用户名: 密码: 验证码:
酸性土壤中铝镉对柱花草铝镉吸收分配差异及其生长影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤酸化是全球环境变化中的主要问题之一,土壤酸化将导致土壤酸度的上升,导致酸性土壤中活性铝含量升高,以及一些重金属元素的淋出,会毒害植物根系,从而限制植物的生长。本文以两个不同柱花草品种西卡和圭亚那柱花草为研究对象,研究柱花草对铝镉及矿质元素吸收分配;并以不同耐铝柱花草为试验材料,研究不同耐铝的柱花草对铝胁迫的生理响应。同时研究铝镉对土壤酶及微生物毒害,以探讨其对环境的危害性。主要研究结果如下:
     1)从100多份柱花草种质中筛选出耐铝差异的柱花草种质:2个耐铝的柱花草种质品10和品107,铝敏感种质品9和品151。
     2)30μmol/L铝处理提高柱花草叶片MDA含量和电导率、H202含量,同时增加SOD、CAT、POD活性,对脯氨酸的影响小。铝敏感柱花草相对电导率、MDA大于耐铝柱花草,而POD、CAT活性低于耐铝杜花草。耐铝柱花草抗氧化系统清除铝氧化胁迫诱导的产生的自由基能力超过铝敏感柱花草。
     3)镉处理浓度10μmol/L以下,对柱花草MDA、脯氨酸含量没有影响,只有处理浓度在100μmol/L胁迫下,MDA含量升高。根据镉对热研2号的MDA含量及POD,CAT的影响大于TPRC2001-1和热研13号。
     4)土培盆栽实验结果表明,添加50mg/kg Al后降低士壤的pH及增加有效态镉的含量;促进土壤微量元素Mn、Zn、Fe溶出。对土壤酸度的影响按大小顺序为Al+Cd>Al>Cd。铝镉复合处理提高土壤有效态镉的含量。
     5)铝处理增加柱花草根部铝的含量,对地上部的铝的含量没有影响。但增加根和地上部镉的含量。铝和镉处理均对地上部Ca、Fe、P的含量没有影响,铝和镉处理增加K、Mg的含量。铝处理降低Zn的含量。铝处理增加柱花草根系Fe, Mg, Mn, Zn的含量。西卡柱花草对铝和镉的吸收低于热研2号和热研13号。
     6)铝对土壤酶活性的抑制率从大到小依次为磷酸酶>过氧化氢酶>脱氢酶>脲酶。镉对土壤酶活性的影响为抑制脱氢酶活性,促进脲酶活性,但对磷酸酶和过氧化氢酶影响极小。铝镉复合处理对过氧化氢酶和脱氢酶活性有显著的协同作用。铝主要影响参与C和P循环的土壤酶。铝抑制士壤CO2呼吸强度处理浓度在55.59-74.12mmol/kg范围,而镉促进土壤CO2呼吸强度浓度在0.44~0.88mmol/kg范围内。
     7)铝处理对土壤微生物的抑制率顺序为放线菌>真菌>细菌;铝镉复合处理对土壤微生物的抑制率顺序为真菌>放线菌>细菌;镉处理土壤微生物的抑制放线菌的生长,促进真菌的生长,低浓度促进细菌的生长,高浓度对细菌的生长比较复杂。
Soil acidification, resulting in decrease of soil acidity, increase of active aluminum content, and leaching of many heavy metal elements, is one of the major problems on global environmental change. Toxic aluminum and heavy metal was harmful for root systems and limits the development of plants. In this study, Stylosanthes scabra Vogel and stylosanthes guianensis were selected to research the difference of uptake and distribution of aluminum, cadmium and mineral elements in two different stylo species. Physiology responses to aluminum stress were compared in different Al-tolerant stylo varieties. The interaction of aluminum and cadmium to enzyme and development of microorganisms was investigated in acid soil. The main results are as follow:
     Two Al-tolerant varieties, cultivar10and cultivar107, and two Al-sensitive varieties, cultivar9and cultivar151, were screened out from more than100stylo varieties.
     The contents of MDA and H2O2, activity of SOD, CAT and POD, and relative conductivity increase distinctly in stylo leaves under Al stress condition at30μmol/L, but no effect on Pro content. Comparing with Al-sensitive stylo varieties, Al-tolerant varieties have stronger ROS-scavenging ability.
     Cadmium stress haves no effect on the content of MDA and Pro at less than10μmol/L in stylo, and enhances the content of MDA at100μmol/L. The responses of MDA, POD and CAT under cadmium stress indicated that Reyan No.2was more sensitive to cadmium than TPRC2001-1and Reyan No.13.
     The results of soil cultivation experiments indicated that aluminum stress can decrease the soil pH and enhance active cadmium content and leaching of three microelements including Mn, Zn and Fe at50mg/kg in soil. The effect on soil acidity order was as follow:Al+Cd> Al> Cd. The interaction of aluminum and cadmium significantly enhance the active cadmium content in soil.
     Al stress can enhance the content of Al in stylo root and Cd in stylo root and shoot, but no effect on the content of Al in stylo shoot. Both Al and Cd stress can enhance the content of K and Mg, but no effect on Ca, Fe and P in stylo shoot. Al stress can decrease Zn content, but increase the content of Fe, Mg, Mn and Zn in stylo root system. Under soil cultivation, Al stress promote the uptake of Ca, however, Al stress inhibit the uptake of Ca under water cultivation. The uptake of Al and Cd was lower in Stylosanthes scabra Vogel than Reyan No.2and Reyan No.13.
     The limitation of enzyme activity order was as follow under Al stress condition: phosphatase> catalase> dehydrogenase> urease. Cadmium stress can decrease the dehydrogenase activity and increase the urease active, but no effect on phosphatase and catalase activity. The interaction of aluminum and cadmium significantly limit the activity of catalase and dehydrogenase. Al has effect on enzyme related to the cycles of C and P. The appropriate cadmium stress was advantageous for the cycle of N. Al stress can limit CO2respiratory intenesity at1500-2000mg/kg, and Cd stress can enhance CO2respiratory intensity at50-1OOmg/kg.
     The limitation of soil microorganism order was as follow under Al stress condition: actinomycete> fungus> bacteria. The limitation of soil microorganism order was as follow under the interaction of aluminum and cadmium:fungus>actinomycete bacteria. Cadmium stress can limit the development of actinomycete and promote the development of fungus. Cadmium stress promotes the development of bacteria under low concentration. The effect of cadmium on the development of bacteria was complicated under high concentration.
引文
[1]Achary V M, Jena S, Panda K K, Panda B B. Aluminium induced oxidative stress and DNA damage in root cells of Allium cepa L. Ecotox Environ Safe. 2008,70(2):300-310.
    [2]Adrinao D C. Trance elements in terrestrial environments:Biogeochemistry, Bioavailability, and Risks of Metals (2nd ed.).2001,New York:Springer.
    [3]Barcelo J, Guevara P, Poschenrieder C. Silicon amelioration of aluminium toxicity in teosinte (Zea mays L. ssp. Mexicana). Plant Soil,1993,154: 249-255
    [4]Baruah M, Mishra RR. Dehydrogenase and urease activities in rice field soils. Soil Biol. Biochem.1984,16:423-424.
    [5]Benckiser G, Santiago S, Neue HU, Watanabe I, Ottow JCG (1984).Effect of fertilization and exudation, dehydrogenase activity, ironreducing populations and Fe2+ formation in the rhizosphere of rice (Oryza sativa L.) in relation to iron toxicity. Plant Soil 79:305-316.
    [6]Bingham F T, Page A L, Strong J E. Yield and cadmium content of rice grain in relation to addition rates of cadmium, copper, nickel and zinc with sewage and liming. Soil Sci,1980,3:32-38
    [7]Cho S C, Chao Y Y, Kao CH. Calcium deficiency increases Cd toxicity and Ca is required for heat-shock induced Cd tolerance in rice seedlings. J Plant Physiol.2012,169(9):892-898.
    [8]Chuan C N, Shu G Y, Liu J C. Solubility of heavy metal in a contaminated soil: effect of redox potential and pH. Water Air Soil Pollution,1996,90:534-556
    [9]Cloutier-Hurteau B, Turmel M C, Sauve S, Courchesne F. The speciation of water-soluble Al and Zn in the rhizosphere of forest soils. J Environ Monit. 2010,12(6):1274-1286.
    [10]Cronan, C. S. Differential adsorption of Al, Ca, and Mg by roots of red spruce (Picearubens Sarg.),1991,8(3):227-237
    [11]Cuypers A, Smeets K, Ruytinx J, Opdenakker K, Keunen E, Remans T, Horemans N, Vanhoudt N, Van Sanden S, Van Belleghem F, Guisez Y. Colpaert J,Vangronsveld J. The cellular redox state as a modulator in cadmium and copper responses in Arabidopsis thaliana seedlings. J Plant Physiol.2012, 168(4):309-316.
    [12]Dai J, Becquer T, Rouiller J H,et al. Influence of heavy metals on C and N mineralisation and microbial biomass in Zn-, Pb-, Cu-, and Cd-contaminated soils [J]. Applied Soil Ecology,2004,25(2):99-109.
    [13]DeLaune P B, Moore P A, Jr Lemunyon J L. Effect of chemical and microbial amendment on phosphorus runoff from composted poultry litter. J Environ Qual,2006,35(4):1291-1296.
    [14]Dkhar MS, Mishra RR. Dehydrogenase and urease activities ofmaize (Zea mays L.) field soils. Plant Soil,1983,70:327-333.
    [15]Doran J W, Parkin T B. Defining and assessing soil quality. In:Doran JW, Coleman DC, Bezdicek DF eds. Defining soil Quality for a Sustainable Environment. Soil Society of America Spetial Publication (SSSA Spec. Publ). 35. SSSA and ASA, Madison.Wisconsin.1994,211
    [16]Eduardo D, Keltjens WG. Long-term effects of aluminium exposure on nutrient uptake by maize genotypes differing in aluminium resistance. J. Plant Nutr.,2005,28:323-333
    [17]Eticha D, The C, Welcker C, Narro L, Staβ A, and Horst WJ. Aluminium-induced callose formation in root apices:inheritance and selection trait for adaptation of tropical maize to acid soils. Field Crops Res.,2005,93: 252-263.
    [18]Fageria NK, Carvalho JRP. Influence of aluminum in nutrient solutions on chemical composition in upland rice cultivars. Plant Soil,1982,69:31-44
    [19]Fageria NK, Wright RJ, Baligar VC. Rice cultivar response to aluminum in nutrient solution. Commun. Soil Sci. Plant Anal,1988,19:1133-1142
    [20]Fliebbach A, Martens R, Reber H H. Soil microbial biomass and activity in soil treated with heavy metal contaminated sewage sludge[J]. Soil Biology Biochemistry.,1994,26:1201-1205.
    [21]Frank T, Malkomes HP. Influence of temperature on microbialactivities and their reaction to the herbicide Goltix in different soils under laboratory conditions. Zentralblatt fur Mikrobiol.1993,148:403-412.
    [22]Gallego S M, Benavides M P, Tomaro M L. Effect of heavy metal ion excess on sunflower leaves:evidence for involvement of oxidative stress. Plant Sci, 1996,121:151-159
    [23]Gassmann W, Schroeder JI. Inward-rectifying K+ channels in root hairs of wheat. A mechanism for aluminum-sensitive low-affinity K+ uptake and membrane potential control. Plant Physiol.,1994,105:1399-1408
    [24]Grimme H. Aluminium induced magnesium deficiency in oats. Z. Pflanzenemahr. Bodenkd,1983,146:666-676
    [25]Halliwell B, Gutteridge J M. Oxygen free radicals and iron in relation to biology and medicine:some problems and concepts. Arch Biochem and Biophy,1986,246:501-514
    [26]Horst W J. The role of the apoplast in aluminium toxicity and resistance of higher plants:a review. Z. Pflanzenernahr. Bodenk,1995,158:419-428.
    [27]Horst WJ, Puschel A-K, and Schmohl N. Induction of callose formation is a sensitive marker for genotypic aluminium sensitivity in maize. Plant Soil, 1997,192:23-30
    [28]Illmer P and W Mutschlechner. Effect of temperature and pH on the toxicity of aluminium towards two new, soil born species of Arthrobacter sp. J Basic Microbiol.2004,44(2):98-105.
    [29]Imlay J A, Chin SM, Linn S. Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science,1988,240:640-642
    [30]Jones DL, Kochian LV. Aluminium inhibition of the inositol 1,4, 5-triphosphate signal transduction pathway in wheat roots:a role in aluminium toxicity? Plant Cell,1995,7:1913-1922
    [31]Kandeler E, Kampichler C, Horak O. Influence of heavy metals on the functional diversity of soil microbial communites[J]. Biol Fertil Soils,1996, 23:299-306.
    [32]Karina B. Balestrasse, Susana M. Gallego and Man'a L. Tomaro. Aluminum stress affects nitrogen fixation and assimilation in soybean (Glycine max L.) Plant Growth Regu,2006,48:271-281
    [33]Keltjens WG. Short-term effects of Al on nutrient uptake, H+ efflux, root respiration and nitrate reductase activity of two sorghum genotypes differing in Al-susceptibility. Commun Soil Sci Plant Anal.,1988,19:1155-1163
    [34]Keltjens, W. G. Effects of aluminum on growth and nutrient status of Douglas-fir seedlings grown in culture solution. Tree Physiol,1990,6(2): 165-75
    [35]Kirkham M B. Cadmium in plants on polluted soils:effects of soil factors, hyperaccumulation and amendments[J]. Geoderma,2006,137,19-32.
    [36]Kochian L V, Hoekenga O A, Pifieros M A. How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annual Review of Plant Biology,2004,55:459-493
    [37]Kochian LV, Pifieros MA, Hoekenga O A. The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. Plant and Soil, 2005,274:175-195
    [38]Kollmeier M, Felle HH, Horst WJ. Genotypical differences in aluminum resistence of maize are expressed in the distal part of the transition zone. Is reduced basipetal auxin flow involved in inhibition of root elongation by aluminum? Plant Physiol.,2000,122:945-956
    [39]Lazzaro A, Hartmann M, Blaser P, Widmer F, Schulin R, Frey B. Bacterial community structure and activity in different Cd-treated forest soils. FEMS Microbiol Ecol.2006,58(2):278-292.
    [40]Li Xiao Feng, Zuo Fang Hua, Ling Gui Zhi, et al. Secretion of citrate from roots in response to aluminum and low phosphorus stresses in Stylosanthes. Plant Soil,2009,325(1-2):219-229
    [41]Liao M, Xie X M, Ma A L, Peng Y. Different influences of cadmium on soil microbial activity and structure with Chinese cabbage cultivated and non-cultivated. J Soils Sediments.2010,10:818-826.
    [42]Liu Shu Qing, Yang Zhi Xin, Wang Xiao Ming, et al. Effects of Cd and Pb pollution on soil enzymatic activities and soil microbiota. Front Agric China, 2007,1(1):85-89
    [43]Liu Y T, Chen Z S, Hong C Y. Cadmium-induced physiological response and antioxidant enzyme changes in the novel cadmium accumulator, Tagetes patula. J Hazard Mater, 2012,189(3):724-731.
    [44]Ma J F and Hiradate S. Form of aluminium for uptake and translocation in buckwheat(Fagopyrum esculentum Moench). Planta,2000,211:355-360.
    [45]Ma J F, Hiradate S, Matsumoto H. High aluminum resistance in buckwheat Ⅱ. Oxalic acid detoxifies aluminum internally. Plant Physiol.,1998,117: 753-759.
    [46]Ma Z and Miyasaka SC. Oxalate exudation by taro in response to Al. Plant Physiol.,1998,118:861-865
    [47]Makoi J. H. J. R. and Ndakidemi P. A. Selected soil enzymes:Examples of their potential roles in the ecosystem. African Journal of Biotechnology, 2008,7(3):181-191
    [48]Marzadori C, Ciavatta C, Montecchio D, et al. Effects of lead pollution on different soil enzyme activities. Biology and Fertility of Soils,1996,22(1-2): 53-58
    [49]McGrath S P, Chaudhri A M, Giller K E. Long-term effects of metals in sewage sludge on soils, microorganisms and plants. Journal of industrial microbiology,1995,14:94-101.
    [50]Meriga B, Reddy B K, Rao K R, Kishor P B K. Aluminiuminduced production of oxygen radicals, lipid peroxidation and DNA damage in seedlings of rice (Oryza sativa). J Plant Physiol.2003,161:63-68
    [51]Mossor-Pietraszewska T. Effect of aluminium on plant growth and metabolism. Acta Biochimica Polonica,2001,48:673-686
    [52]Nannipieri P, Ascher J, Ceccherini M T, et al. Effects of root exudates in microbial diversity and activity in rhizosphere soils. In:Nautiyal C S, Dion P Molecular Mechanisms of Plant and Microbe Coexistence. Soil Biology, Vol.15. Germany:Springer-Verlag,2008:339-368
    [53]Nichol BE., Oliveira LA, Glass ADM, Siddiqi, MY. The effects of aluminum on the influx of calcium, potassium, ammonium, nitrate, and phosphate in an aluminum-sensitive cultivar of barley (Hordeum vulgare L.). Plant Physiol., 1993,101:1263-1266
    [54]Noctor G, Foyer C H. Ascorbate and glutathione:Keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol,1998,49:249-279
    [55]Pandey N and Singh G. K. Studies on antioxidative enzymes induced by cadmium in pea plants (Pisum sativum). J Environ Biol,2012,33(2):201-206.
    [56]Pereira L B, Mazzanti C M, Mazzanti C M A et al. Aluminum-induced oxidative stress in cucumber. Plant Physiol Biochem.2010,48(8):683-689.
    [57]Pina R G and C Cervantes. Microbial interactions with aluminium. Biometals. 1996,9(3):311-316.
    [58]Podazza G, Arias M, Prado F E. Cadmium accumulation and strategies to avoid its toxicity in roots of the citrus rootstock Citrumelo. J Hazard Mater. 2012,215-216
    [59]Qin, R, Jiao Y, Zhang S, Jiang W, Liu D. Effects of aluminum on nucleoli in root tip cells and selected physiological and biochemical characters in Allium cepa var. agrogarum L. BMC Plant Biol.2010,10:225-235.
    [60]Reddy C N, Patrick W H. Effect of redox potential and pH on the uptake of cadmium and lead. J. Environ Qual,1977,6:259-262
    [61]Reddy GB and Faza A. Dehydrogenase activity in sludge amended soil. Soil Biol. Biochem.1989,21(2):327.
    [62]Rengel Z, and Robinson DL. Aluminium effects on growth and macronutrient uptake in annual ryegrass. Agron J.,1989a,81:208-215
    [63]Rengel Z, and Robinson DL. Competitive Al3+ inhibition of net Mg2+ uptake by intact Lolium multiflorum roots. I. Kinetics. Plant Physiol.,1989b, 91:1407-1413
    [64]Rousk J, Brookes P C, Baath E. Contrasting soil pH effects on fungal and bacterial growth suggests functional redundancy in carbon mineralization. Appl Environ Microbiol.2009,75(6):1589-1596.
    [65]Ryan PR, Delhaize E, Randall PJ.1995. Characterisation of Al-stimulated efflux of malate from the apices of Al-tolerant wheat roots. Planta 196:103-110.
    [66]Ryan PR, DiTomaso JM, Kochian LV.1993. Aluminium toxicity in roots:an investigation of spatial sensitivity and the role of the root cap. Journal of Experimental Botany 44:437-446.
    [67]Sahoo P K, Bhattacharyya P, Tripathy S, Equeenuddin S M, Panigrahi M K. Influence of different forms of acidities on soil microbiological properties and enzyme activities at an acid mine drainage contaminated site. J Hazard Mater. 2010,179(1-3):966-75.
    [68]Schutzendubel A, Polle A. Plant responses to abiotic stresses:heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot, 2002,53:1351-1365
    [69]Shao Y, Zhang W, Liu Z, Sun Y, Chen D, Wu J, Zhou L, Xia H, Neher D A, Fu S. Responses of soil microbial and nematode communities to aluminum toxicity in vegetated oil-shale-waste lands. Ecotoxicology,2012,21(8): 2132-42.
    [70]Sharma P, Dubey R S. Involvement of oxidative stress and role of antioxidative defense system in growing rice seedlings exposed to toxic concentrations of aluminum. Plant Cell Rep.2007,26(11):2027-2038.
    [71]Shen RF, Iwashita T, Ma JF. Form of Al changes with Al concentration in leaves of buckwheat. J. Exp. Bot.,2004,55:131-136
    [72]Shukurova N, Pen-Mouratov S, Steinberger Y. The impact of the almalyk industrial complex on soil chemical and biological properties[J]. Environmental Pollution,2005,136:331-340.
    [73]Silva JR, Smyth TJ, Moxley DF, Carter TE, Allen NS, and Rufty TW. Aluminum accumulation at nuclei of cells in the root tip. Fluorescence detection using lumogallion and confocal laser scanning microscopy. Plant Physiol.,2000,123:543-552.
    [74]Sivaguru M, Horst WJ. The distal part of the transition zone is the most aluminium-sensitive apical root zone of Zea mays L. Plant Physiol.,1998,116: 155-163
    [75]Sposito G. ed. The Environmental Chemistry of Aluminum. Second Edition. Boca Raton:LEWIS Publishers,1996.344-351
    [76]Staβ A, Horst W J. Callose in abiotic stress. In:Bacic A, Fincher GB, Stone BA. eds. Chemistry, biochemistry, and biology of (1/3)-b-glucans and related polysaccharides. Burlington, MA:Academic Press,2009,499-524.
    [77]Warembourg FR, Roumet C, Lafont F. Differences in rhizosphere carbon-partitioning among plant species of different families [J]. Plant Soil, 2003,256(2):347-357
    [78]Wissemeier AH, and Horst WJ. Effect of Calcium supply on aluminium-induced callose formation, its distribution and persistence in roots of soybean (Glycine max (L.) Merr.). J. Plant Physiol.,1995,145:470-476
    [79]Wu L, Li Z, Akahane I, Liu L, Han C, Makino T, Luo Y, Christie P. Effects of organic amendments on Cd, Zn and Cu bioavailability in soil with repeated phytoremediation by Sedum plumbizincicola. Int J Phytoremediation.2012, 14(10):1024-1038.
    [80]Xu J, Zhu Y,Ge Q, Li Y, Sun J, Zhang Y, Liu X. Comparative physiological responses of Solanum nigrum and Solanum torvum to cadmium stress. New Phytol,2012,196(1):125-138.
    [81]Yang S, Xie J, Li Q, Yang S, Xie J et al. Oxidative response and antioxidative mechanism in germinating soybean seeds exposed to cadmium. Int J Environ Res Public Health.2012,9(8):2827-2838.
    [82]Yang Z, Liu S, Zheng D, Feng S. Effects of cadium, zinc andlead on soil enzyme activities. J. Environ. Sci.2006,18(6):1135-1141.
    [83]Zhang X, Li C, Nan Z. Antioxidative enzymes play key roles in cadmium tolerance of Phytolacca americana. Huan Jing Ke Xue,2011,32(3):896-900.
    [84]Zheng SJ, Yang JL, He YF, Yu XH, Zhang L, You JF, Shen RF and Matsumoto H. Immobilization of aluminium with phosphorus in roots is associated with high aluminium resistance in buckwheat. Plant Physiol.,2005,138:297-303
    [85]陈涛.张士灌区镉土改良和水稻镉污染防治研究.环境科学,1980,1(5):7-11
    [86]胡宏伟,束文圣,蓝崇钰,王伯荪.乐昌铅锌尾矿的酸化及重金属溶出的淋溶实验研究.环境科学与技术.1999(3):1-3
    [87]李花粉.根际重金属污染.中国农业科技导报,2000,2(4):54-59
    [88]李素霞,谢朝阳,胡承孝,龚丽,杨苗,晏文峰,李梦维.湖北农业科学.2010,49(4):845-847
    [89]鲁如坤主编.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000
    [90]罗立新,孙铁晰,靳月华.镉胁迫对小麦叶片细胞膜脂过氧化的影响.中国环境科学,1998,18:72-75
    [91]全国土壤普查办公室编,中国土壤..中国农业出版社.1998,123-147
    [92]沈仁芳.铝在土壤-植物中的行为及植物的适应机制.科学出版社pp7
    [93]盛献臻,李媛媛,赵秋香.模拟酸雨下尾矿中重金属Cu、Zn的释放特征.广东化工,2011,6(38):142-144
    [94]苏玲,张永松,林咸永,罗安程.维管植物的镉毒和耐性机制.植物营养与肥料学报,2000,6(1):106-112
    [95]孙本华,胡正义,吕家珑,周丽娜,徐成凯.大气氮沉降对阔叶林红壤淋溶水化学模拟研究.生态学报,2006,26(6):1872-1881.
    [96]孙本华,胡正义,吕家珑,周丽娜,徐成凯.模拟氮沉降对红壤阳离子淋溶的影响研究.水土保持学报,2007,27(1):18-21.
    [97]滕应,黄昌勇,龙健,等.矿区侵蚀土壤的微生物活性及群落多样性研究[J].水土保持学报,2003,17(1):115-118.
    [98]土壤微生物研究方法 中国科学院南京土壤研究所微生物室编著 科学出版社 1985第一版
    [99]L壤微生物研究会编(日).土壤微生物实验法[M].叶维青,张维谦译.北京:科学出版社,1983.520-523
    [100]汪吉东,高秀美,陈丹艳,张永春,许仙菊,宁运旺,胡永红.不同pH降雨淋溶对原状水稻土土壤酸化的影响.水土保持学报,2009,23(4):118-122
    [101]徐仁扣,季国亮.pH对酸性土壤中铝的溶出和铝离子形态分布的影响.土壤学报,1998,162-171
    [102]许中坚,张华,史红文.模拟酸雨对红壤稀土元素释放的影响研究.水土保持学报,2007,3(4):12-15.
    [103]杨济龙,祖艳群,洪常青,等.蔬菜土壤微生物种群数量与土壤重金属含量的关系[J].生态环境,2003,12(3):281-284.
    [104]杨明杰,林咸永,杨肖娥.Cd对不同类植物生长和养分积累的影响.应用生态学报,1998,9(1):89-94
    [105]杨小弟,章福平,王先龙,干宁,邹公伟,毕树平.环境与生物体系中铝形态分析技术的新进展.分析化学,2003,31:1131-1138
    [106]杨元根,Paterson E, Campbel C.城市土壤中重金属元素积累及其微生物效应[J].环境科学,2001,22(17):44-48.
    [107]曾路生,廖敏,黄昌勇,等.镉污染对水稻土微生物量、酶活性及水稻生理指标的影响[J].应用生态学报,2005,16(11):2162-2167
    [108]赵其国,吴志东,张桃林.我国东南红壤丘陵地区农业持续发展和生态环境建设Ⅰ.优势、潜力和问题.土壤.1998,113(3):113-120
    [109]赵志忠,毕华,唐少霞,刘强.海南岛西部地区砖红壤中常、微量元素的垂向分异研究.海南师范学院学报(自然科学版).2004,17(4):370-377
    [110]钟晓兰,周生路,李江涛,黄明丽,赵其国.模拟酸雨对土壤重金属镉形态转化的影响.土壤,2009,41(4):566-571
    [111]周红卫,施国新,徐勤松.Cr6+和Cr3+对水花生几种生理生化指标的影响比较.农村生态环境,2003,18:35-40
    [112]周礼恺.土壤酶学[M].北京:科学出版社,1987.
    [113]周修萍,秦文娟.华南三省(区)土壤对酸雨的敏感性及其分区.环境科学学报,1992,12(1):78-83.
    [114]朱亮,邵孝侯.耕作层中重金属Cd形态分布规律及植物有效性研究.河海大学学报,1997,25(3):50-56

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700