宗波,李方民,王芳,岳明,2008.CO2激光处理对干旱胁迫小麦幼苗谷胱甘肽抗氧化酶系统的影响.武汉植物学研究26,402-406.
    沈宏,严小龙,2000.根分泌物研究现状及其在农业与环境领域的应用.农村生态环境16,51-54.
    沈奇,秦信蓉,张敏琴,郭贵敏,杜才富,2009.铬胁迫对油菜种子萌发及幼苗生长的毒性效应.贵州农业科学37,25-26.
    王爱云,黄姗姗,2010.草本植物对铬污染的响应.西北农业学报19,164-167.
    武晓燕,2005.乙酰水杨酸对水生植物重金属毒害的缓解效应.硕士学位论文,南京师范大学.
    夏来坤,郭天财,朱云集,康国章,王晨阳,2006.土壤重金属铜、镉胁迫对冬小麦碳氮运转的影响.水土保持学报20,117-120.
    肖安风,周祥山,周利,张元兴,2006.应用流式细胞术检测毕赤酵母的细胞活性,微生物学通报33,22-26.
    徐昌杰,陈昆松,Ding H., Weir E.I., Ferguson B.I.,2004.植物程序性死亡检测技术.遗传26,127-132.
    徐成斌,裴晓强,马溪平,2004.六价铬对玉米种子萌发及生理特性的影响.环境保护科学34,44-47.
    杨德,吕金印,程永安,高峻凤,2007.铬在南瓜中的亚细胞分布及对某些酶活性的影响.农业环境科学学报26,1352-1355.
    杨和连,陈碧华,王广印,2008.外源重金属铬对菜豆幼苗生长的影响.种子27,46-51.
    杨和连,董新红,张百俊,胡俊美,2009.外源铬对豇豆幼苗生长及生理生化特性的影响.土壤通报40,1446-1449.
    杨权海,陆巍,胡茂龙,王春明,张荣铣,Yano M.,万建民,2003.水稻叶片叶绿素和过氧化氢含量的H2O2检测及上位性分析.遗传学报30,245-250.
    张开明.黄苏珍,原海燕,顾永华,2005.铜污染的植物毒害、抗性机理及其植物修复.江苏环境科技18,4-6.
    赵娟,施国新,徐勤松,王学,许丙军,胡金朝,2006.外源谷胱甘肽(GSH)对水鳖Zn2+毒害的缓解作用.热带亚热带植物学报14,213-217.
    赵雨云,周剑红,骆鹰,郭晓贤,李常健,2008.外源水杨酸对白菜种子铬毒害的缓解效应.中国种业8,43-44.
    朱定祥,倪守斌,2004.铬的生物地球化学及生物效应.广东微量元素科学11,1-9.
    朱雪梅,林立金,杨远祥,何传云,蒋小军,邵继荣,2008.锌铬复合污染对水稻根系氮代谢的影响.土壤通报39,1145-1148.
    张静,常青晓,孙传范,段桂兰,赵全志,2011. HPLC(?)去测定镉、砷胁迫下水稻根系的植物螯合肽,环境科学学报31,1550-1555.
    张学洪,刘杰,朱义年,2011.重金属污染土壤的植物修复技术研究.北京,科学出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700