用户名: 密码: 验证码:
普洱茶品质的仪器鉴定研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
普洱茶独特的品质是晒青毛茶在高温高湿的环境条件下且有微生物参与的后发酵过程中形成的,致使其化学成分比绿茶、红茶和乌龙茶等更为复杂,研究难度比较大。目前尚缺乏系统的关于普洱茶品质化学的研究报道,这在一定程度上不利于人们科学地认识和评价普洱茶。本论文选用具有代表性的普洱茶为研究对象,研究分析普洱茶中的香气成分、主要呈味成分、矿质元素成分以及抗氧化活性和降脂活性等生理功能;并在此基础上,结合主成分分析(PCA)和偏最小二乘(PLS)等化学计量学方法,探寻普洱茶中对其香气和滋味产生重要影响的关键化学成分,并建立相关分析预测模型,进而开展普洱茶品质评价以及等级和产地差异分析;此外,结合感官审评结果,采用电子舌技术、电子鼻技术以及近红外光谱技术等对普洱茶品质进行分析,探索普洱茶品质的仪器鉴定方法。本研究成果对于进一步揭示普洱茶中的关键品质化学成分、正确认识和科学评价普洱茶品质具有重要意义,也为完善普洱茶品质仪器和化学鉴定技术提供理论依据。取得的主要研究结果如下:
     1、普洱茶香气成分研究:以1,2,4-三甲氧基苯为定位参考峰,选用26个特征性成分作为共有特征峰,构建了普洱茶的HS-SPME/GC-MS香气指纹图谱。3,4,5-三甲氧基-苯甲醛、2-乙基-丁酸-2-丙烯基酯、5-甲基-1,2,3-三甲氧基-苯、3,4-二甲氧基甲苯、柠檬醛和2-异丙基-4-甲基-己-2-烯-醛等是区分普洱茶产地的重要的理化指标,而醇类成分和杂氧化合物成分可以作为普洱茶等级区分的重要参考指标。橙花醇、橙花叔醇、3,4,5-三甲氧基-苯甲醛、亚甲基-丁酸-二甲酯、十六烷酸、3,4-二甲氧基-甲苯和5-甲基-1,2,3-三甲氧基-苯等香气成分等是决定普洱茶香气感官品质得分的重要的理化指标;并结合化学计量学方法PLS回归,建立了基于10种品质相关成分的普洱茶香气品质评价模型。采用电子鼻技术能够区分不同香气感官品质得分的普洱茶样品,它们在主成分分析图上的分布在整体上呈现较好的规律性。
     2、普洱茶滋味成分研究:研究测定了普洱茶中与滋味相关的主要化学成分的含量水平,包括茶多酚含量、儿茶素含量及其组成、黄酮类化合物总量、水浸出物总量、游离氨基酸总量、可溶性糖总量、茶色素含量、生物碱含量及其组成、有机酸含量及其组成等。皮尔逊线性相关分析结果表明,游离氨基酸总量、DL-C、GCG、儿茶素总量、酒石酸、柠檬酸和有机酸总等7种化学成分指标与普洱茶滋味感官品质得分的相关性达到了显著性水平(p<0.05)或极显著性水平(p<0.01)。主成分分析结果表[J],儿茶素成分、游离氨基酸成分以及有机酸成分能在很大程度上影响普洱茶的滋味品质:结合化学计量学方法PLS回归,建立了基于7种品质相关成分的普洱茶滋味品质评价模型。此外,研究发现采用电子舌技术可以有效地将不同滋味品质得分的普洱茶加以区分,并能较好地区分不同茶厂生产的普洱茶样品;但对鉴别不同等级的普洱茶样品仍有困难。
     3、普洱茶矿质元素研究:研究测定了晒青毛茶和普洱茶中B、Ca、Fe、Al、K、Mg、 Mn、Mo、Na、P、S、Si、Zn、Ni、Co和Hg等16种矿质元素的含量水平;研究发现其中10种矿质元素(Mn、Na、Zn、Ca、Fe、Al、K、Mg、Ni和Co)在普洱茶中的含量水平都要显著高于晒青毛茶(p<0.05);8种矿质元素(Ca、Fe、Al、K、Mg、S、Ni和Co)的含量水平在4个不同产地的普洱茶样品之间有显著性差异(p<0.05);除Ni、Hg外,不同级别普洱茶矿质元素的含量水平无显著差异(p>0.05)。研究测定了普洱茶中F、Pb、Cu、Cr、As以及Cd等6种风险元素的含量水平;研究发现除Cu外,其它5种风险元素的含量水平在不同产地的普洱茶样品中存在显著性差异(p<0.05);普洱茶紧压茶中Pb的含量一般要明显低于普洱茶散茶;普洱茶中氟的浸出率为45.8%,而其它5种风险元素的浸出率一般在30%左右。基于1个体重70Kg的人对上述风险元素进行安全性评价显示,每天饮用15g普洱茶或者每周饮用105g普洱茶,不会因这些风险元素而对人体健康产生不利影响。
     4、近红外光谱技术在普洱茶品质和化学成分分析研究中的应用:以普洱茶的游离氨基酸总量、茶多酚、茶褐素和水浸出物总量等化学成分以及普洱茶汤色、香气、叶底和滋味等感官审评得分为研究对象,分别建立了近红外光谱定量分析模型。研究发现,所建模型中只有茶多酚总量模型的预测效果比较好,Rc和Rp均达到92%以上(分别为93.52%和92.24%),RMSEC和1RMSEP分别为0.591和0.627,预测值和真实值之间的相关系数为0.8508,说明该模型具备较好的定量预测效果,可初步用于普洱茶中茶多酚总量的预测。
     5、普洱茶生理功能研究:普洱茶的总抗氧化活力、清除羟自由基总活力以及清除DPPH自由基活力等都显著低于晒青毛茶(p<0.05);且高、低两个等级的普洱茶相比存在显著性差异(p<0.05)。高通量筛选试验研究发现,普洱茶乙酸乙酯提取物对PPARδ受体和FXR受体都有一定程度的激活作用,这在一定程度上为普洱茶的降脂功效提供了初步的科学依据和理论支撑;但普洱茶乙酸乙酯提取物对PPARy受体和LXR受体的激活作用不明显。
     6、普洱茶品质评价的仪器鉴定比较:总体上,电子舌技术在普洱茶品质评价中具有较好的应用潜力,电子鼻技术次之,而近红外光谱技术基本不适用于普洱茶的品质评价。
Pu-erh tea is a unique microbial fermented tea produced using sun-dried leaves of large-leaf tea species(Camellia sinensis (Linn.) var. assamica (Masters) Kitamura) in Yunnan province of China and it has become increasingly popular in the Southeast Asia for its special quality properties as well as its potential health function, such as hypolipidemic and anti-obesity effects. The special sensory characteristics of Pu-erh tea arise from enormous chemical and biochemical changes and transformations of the constituents of sun-dried green tea leaves during the post-fermentation process in which high temperature, high humidity and microbial activities were essential. Therefore the chemical constituents of Pu-erh tea are more complicated than those of green tea, black tea and Oolong tea, leading to difficulty in studying. Few study was focused on the chemical quality of Pu-erh tea in the past, which has posed a major obstacle for recognizing and evaluating Pu-erh tea scientifically and is unfavorable to the Pu-erh tea industry. In this paper, the aroma constituents, the major taste compounds, mineral elements and biological activities of the representative products of Pu-erh tea were analyzed. Furthermore, the key constituents which are responsible for the special flavor and taste were explored based on above analysis combined sensory evaluation and some chemometrics methods including principal component analysis (PCA) and partial least square (PLS), and some models were constructed to predict the sensory quality as well as the content of some chemical constituents of Pu-erh tea and to discriminate the origins and grades of Pu-erh tea. Moreover, objective evaluation methods of Pu-erh tea quality were also studied using electronic tongue, electronic nose and near infrared spectrometry. The main results were listed as follows:
     1. Key constituents of Pu-crh tea aroma
     Based on the reference peak of1,2,3-trimethoxybenzene,26peaks in HS-SPME/GC-MS chromatograms were selected as the characterization peaks and the fingerprint was therefore constructed. The important indicator for distinguishing the origins of Pu-erh teas seemed to be benzaldehyde,3,4.5-trimethoxy-, butanoic acid,2-ethyl-,2-propenyl ester, benzene,1,2,3-trimethoxy-5-methyl-,3,4-dimethoxytoluene, citral and2-isopropyl-4-methylhex-2-enal, and alcohols compounds and methoxy-phenolic compounds were the important indicators for identifying the grade of Pu-erh tea. In addition, the important indicator for distinguishing the score of aroma quality of Pu-erh teas were found to be nerol, nerolidol, benzaldehyde,3,4,5-trimethoxy-. dimethyl itaconate, n-hexadecanoic acid,3,4-dimethoxytoluene and benzene,1,2,3-trimethoxy-5-methyl-, and on the basis of these10compounds, a PLS model with correlation coefficient of0.740and cross-validated correlation coefficient of0.480was constructed to predict the aroma quality of Pu-erh tea. Pu-erh tea samples with different aroma quality could be classified as several groups using eletronic nose technology, and the tea samples were regularly distributed to some extent in the diagram of PC A.
     2. Major taste constituents of Pu-erh tea
     The major chemical constituents related to taste in Pu-erh tea, including tea polyphenols, catechins, flavonoids, water extracts, free amino acids, soluble sugar, tea pigments, alkaloid and organic acids, were determined. Pearson's linear correlation analysis showed that seven chemical indicators, i.e., free amino acid, DL-C, GCG, tartaric acid, citric acid and total organic acid, were significantly correlated(p<0.05or p<0.01) to the score of taste in Pu-erh tea sensory evaluation, and PCA showed that catechins, free amino acids and organic acids were considered as the key determinant of taste quality of Pu-erh tea. On the basis of these7compounds, a PLS model with correlation coefficient of70.7%was constructed to predict the taste quality of Pu-erh tea. Pu-erh tea samples with different taste qualities could be classified in several groups in general using electronic tongue technology, and the samples produced in different manufacturer could also be well classified. However, different grades of Pu-erh tea samples, i.e., high, medium and low grade, has poor discrimination effects.
     3. Mineral elements of Pu-erh tea
     The contents of sixteen mineral elements of Pu-erh tea and sun-dried green tea were determined by ICP, and their differences between different grades and between different producing areas were also compared. The contents obtained in mg kg-1for the elements analyzed in Pu-erh tea were16.68(B),3306.64(Ca),272.18(Fe),806.05(Al),14522.80(K),2054.96(Mg)682.09(Mn),0.25(Mo),487.71(Na),3628.98(P),2350.90(S),173.78(Si),61.77(Zn),2.48(Ni),0.15(Co) and undetectable (Hg). The contents of the Mn, Na, Zn, Ca, Fe, Al, K, Mg, Ni and Co in Pu-erh tea were observed to be much higher than those of sun-dried green tea (p<0.05). Significant differences in the content of Ca, Fe, Al, K, Mg, S, Ni and Co were observed between different producing areas of Pu-erh tea (p<0.05). However, there were no significant differences in the content of the studied elements except Ni in Pu-erh tea between different grades(p>0.05). Moreover, as far as some elements potentially dangerous to health were concerned, the ranges obtained for the detected elements in Pu-erh tea were80.2-151.6mg kg (fluoride),0.66-4.66mg kg-1(lead),14.8-19.3mg kg-1(copper),1.95-4.98mg kg-1(chromium),0.07-0.25mg kg-1(arsenic) and0.023-0.130mg kg-1(cadmium). The mean leached analytes concentrations in tea infusion were523.86μg L-1for fluoride,5.70μg L-1for lead,43.18μg L-1for copper,13.67μg L-1for chromium,0.43μg L-1for arsenic and0.17μg L-1for cadmium after the tea leaves were brewed twice with boil water in a ratio of1g/50ml for5minutes. The mean dissolving rates of fluoride, lead, copper, chromium, arsenic, and cadmium were45.8%,24.6%,26.2%,35.2%,30.8%and27.4%, respectively. Significant differences in the content of the studied elements except copper were observed between different Pu-erh tea's habitats. Compressed Pu-erh tea had lower lead levels than loose tea. Based on a body weight of70kg consuming15g of Pu-erh tea daily or105g Pu-erh tea weekly per person, the intake of the studied elements were below the safe limits recommended by various authorities, suggesting that under the current dietary intake, there are no health risks to Pu-erh tea drinking consumers.
     4. Application of NIRS in the predication of sensory quality and chemical constituents of Pu-crh tea
     This study tentatively established the quantitative analysis models of Pu-erh tea both for chemical constituents (free amino acids, tea polyphenols, theabrownins and water extract) and for sensory quality (liquor color, aroma, taste and infused leaf) by using near infrared spectroscopy combined with partial least squares (NIRS-PLS). Results showed that the model for predicting tea polyphenols had acquired a high fitting degree when the number of principal components was7with the values of Re, RMSEC, Rp and RMSEP of this model being93.52%,0.591,92.24%, and0.627, respectively. However, the prediction abilities of other seven models were dissatisfied.
     5. Biological activities of Pu-erh tea
     The antioxidant activity of sun-dried green tea and three grades of Pu-erh tea, i. e. high, medium and low grade, were studied and compared. The results showed that sun-dried green tea had much higher antioxidant activity than Pu-erh tea (p<0.05), and the significant difference (p<0.05) was also shown in evaluation of the total antioxidant activity, scavenging hydroxyl free radical activity and scavenging DPPH free radical activity between high and low grades. Moreover, the results of high throughput screening showed that the receptor of PPARδ and FXR in biological cell could be effectively activated by Pu-erh tea ethyl acetate extract to some extent, which has provided a preliminary scientific basis and technological support for the hypolipidemic and anti-obesity effect of Pu-erh tea. However, the activation of Pu-erh tea ethyl acetate extract on PPARy and LXR was not significant.
     6. Comparison of three kinds of instrumental assessment of Pu-erh tea quality
     In general, results showed that the electronic tongue technology has better effect on the instrumental assessment of Pu-erh tea quality than the electronic tongue technology. However, near infrared spectrometry is not suitable for the analysis of Pu-erh tea quality.
引文
Abe M, Takaoka N, Idemoto Y, Takagi C, Imai T & Nakasaki K. (2008). Characteristic fungi observed in the fermentation process for Puer tea. International Journal of Food Microbiology,124:199-203.
    Ahmed S, Unachukwu U, Stepp J R, Peters C M, Long C L & Kennelly E. (2010). Pu-erh tea tasting in Yunnan, China:Correlation of drinkers'perceptions to phytochemistry. Journal of Ethnopharmacology,132:176-185.
    Alcazar A, Ballesteros O, Jurado J M, Pablos F, Martin M J, Vilches J L & Navalon A. (2007). Differentiation of green, white, black, oolong, and Pu-erh teas according to their free amino acids content. Journal of Agricultural and Food Chemistry,55:5960-5965.
    Ananingsih V K, Sharma A & Zhou W B. (2013). Green tea catechins during food processing and storage:A review on stability and detection. Food Research International,50:469-479.
    Barroso M F, Ramos S, Oliva-Teles M T, Delerue-Matos C, Sales M G F & Oliverira M B P P. (2009). Survey of trace elements (Al, As, Cd, Cr, Co, Hg, Mn, Ni, Pb, Se, and Si) in retail samples of flavoured and bottled waters. Food Additives and Contaminants:Part B: Surveillance,2:122-130.
    Branch S, Burke S, Evans P, Fairman B & Wolff Briche C S J. (2003). A preliminary study in determining the geographical origin of wheat using isotope ratio inductively coupled plasma mass spectrometry with 13C, 15N mass spectrometry. Journal of Analytical Atomic Spectrometiy,18:17-22.
    Cao H B, Qiao L, Zhang H & Chen J J. (2010). Exposure and risk assessment for aluminium and heavy metals in Puerh tea. Science of the Total Environment,408:2777-2784.
    Cao J, Zhao Y & Liu J W. (1998). Safety evaluation and fluorine concentration of Pu'er brick tea and bianxiao brick tea. Food and Chemical Toxicology,36:1061-1063.
    Cao J, Zhao Y & Liu J W. (2001). Processing procedures of brick tea and their influence on fluorine content. Food and Chemical Toxicology,39:959-962.
    Cao J, Zhao Y, Li Y, Deng H J, Yi J & Liu J W. (2006). Fluoride levels in various black tea commodities:Measurement and safety evaluation. Food and Chemical Toxicology,44: 1131-1137.
    Cao J, Zhao Y, Liu J W, Xiao R, Danzeng S, Daji D & Yan Y. (2003). Brick tea fluoride as a main source of adult fluorosis. Food and Chemical Toxicology,41:535-542.
    Chen C S, Chan H C, Chang Y N, Liu B L & Chen Y S. (2009). Effects of bacterial strains on sensory quality of Pu-erh tea in an improved pile-fermentation process. Journal of Sensory Studies,24:534-553.
    Chen Y S, Liu B L & Chang Y N. (2010). Bioactivities and sensory evaluation of Pu-erh teas made from three tea leaves in an improved pile fermentation process. Journal of Bioscience and Bioengineering,109:557-563.
    de Meeus C, Eduljee G H & Hutton M. (2002). Assessment and management of risks arising from exposure to cadmium in fertilisers.I. Science of the total environment,291:167-187.
    Djedjibegovic J, Larssen T, Skrbo A, Marjanovic A & Sober M. (2012).Contents of cadmium, copper, mercury and lead in fish from the Neretva river (Bosnia and Herzegovina) determined by inductively coupled plasma mass spectrometry (ICP-MS). Food Chemistry, 131:469-476.
    Duh P D, Yen G C, Yen W J, Wang B S & Chang L W. (2004). Effects of Pu-erh tea on oxidative damage and nitric oxide scavenging. Journal of Agricultural and Food Chemistry,52: 8169-8176.
    Dutta R, Hines E L & Gardner J W. (2003).Tea quality prediction using a tin oxide-based electronic nose:an artificial intelligence approach. Sensors and Actuators B,94:228-237.
    Emekli-Alturfan E, Yarat A & Akyuz S. (2009). Fluoride levels in various black tea, herbal and fruit infusions consumed in Turkey. Food and Chemical Toxicology,47:1495-1498.
    Ferrara L, Montesanoa D & Senatore A.(2001).The distribution of minerals and flavonoids in the tea plant (Camellia sinensis). II Farmaco,56:397-401.
    Franklin R E, Duis L, Brown R & Kemp T. (2005). Trace element content of selected fertilizers and micronutrient source materials. Communications in Soil Science and Plant Analysis,36: 1591-1609.
    Fu D H, Ryan E P, Huang J A, Liu Z H, Weir T L, Snook R L & Ryan T P. (2011). Fermented Camellia sinensis, Fu Zhuan Tea, regulates hyperlipidemia and transcription factors involved in lipid catabolism. Food Research International,44:2999-3005.
    Fung K F, Zhang Z Q, Wong J W C & Wang M H. (1999). Fluoride contents in tea and soil from tea plantations and the release of fluoride into tea liquor during infusion. Environmental Pollution,104:197-205.
    Gao D F, Zhang Y J, Yang C R, Chen K K & Jiang H J. (2008). Phenolic antioxidants from green tea produced from Camellia taliensis. Journal of Agricultural and Food Chemistry,56: 7517-7521.
    Gong J S, Peng C X, Chen T, Gao B & Zhou H J. (2010). Effects of theabrownin from Pu-erh tea on the metabolism of serum lipids in rats:mechanism of action. Journal of Food Science,75: H182-H189.
    Gong J S, Tang C & Peng C X. (2012). Characterization of the chemical differences between solvent extracts from Pu-erh tea and Dian Hong black tea by CP-Py-GC/MS. Journal of Analytical and Applied Pyrolysis,95:189-197.
    Gorur F K, Keser R, Akcay N, Dizman S & Okumusoglu N T. (2011). Radionuclides and heavy metals concentrations in Turkish market tea. Food Control,22:2065-2070.
    Han W Y, Shi Y Z, Ma L F & Ruan J Y. (2005). Arsenic, cadmium, chromium, cobalt, and copper in different types of Chinese tea. Bulletin of Environmental Contamination and Toxicology, 75:272-277.
    Han W Y, Zhao F J, Shi Y Z, Ma L F & Ruan J Y. (2006). Scale and causes of lead contamination in Chinese tea. Environmental Pollution,139:125-132.
    Hashimoto F, Nonaka G I & Nishioka I. (1989). Tannins and related compounds. LXXVII. Novel chalcan-flavan dimers, assamicains A, B, and C and a new flavan-3-ol and proanthocyanidins from the fresh leaves of Camellia sinensis L. var. assamica Kitamura. Chem. Pharm. Bull,37: 77-85.
    Hashimoto F, Nonaka G I & Nishioka 1.(1992).Tannins and related compounds, CXIV. Structures of novel fermentation products, theogallinin, theaflavonin and desgalloyl theaflavonin from black tea, and changes of tea leaf polyphenols during fermentation. Chem. Pharm. Bull,40: 1383-1389.
    Hayashi N, Chen R G. Ikezaki H, Ujihara T, Kitajima H & Mizukami Y. (2007). Evaluation of the astringency of black tea by a taste sensor system:scope and limitation. Bioscience, biotechnology and biochemistiy,71:587-589.
    Hayashi N, Ujihara T & Kohata K. (2005). Reduction of catechin astringency by the complexation of gallate-type catechins with pectin. Bioscience, biotechnology and biochemistry, 69:1306-1310.
    He W, Hu X S, Zhao L, Liao X J, Zhang Y, Zhang M W & Wu J H. (2009). Evaluation of Chinese tea by the electronic tongue:Correlation with sensory properties and classification according to geographical origin and grade level. Food Research International,42:1462-1467
    Hou C W, Jeng K C & Chen Y S. (2010). Enhancement of fermentation process in Pu-Erh tea by tea-leaf extract. Journal of Food Science,75:44-48.
    Hou Y, Shao W F, Xiao R, Xu K L, Ma Z Z, Johnstone B H & Du Y S. (2009). Pu-erh tea aqueous extracts lower atherosclerotic risk factors in a rat hyperlipidemia model. Experimental Gerontology,44:434-439.
    Hwang L S, Lin L C, Chen N T, Liuchang H C & Shiao M S. (2003). Hypolipidemic effect and antiatherogenic potential of Pu-Erh tea. ACS Symp, Set; 859:87-103.
    Ivarsson P, Holmin S, Hojer N E, Krantz-Rulcker C & Winquist F. (2001). Discrimination of tea by means of a voltammetric electronic tongue and different applied waveforms. Sensors and Actuators B-Chemical,76:449-454.
    Jeng K C, Chen C S, Fang Y P, Wei Hou R C & Chen Y S.(2007). Effect of microbial fermentation on content of statin, GABA, and polyphenols in Pu-Erh tea. Journal of Agricultural and Food Chemistn; 55:8787-8792.
    Jiang H Y, Shii T, Matsuo Y, Tanaka T, Jiang Z Z & Kouno I. (2011). A new catechin oxidation product and polymeric polyphenols of post-fermented tea. Food Chemistry,129:830-836.
    Jie G L, Lin Z, Zhang L Z, Lv H P, He P M & Zhao B L. (2006). Free radical scavenging effect of Pu-erh tea extracts and their protective effect on oxidative damage in human fibroblast cells. Journal of Agricultural and Food Chemistry,54:8058-8064.
    Jin C W, Du S T, Zhang K & Lin X Y. (2008). Factors determining copper concentration in tea leaves produced at Yuyao County, China. Food and Chemical Toxicology,46:2054-2061.
    Jordi G, Salvador A & Manuel del V. (2005). Application of a potentiometric electronic tongue as a classification tool in food analysis.Talanta,66:1303-1309.
    Karak T & Bhagat R M. (2010). Trace elements in tea leaves, made tea and tea infusion:A review. Food Research International,43:2234-2252.
    Kawakami M & Shibamoto T. (1991). The volatile constituents of piled tea:Toyama Kurocha. Agricultural and Biological Chemistry,55:1839-1847.
    Kawakami M, Kobayashi A, Yamanishi T & Shoujaku S. (1987). Flavor constituents of microbial-fermented teas Chinese-Zhuan-cha and Koku-cha. Nippon Nogeikagaku Kaishi,61: 457-465 (in Japanese).
    Kelly S, Baxter M, Chapman S, Rhodes C, Dennis J & Brereton P. (2002).The application of isotopic and elemental analysis to determine the geographical origin of premium long grain rice. European Food Resource and Technology,214:72-78.
    Koblar A, Tavcar G & Ponikvar-Svet M. (2012). Fluoride in teas of different types and forms and the exposure of humans to fluoride with tea and diet. Food Chemistry,130:286-290.
    Ku K M, Kim J, Park H J, Liu K H & Lee C H. (2010). Application of metabolomics in the analysis of manufacturing type of Pu-erh tea and composition changes with different postfermentation year. Journal of Agricultural and Food Chemistry,58:345-352.
    Kuo K L, Weng M S, Chiang C T, Tsai Y J, Lin-Shiau S Y & Lin J K.(2005). Comparative Studies on the Hypolipidemic and Growth Suppressive Effects of Oolong, Black, Pu-erh, and Green Tea Leaves in Rats. Journal of Agricultural and Food Chemistry,53:480-489.
    Lee J E, Lee B J, Chung J O, Shin H J, Lee S J, Lee C H & Hong Y S. (2011).1H NMR-based metabolomic characterization during green tea (Camellia sinensis) fermentation. Food Research International,44:597-604.
    Liang Y R, Zhang L Y & Lu J L. (2005). A study on chemical estimation of Pu-erh tea quality. Journal of the Science of Food and Agriculture,85:381-390.
    Lin J K & Lin-Shiau S Y. (2006). Mechanisms of hypolipidemic and anti-obesity effects of tea and tea polyphenols. Molecular Nutrition & Food Research,50:211-217.
    Lin J K, Lin C L, Liang Y C, Lin-Shiau S Y & Juan I M. (1998). Survey of catechins, gallic acid, and methylxanthines in green, oolong, Pu-erh, and black teas. Journal of Agricultural and Food Chemistry,46:3635-3642.
    Lin J, Dai Y, Guo Y, Xu H R & Wang X C. (2012). Volatile profile analysis and quality prediction of Longjing tea (Camellia sinensis) by HS-SPME/GC-MS. Zhejiang Univ-Sci B(Biomed & Biotechnol),13:972-980.
    Lin L C, Liuchang H C, Hwang L S & Shiao M S.(1998). The hypolipidemic and antioxidative effects of pu-erh tea. Atherosclerosis,136(suppl 1):44-44(1).
    Lin L Z, Chen P & Harnly J M. (2008).New phenolic components and chromatographic profiles of green and fermented teas. Journal of Agricultural and Food Chemistry,56:8130-8140.
    Lin Y S, Tsai Y J, Tsay J S & Lin J K.(2003).Factors Affecting the Levels of Tea Polyphenols and Caffeine in Tea Leaves. Journal of Agricultural and Food Chemistry,51:1864-1873
    Lin Y S, Wu S S & Lin J K.(2003). Determination of Tea Polyphenols and Caffeine in Tea Flowers (Camellia sinensis) and Their Hydroxyl Radical Scavenging and Nitric Oxide Suppressing Effects. Journal of Agricultural and Food Chemistry,51:975-980.
    Ling T J, Wan X C, Ling W W, Zhang Z Z, Xia T, Li D X & Hou R Y. (2010). New triterpenoids and other constituents from a special microbial-fermented tea-Fuzhuan brick tea. Journal of Agricultural and Food Chemistry,58:4945-4950.
    Lu B J, Fan B W, Zhen Y P, Ma L B & Lan C Y.(2006). Determination of flavonols in Chinese tea leaves by HPLC. Natural Product Research and Development,18 (Suppl):160-164.
    Lu C H & Hwang L S. (2008). Polyphenol contents of Pu-Erh teas and their abilities to inhibit cholesterol biosynthesis in Hep G2 cell line. Food Chemistry,111:67-71.
    Lu M J & Chen C. (2008). Enzymatic modification by tannase increases the antioxidant activity of green tea. Food Research International,41:130-137.
    Luis Martinez, Irene Cilla, Jose A Beltran & Pedro Roncales. (2006). Antioxidant effect of rosemary, borage, green tea, pu-erh tea and ascorbic acid on fresh pork sausages packaged in a modified atmosphere:influence of the presence of sodium chloride. Journal of the Science of Food and Agriculture,86:1298-1307.
    Lv H P, Lin Z, Tan J F & Guo L. (2012). Contents of fluoride, lead, copper, chromium, arsenic and cadmium in Chinese Pu-erh tea. Food Research International, doi: 10.1016/j.foodres.2012.06.014.
    Lv H P, Zhong Q S, Lin Z, Wang L, Tan J F & Guo L. (2012). Aroma characterisation of Pu-erh tea using headspace-solid phase microextraction combined with GC/MS and GC-olfactometry. Food Chemistry,130:1074-1081.
    Lvova L, Legin A, Viasov Y. Cha G S & Nam H. (2003). Multicomponent analysis of Korean green tea by means of disposable all-solid-state potentiometric electronic tongue mierosystem.Sensors and Actuators B-Chemical,95:391-399.
    Macedo J A, Ferreira L R, Camara L E, Santos J C, Gambero A, Macedo G A & Ribeiro M L. (2012). Chemopreventive potential of the tannase-mediated biotransformation of green tea. Food Chemistry,133:358-365.
    McKenzie J S, Jurado J M & de Pablos F.(2010). Characterisation of tea leaves according to their totalmineralcontent by means of probabilistic neural networks. Food Chemistry,123: 859-864.
    Mok P, Chang R C C, Wang M F & So K F. (2008). A review on the laboratory investigations and epidemiological studies of black and Pu-Erh tea. Dietary Supplements, ACS Symposium Series,987:144-159.
    Mukherjee G & Banerjee R. (2004). Biosynthesis of tannase and gallic acid from tannin rich substrates by Rhizopus oryzae and Aspergillus foetidus. Journal of Basic Microbiology, 44:42-48.
    Natesan S & Ranganathan V. (1990). Content of various elements in different parts of the tea plant and in infusions of black tea from Southern India. Journal of the Science of Food and Agriculture,51:125-139.
    Pehrsson P R, Patterson K Y & Perry C R. (2011). The fluoride content of select brewed and microwave-brewed black teas in the United States. Journal of Food Composition and Analysis,24:971-975.
    Peterson J, Dwyer J, Bhagwat S, Haytowitz D, Holden J, Eldridge A L, Beecher G & Aladesanmi J. (2005). Major flavonoids in dry tea. Journal of Food Composition and Analysis,18:487-501.
    Qian Z M, Guan J, Yang F Q & Li S P. (2008). Identification and quantification of free radical scavengers in Pu-erh tea by HPLC-DAD-MS coupled online with 2,2'-Azinobis(3-ethylbenzthiazolinesulfonic acid) diammonium salt assay. Journal of Agricultural and Food Chemistry,56:11187-11191.
    Qin F & Chen W. (2007). Lead and copper levels in tea samples marketed in Beijing, China. Bulletin Environmental Contamination and Toxicology,79:247-250.
    Quock R L, Gao J X & Chan J T. (2012). Tea fluoride concentration and the pediatric patient. Food Chemistry,130:615-617.
    Sakagami H & Satoh K. (1997). Prooxidant action of two antioxidants:ascorbic acid and gallic acid. Anticancer Research,17:221-224.
    Seenivasan S, Manikandan N & Muraleedharan N N. (2008). Chromium contamination in black tea and its transfer into tea brew. Food Chemistry,106:1066-1069.
    Seenivasan S, Manikandan N, Muraleedharan N N & Selvasundaram R. (2008). Heavy metal content of black teas from south India. Food Control,19:746-749.
    Shao W F, Powell C & Clifford M N. (1995). The analysis by HPLC of green, black and pu'er teas produced in Yunnan. Journal of the Science of Food and Agriculture,69:535-540.
    Shu W S, Zhang Z Q, Lan C Y & Wong M H. (2003). Fluoride and aluminium concentrations of tea plants and tea products from Sichuan Province, PR China. Chemosphere,52:1475-1482.
    Sofuoglu S C & Kavcar P. (2008). An exposure and risk assessment for fluoride and trace metals in black tea. Journal of Hazardous Materials,158:392-400.
    Suzuki Y & Shioi Y. (2003). Identification of chlorophylls and carotenoids in major teas by high-performance liquid chromatography with photodiode array detection. Journal of Agricultural and Food Chemistry,51:5307-5314.
    Syu K Y, Lin C L, Huang H C & Lin J K. (2008). Determination of theanine, GABA, and other amino acids in green, oolong, black, and Pu-erh teas with dabsylation and high-performance liquid chromatography. Journal of Agricultural and Food Chemistry,56:7637-7643.
    Tanaka T, Umeki H, Nagai S, Shii T, Matsuo Y & Kouno I. (2012). Transformation of tea catechins and flavonoid glycosides by treatment with Japanese post-fermented tea acetone powder. Food Chemistry,134:276-281.
    Tian S Y, Deng S P & Chen Z X.(2006). Multifrequency large amplitude pulse voltammetry:A novel electrochemical method for electronic tongue. Sensors and Actuators,123:1049-1056.
    Toyoda M, Tanaka K, Hoshino K, Akiyama H, Tanimura A & Saito Y. (1997). Profiles of potentially antiallergic flavonoids in 27 kinds of health tea and green tea infusions. Journal of Agricultural and Food Chemistry,45:2561-2564.
    Van Diepeningen A D, Debets A J, Varga J, van der Gaag M, Swart K & Hoekstra R F. (2004). Efficient degradation of tannic acid by black Aspergilius species. Mycological Research,108: 919-925.
    Wang D, Xiao R, Hu X T, Xu K L, Hou Y, Zhong Y, Meng J, Fan B L & Liu L G. (2010).Comparative safety evaluation of Chinese Pu-erh green tea extract and Pu-erh black tea extract in Wistar rats. Journal of Agricultural and Food Chemistry,58:1350-1358.
    Wang H F, Provan G J & Helliwell K. (2000).Tea flavonoids:their functions, utilisation and analysis. Trends in Food Science & Technology,11:152-160.
    Wang K B, Liu F, Liu Z H, Huang J A, Xu Z X, Li Y H, Chen J H, Gong Y S & Yang X H. (2011a). Comparison of catechins and volatile compounds among different types of tea using high performance liquid chromatograph and gas chromatograph mass spectrometer. International Journal of Food Science and Technology,46:1406-1412.
    Wang Q P, Peng C X & Gong J S. (2011b). Effects of enzymatic action on the formation of theabrownin during solid state fermentation of Pu-erh tea. Journal of the Science of Food and Agriculture,91:2412-2418.
    Wang X G, Wan X C, Hu S X & Pan C Y. (2008). Study on the increase mechanism of the caffeine content during the fermentation of tea with microorganisms. Food Chemistry,107: 1086-1091.
    Wu C Y, Xu H R, Heritier J & Andlauer W. (2012). Determination of catechins and flavonol glycosides in Chinese tea varieties. Food Chemistry,132:144-149.
    Xie G X, Ye M, Wang Y G, Ni Y, Su M M, Huang H, Qiu M F, Zhao A H, Zheng X J, Chen T L & Wei J. (2009). Characterization of Pu-erh tea using chemical and metabolic profiling approaches. Journal of Agricultural and Food Chemistiy,57:3046-3054.
    Xu L, Deng D H & Cai C B.(2011). Predicting the age and type of Tuocha tea by fourier transform infrared spectroscopy and chemometric data analysis. Journal of Agricultural and Food Chemistry,59:10461-10469.
    Xu X, Yan M & Zhu Y. (2005). Influence of fungal fermentation on the development of volatile compounds in the Puer tea manufacturing process. Engineering in Life Sciences,5:382-386.
    Yamauchi H & Doi M. (1997). O-Methylation of 2,6-dimethoxy-4-methylphenol by Aspergillus glaucus and their possible contribution to Katsuobushi flavor. Bioscience, Biotechnology, and Biochemistry,61:1386-1387.
    Yang D J & Hwang L S. (2006). Study on the conversion of three natural statins from lactone forms to their corresponding hydroxy acid forms and their determination in Pu-Erh tea. Journal of Chromatography A,1119:277-284.
    Yang X R, Ye C X, Xu J K & Jiang Y M. (2007). Simultaneous analysis of purine alkaloids and catechins in Camellia sinensis, Camellia ptilophylla and Camellia assamica var. kucha by HPLC. Food Chemistry,100:1132-1136.
    Yi J & Cao J. (2008). Tea and fluorosis. Journal of Fluorine Chemistry,129:76-81.
    Yuan C G, Gao E L, He B & Jiang G B. (2007). Arsenic species and leaching characters in tea (Camellia sinensis). Food and Chemical Toxicology,45:2381-2389.
    Zhang L Z, Wang D L, Chen W X, Tan X D & Wang P C. (2012). Impact of fermentation degree on the antioxidant activity of Pu-erh tea in vitro. Journal of Food Biochemistry,36:262-267.
    Zhang L, Li N, Ma Z Z & Tu P F. (2011a). Comparison of the chemical constituents of aged Pu-erh tea, ripened Pu-erh Tea, and other teas using HPLC-DAD-ESI-MSn. Journal of Agricultural and Food Chemistry,59:8754-8760.
    Zhang L, Ma Z Z, Che Y Y, Li N & Tu P F.(2011b). Protective effect of a new amide compound from Pu-erh tea on human micro-vascular endothelial cell against cytotoxicity induced by hydrogen peroxide. Fitoterapia,82:267-271.
    Zhang M & Fang L. (2007). Tea plantation-induced activation of soil heavy metals. Communication in Soil Science and Plant Analysis,38:1467-1478.
    Zhao M, Ma Y, Wei Z Z, Yuan W X, Li Y L, Zhang C H, Xue X T & Zhou H J.(2011a). Determination and comparison of y-Aminobutyric acid (GABA) content in Pu-erh and other types of Chinese tea. Journal of Agricultural and Food Chemistry,59:3641-3648.
    Zhao Y, Chen P, Lin L Z, Harnly J M, Yu L L & Li Z W. (2011b). Tentative identification, quantitation, and principal component analysis of green Pu-erh, green, and white teas using UPLC/DAD/MS. Food Chemistry,126:1269-1277.
    Zhao Z J, Tong H R, Zhou L, Wang E X & Liu Q J. (2010). Fungal colonization of Pu-erh tea in Yunnan. Journal of Food Safety,30:769-784.
    Zhou Z H, Zhang Y J, Xu M & Yang C R. (2005). Puerins A and B, two new 8-C substituted flavan-3-ols from Pu-er tea. Journal of Agricultural and Food Chemistry,53:8614-8617.
    Zuo Y G, Chen H & Deng Y W. (2002). Simultaneous determination of catechins, caffeine and gallic acids in green. Oolong, black and Pu-erh teas using HPLC with a photodiode array detector. Talanta,57:307-316.
    曹艳妮,刘通讯.2012.普洱生茶和熟茶香气中萜烯类和甲氧基苯类成分分析[J].食品工业科技,33(5):128-133.
    陈可可,张香兰,朱宏涛,杨崇仁,张颖君.2008.曲霉属真菌在普洱茶后发酵中的作用[J].云南植物研究,30(5):624-628.
    陈可可,朱宏涛,王东,张颖君,杨崇仁.2006.普洱熟茶后发酵加工过程中曲霉菌的分离和鉴定[J].云南植物研究,28(2):123-126.
    陈亮,杨亚军,虞富莲.2004.中国茶树种质资源研究的主要进展和展望[J].植物遗传资源学报,5(4):389-392.
    陈亮,虞富莲,童启庆.2000.关于茶组植物分类与演化的讨论[J].茶叶科学,20(2):89-94.
    陈燕清,倪永年,舒红英.2009.基于无机元素的含量判别食醋的种类和品牌方法研究[J].光谱学与光谱学分析,29(10):2860-2863.
    成浩,王丽鸳,周健,刘栩,叶阳,陆文渊.2008.基于化学指纹图谱的绿茶原料品种判别分析[J].中国农业科学,41(8):2413-2418.
    东方,杨子银,何普明,林智.2008.普洱茶抗氧化活性成分的LC-MS分析[J].中国食品学报,8(2):133-141.
    付秀娟,宋文军,徐咏全,李长文.2012.不同种类微生物对普洱茶发酵过程的影响[J].茶叶科学,32(4):325-330.
    龚加顺,周红杰,张新富,宋姗,安文杰.2005.云南晒青绿毛茶的微生物固态发酵及成分变化研究[J].茶叶科学,25(4):300-306.
    龚淑英,周树红.2002.普洱茶贮藏过程中主要化学成分含量及感官品质变化的研究[J].茶叶科学,22(1):51-56.
    谷勋刚,张正竹,宁井铭,姚成程,邵宛芳,宛晓春.2010.普洱茶渥堆阶段游离态香气成分分析及含量变化[J].食品与发酵工业,36(4):161-164.
    郭波莉,魏益民,潘家荣,李勇.2007.多元素分析牛肉产地来源研究[J].中国农业科学,40(12):2842-2847.
    韩文炎,粱月荣,杨亚军,石元值,马立峰,阮建云.2006.加工过程对茶叶铅和铜污染的影响[J].茶叶科学,26(2):95-101.
    韩文炎,王晓萍.1992.茶叶中主要矿质元素含量背景值的调查[J].中国茶叶,(1):18-19.
    贺玮,胡小松,赵镭,廖小军,张燕,吴继红.2009.电子舌技术在普洱散茶等级评价中的应用[J].食品工业科技,30(11):125-131.
    揭国良,何普明,丁仁凤.2005.普洱茶抗氧化特性的初步研究[J].茶叶,31(3):162-165
    雷勇杰,章桥新,张覃轶.2007.电子舌常用传感器研究进展[J].传感器与微系统,26:4-7.
    李家华,赵明,胡艳萍,张广辉,李华,肖云香,邵宛芳.2012.普洱茶发酵过程中黄酮醇类物质含量变化的研究[J].西南大学学报(自然科学版),34(2):59-65.
    李旭玫.2002.茶叶中的矿质元素对人体健康的作用[J].中国茶叶,(2):30-31.
    梁名志,陈继伟,王立波,陈林波,段志芬,单治国,付学奇,周红杰.2009.人工接种真菌固态发酵对普洱茶品质和功能的影响[J].食品科学,30(21):273-277.
    林智,吕海鹏,崔文锐,折改梅,张颖君,杨崇仁.2006.普洱茶的抗氧化酚类化学成分的研究[J].茶叶科学,26(2):112-116.
    刘本英,宋维希,孙雪梅,蒋会兵,马玲,矣兵,汪云刚,王平盛.2012.云南茶树种质资源的研究进展及发展重点[J].植物遗传资源学报,13(4):529-534.
    刘勤晋,伊奈和夫.1987.普洱茶香气成份的研究[J].西南农业大学学报,9(4):470-475.
    刘爽.2013.茶叶滋味成分研究进展[J].茶叶科学(已录用)
    刘英,吴曙光,尹州,吴广红,曹丽芬.2013.指纹图谱技术在茶叶研究上的应用[J].茶叶科学,33(1):13-20.
    吕海鹏,林智,谷记平,郭丽,谭俊峰.2007.普洱茶中的没食子酸研究[J].茶叶科学,27(2):104-110.
    吕海鹏,林智,钟秋生,王力.2010.普洱茶E8组分的化学成分研究[J].茶叶科学,30(6):423-428.
    吕海鹏,钟秋生,王力,林智.2009.普洱茶加工过程中香气成分的变化规律研究[J].茶叶科学,29(2):95-10].
    罗龙新,吴小崇,邓余良,傅尚文.1998.云南普洱茶渥堆过程中生化成分的变化及其与品质形成的关系[J].茶叶科学,18(1):58-60.
    罗龙新,吴小崇,邓余良,傅尚文.1998.云南普洱茶渥堆过程中生化成分的变化及其与品质形成的关系[J].茶叶科学,18(1):58-60.
    罗龙新,吴小崇,傅尚文.1995.不同产地普洱茶品质风格的比较[J].中国茶叶,5:8-11.
    罗婷,赵镭,胡小松,汪厚银,廖小军,吴继红.2008.绿茶矿质元素特征分析及产地判别研究[J].食品科学,29(11):494-497.
    罗一帆,郭振飞,许旋,庞式,陈剑经,韩宝瑜.2005.广东岭头单枞茶高效液相色谱指纹图谱的研究[J].食品科学,26(4):206-209.
    苗爱东,孙殿甲.2003.Excel 2002中中药指纹谱相似度计算中的应用[J].药学进展,27(1):51-54.
    倪德江,樊蓉,陈玉琼,余志,李春雷.2010.普洱茶主要氧化产物提取条件的优化及其抗氧化活性分析[J].中国茶茶叶,(2):22-24
    宁井铭,张正竹,谷勋刚,宛晓春,孙文通.2010.基于高效液相色谱的普洱晒青毛茶指纹图谱识别方法[J].农业工程学报,26(3):243-248.
    宁井铭,张正竹,王胜鹏,宛晓春,曾新生.2011.不同储存年份普洱茶傅里叶变换红外光谱研究[J].光谱学与光谱分析,31(9):2390-2393.
    宁井铭,张正竹,谷勋刚,宛晓春,孙文通.2009.云南晒青毛茶HPLC指纹图谱的研究[J].食品与发酵工业,35(9):36-40.
    邵宛芳,M N Clifford, C Powell.1995.红茶及普洱茶主要成分差异的初步研究[J].云南农业大学学报,10(4):285-291.
    邵宛芳,蔡新,杨树人,袁唯.1994.云南普洱茶品质与化学成分关系的初步研究[J].云南农业大学学报,9(1):17-22.
    石元值,马立峰,韩文炎,阮建云.2006.茶叶中磷、钾、铅、锌等17种元素的快速测定方法研究[J].食品科学,27(1):193-195.
    宋冠群,董文举,林金明,屈锋.2003.茶叶指纹谱的毛细管胶束电动色谱法研究[J].色谱,21(4):359-362.
    谭超,彭春秀,高斌,龚加顺.2012.普洱茶茶褐素类主要组分特征及光谱学性质研究[J].光谱学与光谱分析,32(4):1051-1056.
    汤克仁.2008.中国黑茶产业发展现状[J].中国茶叶,(10):4-5.
    田洋,肖蓉,徐昆龙,江波,史崇颖.2010.普洱茶加工过程中主要成分的变化规律及其各项指标的相关性[J].食品科学,31(11):20-24.
    宛晓春,2006.茶叶生物化学[M].中国农业出版社.
    王丽鸳,成浩,周健,叶阳,胡巍.2009.普洱茶的HPLC化学指纹图谱分类研究[J].浙江林业科技,29(1):25-30.
    王龙星,肖红斌,梁鑫淼,毕开顺.2002.一种评价中药色谱指纹图谱相似性的新方法:向量夹角法[J].药学学报,37(9):713-717.
    王秋萍,龚加顺,邹莎莎.2010.普洱茶发酵阶段色泽的变化及其与品质的关系[J].农业工程学报,26(Supp.1)394-399.
    王淑敏,门田重利,刘志强,刘淑莹.2005.沱茶中抗自由基化学成分的研究[J].天然产物研究与开发,17(2):131-137.
    吴少雄,郭祀远,李琳,殷建忠.2006.普洱茶营养成分分析和营养学评价[J].中国公共卫生,22(7):826.
    肖宏,2010.基于电子舌技术的龙井茶滋味品质检测研究[D].浙江大学博士学位论文.
    杨崇仁,陈可可,,张颖君.2006.茶叶的分类与普洱茶的定义[J].茶叶科学技术,(2):37-38.
    杨新河,李勤,黄建安,陆英,沈智,刘仲华.2011.普洱茶茶色素提取工艺条件的响应面分析及其抗氧化活性研究[J].食品科学,32(6):1-5.
    于勇,王俊,周鸣,2003.电子技术的研究进展及其在农产品加工中的应用.浙江大学学报(农业与生命科学版),29(5):579-584.
    张春花,单治国,袁文侠,李亚莉,孙婷婷,秦太峰,夏凯国,任洪涛,李国荣,周红杰.2011.不同有益菌固态发酵对普洱茶香气成分的影响研究[J].茶叶科学,31(4):251-258.
    张春花,单治国,周红杰.2008.云南普洱茶加工中黄酮类化合物的研究[J].茶叶通讯,35(1):7-9.
    张冬英,刘仲华,施兆鹏,刘亚林,傅冬和.2005.高通量筛选法对普洱茶降血糖血脂作用的研究[J].茶叶科学,2005,26(1):49-53.
    张灵枝,王登良,陈维信,陈玉芬.2007.不同贮藏时间的普洱茶香气成分分析[J].园艺学报,34(2):504-506.
    张强,李艳琴.2011.基于矿质元素的苦荞麦产地判别研究[J].中国农业科学,44(22):4635-4659.
    张雯洁,刘玉清,李兴从,杨崇仁.1995.云南“生态茶”的化学成分[J].云南植物研究,17(2):204-208.
    张新富,龚加顺,周红杰,吕才有,胡小静,周杨.2008.云南普洱茶中多酚类物质与品质的关系研究[J].食品科学,29(4):230-233.
    赵晓宇,李海蓉,冯福建,王丽珍,王五一,刘庆斌.2007.我国主要砖茶中F、Al等元素含量及其影响因素分析[J].农业环境科学学报,26(3):1040-1044.
    赵振军,童华荣,周黎,刘勤晋.2012.普洱茶中真菌合成洛伐他汀的能力分析[J].食品科学,33(12):173-176.
    折改梅,陈可可,张颖君,杨崇仁.2007.8-氧化咖啡因和嘧啶类生物碱在普洱熟茶中的存在[J].云南植物研究,29(6):713-716.
    折改梅,张香兰,陈可可,张颖君,杨崇仁.2005.茶氨酸和没食子酸在普洱茶中的含量变化[J].云南植物研究,27(5):572-576.
    钟秋生.2009.普洱茶香气特征成分的研究.[D].中国农业科学院研究生院硕士学位论文.
    周红杰,龚加顺,安文杰,袁文侠.2007.云南普洱茶中风味化学成分的分析研究[J].普洱,(2):112-114
    周红杰,李家华,赵龙飞,韩俊,杨行吉,杨伟,吴新庄.2004.渥堆过程中主要微生物对云南普洱茶品质形成的研究[J].茶叶科学,24(3):212-218.
    周健,成浩,叶阳,王丽鸳,贺巍,刘本英,陆文渊.2009.滇青、青饼和普洱茶(熟饼)近红外指纹图谱分析[J].核农学报,23(1):110-113.
    周湘萍,刘刚,时有明,董勤.2008.普洱茶的傅里叶变换红外光谱鉴别研究[J].光谱学与光谱分析,28(3):549-596.
    周志宏,杨崇仁.2000.云南普洱茶原料晒青毛茶的化学成分[J].云南植物研究,22(3):343-350.
    周志宏,折改梅,张颖君,杨崇仁.2006.普洱茶的香气成分[J].天然产物研究与开发,18(Suppl):5-8.
    朱宏涛,杨崇仁,李元,张颖君.2008.普洱茶后发酵过程中微生物的研究进展[J].云南植物研究,30(6):718-724.
    朱旗,M N Clifford,毛清黎,邓放明.2006.LC-MS分析普洱茶和茯砖茶与红茶成分的比较研究[J].茶叶科学,26(3):191-194.
    邹艳丽,董宝生,张伏全,何嵋,李聪,欧灵澄,何严萍.2009.普洱熟茶化学成分研究[J].云南化工,36(2):10-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700