用户名: 密码: 验证码:
绍兴黄酒的陈酿特性与指纹图谱检测方法及装置研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄酒是我国最古老的独有酒种,集营养和保健为一体,被誉为“国粹”。然而目前针对黄酒的基础研究较为薄弱,对黄酒陈酿过程中风味成分的陈酿机理缺乏全面系统的研究;且检测水平落后,对黄酒产品的质量控制仅局限在几项常规指标,如酒精度、总糖、总酸,对与黄酒风味形成密切相关的微量功能性组分了解甚少,与消费者对黄酒品质越来越高的要求极不相称,阻碍了黄酒产业进一步的发展与壮大。本研究是对本课题组前期研究(基于近红外光谱的绍兴黄酒风味成分与酒龄的检测分析)的进一步深入和拓展,目的是建立黄酒不同陈酿阶段以及酒龄的指纹图谱快速检测方法,为黄酒产品质量控制、风险评估提供新手段、新装备。
     本文以绍兴黄酒为研究对象,综合利用仪器分析、可见/近红外、近红外和中红外光谱技术,对绍兴黄酒的陈酿特性及其酒龄和品质的指纹图谱检测方法和装置开展了研究,获取了基于黄酒中多类化学组分以及近红外光谱的黄酒酒龄特征指纹图谱;建立并对比了黄酒多种风味成分的近红外、中红外光谱定量分析模型;分析了温度对黄酒品质可见/近红外光谱检测精度的影响,确定了最佳检测温度水平,在此基础上开发了基于温度控制的黄酒品质实时检测系统。
     本文的主要研究结果和结论如下:
     (1)对2007年冬酿绍兴黄酒在陈酿3至45个月时间范围内,各种特征风味成分的含量变化进行了动态追踪检测。结果表明,在黄酒陈酿过程中:①6项常规指标中,酒精度和总糖含量呈下降趋势,非糖固形物和总酸含量则稳步上升,氨基酸态氮和pH的变化趋势不明显。除pH外,其余指标的含量随陈酿过程存在显著差异;②乳酸与总酸一致,含量不断增加,并存在显著性差异;③5个糖类指标中,葡萄糖含量变化趋势不明显,未检测出显著性差异。麦芽糖、异麦芽糖、潘糖和异麦芽三糖则存在显著性差异,但无明显变化趋势;④黄酒中的9种主要金属离子元素(Na、Mg、 A1、K、Ca、Mn、Fe、Cu、Zn)的含量在陈酿过程中均存在一定波动,无明显增加或降低趋势。除Ca与Cu外,其它7种元素均存在显著性差异;⑤16种游离氨基酸指标中,天门冬氨酸、谷氨酸、脯氨酸、异亮氨酸、亮氨酸、酪氨酸、赖氨酸、组氨酸、精氨酸及总氨基酸含量在陈酿过程中均有降低趋势,其余7种氨基酸(苏氨酸、丝氨酸、甘氨酸、丙氨酸、缬氨酸、蛋氨酸、苯丙氨酸)含量总体保持稳定。除天门冬氨酸、甘氨酸、丙氨酸、亮氨酸、酪氨酸和苯丙氨酸外,其余氨基酸的含量均存在显著差异;⑥11种挥发性成分指标(异丁醇、异戊醇、2,3-丁二醇、β-苯乙醇、丙三醇、乙酸乙酯、丁酸乙酯、乳酸乙酯、壬醛、苯甲醛、癸酸乙酯)中,异丁醇、异戊醇、壬醛、苯甲醛含量在陈酿中有所降低,丙三醇含量出现上升,其余指标含量均出现一定波动,无显著变化规律。
     结果表明,黄酒中的大部分常规指标、乳酸、金属离子、氨基酸等化学组分,在陈酿过程中均参与了复杂的物理化学变化,使得其含量经历了显著的变化。但黄酒中主要糖类指标,葡萄糖的含量未检测出显著性差异,可推断糖类指标在陈酿过程中变化不大。由于所用检测方法的限制,11种挥发性成分中大部分指标未发现有明显变化趋势,其陈酿机理有待进一步研究。
     (2)建立了基于以上各类化学组分的黄酒酒龄判别模型。结果如下:①基于6项常规指标主成分得分的SLDA1、以及基于其组分含量的SLDA2和PLS-DA酒龄判别正确率分别为50.6%,48.7%和75.7%;②基于5种糖类指标的SLDA1、SLDA2和PLS-DA酒龄判别模型的判别正确率分别为39.3%,36.4%和66.5%;③基于9种金属离子的SLDA1、SLDA2和PLS-DA酒龄判别模型的判别正确率分别达到72.7%,73.4%和81.4%;④综合常规指标、乳酸、糖类以及金属离子四类化学指标,所建立的SLDA1、 SLDA2和PLS-DA判别模型对酒龄的判别正确率分别为91.0%,86.6%和91.2%;⑤基于16种氨基酸指标的SLDA1、SLDA2和PLS-DA酒龄判别模型的判别正确率达到86.4%,85.6%和91.2%;⑥基于11种挥发性成分指标所建立的SLDA1、SLDA2和PLS-DA模型对酒龄的判别正确率分别为90.6%,90.6%和92.1%。
     结果表明,综合常规指标、乳酸、糖类和金属离子,以及氨基酸、挥发性成分所建立的酒龄判别模型,最佳判别正确率均超过90%,可用于黄酒酒龄鉴别和酒龄指纹图谱检测方法的建立。
     (3)分析了不同陈酿阶段黄酒基酒以及不同标注酒龄勾兑酒在800nm-2500nm范围内的近红外光谱,发现两者的光谱吸收特征一致,主要吸收峰均位于1455nm、1692nm、1776nm、2266nm、2302nm以及1900-1950nm处,与黄酒中的糖、酸、氨基酸等风味成分中的主要基团C-H、O-H、N-H等的吸收密切相关。主成分分析结果显示,不同酒龄的基酒和勾兑酒样品的均有明显聚类趋势。基于LDA、LS-SVM以及PLS-DA三种模式识别方法所建立的基酒酒龄判别模型,其建模集判别正确率分别为93.6%,98.7%和94.4%,预测集判别正确率分别为96.3%,91.3%和95.2%;勾兑酒酒龄的LDA、LS-SVM、PLS-DA以及DPLS模型的建模集判别正确率分别为85.0%,100%,99.2%和100%,预测集判别正确率分别为72.5%,87.5%,86.3%和95.0%。
     结果表明近红外光谱能提取不同酒龄黄酒的整体差异信息,可用于基酒以及勾兑酒的酒龄的检测分析和指纹图谱的建立。
     (4)建立了黄酒中的6项常规指标、乳酸、5种糖、16种氨基酸及总氨基酸含量的近红外、中红外光谱PLSR定量分析模型。①对常规指标和乳酸的分析结果表明,所建近红外、中红外光谱分析模型均可用于总糖、非糖固形物以及氨基酸态氮的定量分析(模型RPD>2.0),以及总酸、pH值、乳酸的定性分析(模型RPD>1.5)。除乳酸外,近红外光谱分析模型的性能均优于中红外光谱。②对糖类指标的分析结果表明,所建近、中红外光谱分析模型可用于葡萄糖含量的定量检测(模型RPD>2.0),异麦芽三糖的近红外光谱分析结果较优(模型RPD=1.95),而麦芽糖的中红外光谱分析结果较优(模型RPD=1.97),其余指标检测精度不佳,模型鲁棒性欠缺(模型RPD<1.5)。③对氨基酸指标的分析结果表明,近红外光谱分析模型性能普遍较优,除脯氨酸、苯丙氨酸、组氨酸以及总氨基酸外,其余指标定量分析模型的RPD值均超过1.5,其中,天门冬氨酸、异亮氨酸、酪氨酸、精氨酸模型的RPD值大于2.0。而中红外模型的鲁棒性普遍欠缺,仅天门冬氨酸、谷氨酸、异亮氨酸、苯丙氨酸模型的RPD值大于或等于1.5,丝氨酸模型的RPD值接近1.5,具有定性分析能力,其它指标均低于1.50。除脯氨酸和精氨酸外,近红外光谱模型的整体性能均优于中红外光谱。
     结果表明,近红外、中红外光谱均可用于黄酒中主要常规指标、葡萄糖、乳酸,以及部分氨基酸指标的定量定性检测分析,近红外光谱分析模型的性能总体优于中红外光谱。
     (5)分析了5℃,10℃,15℃,20℃,25℃,30℃,35℃温度水平下黄酒样品的可见/近红外光谱(303-1700nm)的变化规律。原始光谱中,在1340-1480nm波段范围内,在高频(短波)波段,吸收峰随着温度的上升而逐渐增高,反之,在低频(长波)波段,吸收峰随着温度上升而不断降低。二阶微分光谱中,在1320nm和1358nm处的吸收峰值随温度上升而增强,而1404nm处峰值随温度上升而降低。主成分分析结果显示不同温度下的样品光谱有较明显的聚类趋势,表明温度对黄酒的可见/近红外光谱影响显著。由于氢键结合会使得水分子的伸缩振动向高频转移,而弯曲振动则向低频转移。温度越高会促使氢键发生结合,从而伸缩振动会向高频(短波)转移,由此造成样品光谱发生变化。
     建立了不同温度下黄酒品质指标的SMLR定量分析模型,确定了酒精度、总糖、非糖固形物、总酸以及氨基酸态氮的最佳检测温度分别为:15℃,20℃,20℃,15℃和20℃。酒精度、总糖模型的精度较高,鲁棒性优(模型RPD>2.5),总酸模型精度一般,仅具有定性分析能力(模型RPD>1.5),非糖固形物以及氨基酸态氮模型精度不佳(模型RPD<1.5)。运用7个温度下的黄酒样品光谱建立了酒精度、总糖和总酸的温度补偿检测模型。结果表明,酒精度的温度补偿效果较优(模型RPD=3.81),而总糖和总酸温度补偿效果不佳(模型RPD<1.5)。
     利用蔡司便携式光谱仪及其外部程序开发包、光纤、控温样品池,构建和开发了基于可见/近红外光谱的黄酒品质(酒精度、总糖以及总酸)实时检测的软、硬件系统,并对该检测装置的性能进行了实验验证。在15℃水平下,对37个样品的检测结果为:①酒精度的预测相关系数rp、RMSEP以及RPD值分别为0.979,0.464%和3.78;②总糖的rp, RMSEP以及RPD值分别为0.766,5.78g/L和1.50;③总酸的rp、RMSEP以及RPD值分别为0.630,0.664g/L和1.24。结果表明该检测系统可用于酒精度的准确定量检测,但总糖和总酸指标的检测精度不佳,模型精度有待提升。
Chinese rice wine is the most ancient unique wine kind of nutrition and health in China, and be honored as "essence" of the country. However, at present, the basic research towards rice wine is relative weak. The detailed changes in various flavor components during rice wine aging still remain uncertain. In additional, due to the backward technologies used in quality control of rice wine, only a few routine chemical parameters, such as alcohol degree, total sugars, total acids, were analyzed in conventional testes. Little is known about the small amounts of functional components that are closely related to its flavor, which cannot meet consumers'higher requirements towards rice wine products. It also remains as a barrier for the growth of rice wine industry. This study is a further extension of the former research projects carried out by our group members (flavor components quantification and age discrimination of rice wines based on NIR spectroscopy), with its aim to establish analytical methods and devices based on fingerprint techniques for aging status characterization as well as quality control and risk assessment of rice wine products.
     The object of this research is Shaoxing rice wine, which is the best representation of Chinese rice wine. Multiple technologies based on instrument analysis, VIS/NIR, NIR and MIR spectroscopy were applied as fingerprint techniques for quality evaluation of rice wine. Fingerprints of rice wine of various ageing status based on chemical compositions as well as NIR spectra were obtained. Quantification of flavor components in rice wine based on both NIR and MIR spectroscopy was also undertaken and compared. The effect of temperature on the performance for rice wine quality determination based on VIS/NIR spectroscopy was investigated, and the optimal temperature level was determined. A hardware and software system for quality determination of rice wine products based on temperature control was then developed.
     The main contents and conclusions were:
     (1) Continuous tracing of the changes in various flavor components in Shaoxing wines during the aging period of3to45months was undertaken. The results showed that,①Among six routine parameters, the content of alcohol degree and total sugar decreased, while the content of non-sugar solid and total acid increased. The change of pH and amino acid nitrogen was not clear. Besides pH, the remaining five indexes were all found to be significant different.②The content of lactic acid increased, similar to total acid. Significant difference was also detected.③Among five sugars, the change of glucose was not obvious, and no significant difference between different aging status was detected. The remaining four sugar parameters were all significant different, but their changes were also not obvious.④The content of Na, Mg, Al, K, Ca, Mn, Fe, Cu and Zn in rice wines fluctuated during aging, no obvious increase or decrease trend was observed. Besides Ca and Cu, other elements were all found to be significantly modified during ageing.⑤Among16free amino acids, the content of aspartic acid, glutamic acid, proline, isoleucine, leucine, tyrosine, lysine, histidine, arginine and total amino acids decreased, while the remaining threonine, serine, glycine, alanine, valine, methionine, phenylalanine remained relative stable. Besides aspartic acid, glycine, alanine, leucine, tyrosine and phenylalanine, other amino acids were all found to be significant different.⑥Among11volatile components, the content of isobutanol, isoamylol, nonanal and benzaldehyde decreased, while the content of glycerol increased. The changes of others were not obvious. Significant different was detected for all volatile parameters.
     The results indicated that most of routine parameters, lactic acid, elements, and amino acids, were involved in the complicated physical and chemical reactions in rice wine, and went through significant changes during aging. However, glucose was detected not to be significant different, which suggested that sugars might not go through obvious changes. The changes of most volatile compounds were not obvious, and further research was needed.
     (2) Aging status discrimination models were established based on the above chemical compositions. The results showed:①The accuracy obtained by SLDA1(base on PCs), SLDA2(based on chemical compositions) and PLS-DA models was50.6%,48.7%and 75.7%, respectively based on six routine parameters.②The accuracy obtained by SLDA1, SLDA2and PLS-DA models was39.3%,36.4%and66.5%, respectively based on sugars.③Based on nine mineral elements, the accuracy obtained by SLDA1, SLDA2and PLS-DA models was72.7%,73.4%and81.4%, respectively.④The accuracy obtained by SLDA1, SLDA2and PLS-DA models was91.0%,86.6%and91.2%, respectively based on routine parameters, lactic acid, sugars and elements.⑤SLDA1, SLDA2and PLS-DA models based on16amino acids gave the accuracy of86.4%,85.6%and91.2%, respectively.⑥The accuracy obtained by SLDA1, SLDA2and PLS-DA models was90.6%,90.6%and92.1%, respectively based on11volatile compounds.
     The results indicated that the discrimination models based on routine parameters, lactic acid, sugars and elements, as well as amino acids and volatile compounds reached a relative high accuracy over90%. These flavor components could be applied as fingerprint for aging status characterization of rice wine.
     (3) NIR spectra of base and blended rice wines in the range of800-2500nm were analyzed and compared. The main absorption peaks were all found to be at round1455nm,1692nm,1776nm,2266nm,2302nm and1900-1950nm, related to C-H, O-H, N-H functional groups in sugars, acids, amino acids of rice wines. PCA results showed that both base and blended rice wines of different aging status could be separated clearly. LDA, LS-SVM and PLS-DA were used to establish models for base rice wine age discrimination. The accuracy obtained were93.6%,98.7%and94.4%, respectively in calibration, and96.3%,91.3%and95.2%in prediction. For blended rice wine discrimination, the accuracy obtained in calibration were85.0%,100%,99.2%and100%by LDA, LS-SVM, PLS-DA and DPLS. And were72.5%,87.5%,86.3%and95.0%in prediction.
     The results indicated that NIR spectroscopy can obtain the holistic difference between samples, and can be used to establish fingerprint of rice wine of different aging status or ages.
     (4) PLSR quantification of routine parameters, lactic acid, sugars and amino acids in rice wine based on NIR and MIR spectroscopy was carried out. The results showed:①For the determination of routine parameters and lactic acid, both NIR and MIR spectroscopy could be used for quantitative analysis of total sugar, non-sugar solid and amino acid nitrogen. The RPD values of the models were all above2.0. Total acid, pH and lactic acid could be qualitative analyzed with RPD values above1.5. Besides lactic acid, the performances of NIR models were superior to MIR models.②For the determination of sugars, the quantification of glucose was satisfactory by both NIR and MIR spectroscopy with an RPD value above2.0. NIR was more suitable for analysis of isomaltotriose (RPD=1.95), while MIR was more suitable for analysis of maltose (RPD=1.97). For other parameters, the performance of the models was not satisfactory.③For the determination of amino acids, the performance of NIR models were generally much superior. Besides proline, phenylalanine, histidine and total amino acids, the RPD values of NIR models were all over1.5. In addition, the RPD values obtained for aspartic acid, isoleucine, tyrosine, and arginine were over2.0. The robustness of most MIR models was not satisfactory. RPD values obtained for aspartic acid, glutamic acid, isoleucine, phenylalanine and serine were above or close to1.5. For other amino acids, the robustness of the models was low (RPD<1.5).
     The results indicated that both NIR and MIR spectroscopy could be used for the analysis of routine parameters, lactic acid, sugars and some amino acids. But the performances of NIR models were generally better than MIR models.
     (5) The VIS/NIR spectra of rice wine samples in the range of303-1700nm under different temperature levels (5℃,10℃,15℃,20℃,25℃,30℃,35℃) were investigated. In high frequency (short-wave) region of1340-1480nm of raw spectra, the absorption increased when the temperature raised. On the contrary, in low frequency region, the absorption decreased when the temperature dropped. In second derivative spectra, the absorption at1320nm and1358nm increased with temperature. However, at1404nm, the absorption decreased with temperature. PCA results indicated that the samples under different temperature levels could be clearly separated. Because the hydrogen bonding will cause a shift of stretching vibration of water molecular to high frequency. As the temperature rises, it will promote hydrogen bonding, which might cause a change in the sample spectra.
     The determination of five routine parameters in rice wine was carried out by SMLR method under different temperature levels. The optimal temperature for quantification of alcohol degree, total sugar, non-sugar solid, total acid and amino acid nitrogen was found to be15℃,20℃,20℃,15℃and20℃, respectively. The model developed for alcohol degree and total sugar were relative robustness with an RPD value over2.5. The total acid model was moderate with an RPD value over1.5. However, the determination of non-sugar solid and amino acid nitrogen was not satisfactory due to low a RPD value (RPD<1.5). Temperature compensation models were established for alcohol degree, total sugar and total acid based on the spectra obtained under seven temperature levels. The compensation for alcohol degree showed good performance with a RPD value of the model to3.81. However, the compensation for total sugar and total acid was not satisfactory and needed to be improved (RPD<1.5).
     Finally, a hardware and software system was developed for quality determination of rice wine based on VIS/NIR spectroscopy, with the use of Zeiss portable spectrometer, optical fiber and temperature-controlled cuvette holder. The performance of the detection device was validated by37additional samples under temperature level of15℃. The results showed that:①For the determination of alcohol degree, the correlation coefficient in prediction, RMSEP and RPD was found to be0.979,0.464%and3.78, respectively.②For total sugar parameter, the correlation coefficient in prediction, RMSEP and RPD was0.766,5.78g/L and1.50, respectively.③The correlation coefficient in prediction, RMSEP and RPD was0.630,0.664g/L and1.24, respectively for total acid. The results indicated that the device might be suitable for alcohol degree detection in rice wine. But the precision for total sugar and total acid determination needed improvement.
引文
[1]李家寿.黄酒色、香、味成分来源浅析.酿酒科技.2001,(3):48-50.
    [2]汪建国,汪琦.绍兴黄酒的保健养生功能.江苏调味副食品.2007,(1):27-30.
    [3]国家标准《黄酒》GB/T 13662-2008.
    [4]汪建国.对清爽型黄酒风味的认识和探讨.中国酿造.2007,(11):48-50.
    [5]陈成,殷子建,徐速.浅析黄酒的历史及营养价值.酿酒.2002,29(1):55-56.
    [6]谢广发,戴军,赵光鳌,帅桂兰,李莉.黄酒中的γ-氨基丁酸及其功能.中国酿造.2005,(3):49-50.
    [7]谢广发,戴军,赵光鳌,陈尚卫,帅桂兰.黄酒中的功能性低聚糖及其功能.中国酿造.2005,(2):39-40.
    [8]杨国军,潘兴详,李博斌.黄酒中无机元素来源及其与酒质关系研究.酿酒.2005,(1):45-49.
    [9]韩珍,冯爱军,赵文红,白卫东.黄酒中多酚类物质检测方法研究进展.中国酿造.2011,(8):5-8.
    [10]罗涛,范文来,徐岩.中国黄酒中挥发性和不挥发性物质的研究现状与展望.酿酒.2007,34(1):44-48.
    [11]杨国军.黄酒的陈化.酿酒科技.2006,(6):74-76.
    [12]许荣年,鲍忠定,潘兴祥,胡普信.黄酒的陈化.酿酒.2003,30(2):50-52.
    [13]朱潘炜,刘东红,黄伟,刘芬.指纹图谱技术在食品品质检测中的应用.粮油加工.2008,(6):125-128.
    [14]中国糖酒年鉴,2010.
    [15]何晓刚.对绍兴黄酒业发展的思考.绍兴文理学院学报.2011,31(4):100-106.
    [16]中国轻工业信息中心.全国酿酒行业信息企业册2010年1-4季度.2011.
    [17]胡普信.中国黄酒的科研现状及发展.中国酿造.2008,(3):4-6+13.
    [18]庞立,刘素纯;夏菠,敖亚平.指纹图谱在酒的检测中的作用.酿酒科技.2009,(8):128-130.
    [19]牛晓颖,应义斌,于海燕;谢丽娟,傅霞萍.红外光谱技术在饮料酒鉴别中的应用进展.光谱学与光分析.2008,28(4):804-807.
    [20]陆婉珍,袁洪福,徐广通.现代近红外光谱分析技术.北京:中国石化出版社,2007(第二版).
    [21]Saurina, J. Characterization of wines using compositional profiles and chemometrics. Trends in Analytical Chemistry. 2010,29(3):234-245.
    [22]邵鸿飞.分析化学样品前处理技术研究进展.化学分析计量.2007,16(5),81-83.
    [23]许禄,邵学广.化学计量学方法.科学出版社,2004(第二版).
    [24]日本NCE品酒机器人http://www.necst.co.jp/english/news/20071129/index.htm.
    [25]澳大利亚葡萄酒研究中心http://www.awri. com.au/.
    [26]美国FOSS公司OenoFossTM葡萄酒分析仪http://www.foss.dk/industry-solution/products/oenofoss.
    [27]Yu, H. Y, Zhou, Y, Fu, X. P., Xie, L. J., Ying, Y. B. Discrimination between Chinese rice wines of different geographical origins by NIRS and AAS. European Food Research and Technology.2007,225(3-4):313-320.
    [28]Yu, H. Y, Ying, Y. B., Fu, X. P., Lu, H. S. Quality determination of Chinese rice wine based on Fourier transform near infrared spectroscopy. Journal of Near Infrared Spectroscopy.2006,14(1),37-44.
    [29]Yu, H. Y, Ying, Y. B., Fu, X. P., Lu, H. S. Classification of Chinese rice wine with different marked ages based on near infrared spectroscopy. Journal of Food Quality.2006.29(4),339-352.
    [30]Yu, H. Y, Lin, H. R., Xu, H. R., Ying, Y. B., Li, B. B., Pan, X. X. Prediction of enological parameters and discrimination of rice wine age using least-squares support vector machines and near infrared spectroscopy. Journal of Agricultural and Food Chemistry.2008,56(2):307-313.
    [31]Niu, X. Y., Shen, F., Yu, Y. F., Yan, Z., Xu, K., Yu, H. Y., Ying, Y B. Analysis of sugars in Chinese rice wine by Fourier transform near-infrared spectroscopy with partial least-squares regression. Journal of Agricultural and Food Chemistry.2008,56(16):7271-7278.
    [32]Niu, X. Y., Yu, H. Y, Ying, Y. B. The application of near-infrared spectroscopy and chemometrics to classify Shaoxing wines from different breweries. Transactions of the Asabe.2008,51(4):1371-1376.
    [33]Shen, F., Yang, D., Ying, Y., Li, B., Zheng, Y, Jiang, T. Discrimination between Shaoxing wines and other Chinese rice wines by near-infrared spectroscopy and chemometrics. Food and Bioprocess Technology.2012,5(2):786-795.
    [34]袁洁,尹京苑,高海燕.指纹图谱在白酒中的应用研究进展.食品科学.2008.29(11):680-684.
    [35]Razic, S., Cokesa, D., Sremac, S. Multivariate data visualization methods based on elemental analysis of wines by atomic absorption spectrometry. Journal of the Serbian Chemical Society.2007,72,1487-1492.
    [36]Paneque, P., Alvarez-Sotomayor, M. T., Gomeza, I. A. Metal contents in "oloroso" sherry wines and their classification according to provenance. Food Chemistry.2009,117,302-305.
    [37]Paneque, P. Alvarez-Sotomayor, M. T. Clavijo. A. Gomez, I. A. Metal content in southern Spain wines and their classification according to origin and ageing. Microchemical Journal.2010,94,175-179.
    [38]Trujillo, J. P. P., Conde, J. E., Pont, M. L. P., Camara, J., Marques, J. C. Content in metallic ions of wines from the Madeira and Azores archipelagos. Food Chemistry.2011,124,533-537
    [39]Moreno, I. M., Gonzalez-Weller, D., Gutierrez, V., Marino, M., Camean, A. M., Gonzalez, A. G., Hardisson, A. Differentiation of two Canary DO red wines according to their metal content from inductively coupled plasma optical emission spectrometry and graphite furnace atomic absorption spectrometry by using Probabilistic Neural Networks. Talanta.2007,72,263-268.
    [40]Galgano, F., Favati, F., Camso, M., Scarpa, T., Palma, A. Analysis of trace elements in southern Italian wines and their classification according to provenance. LWT-Food Science and Technology.2008,41,1808-1815.
    [41]Serapinas, P., Venskutonis, P. R., Aninkevicius, V., Ezerinskis, Z., Galdikas, A., Juzikiene, V. Step by step approach to multi-element data analysis in testing the provenance of wines. Food Chemistry.2008,107,1652-1660.
    [42]Gonzalvez, A., Llorens, A., Cervera, M. L., Armenta, S., de la Guardia, M. Elemental fingerprint of wines from the protected designation of origin Valencia. Food Chemistry.2009,112,26-34.
    [43]Rodrigues, S. M. Otero, M. Alves, A. A. Coimbra, J. Coimbra, M. A. Pereira, E. Duarte, A. C. Elemental analysis for categorization of wines and authentication of their certified brand of origin. Journal of Food Composition and Analysis.2011,24,548-562.
    [44]Iglesias, M., Besalu, E., Antico, E. Internal standardization-atomic spectrometry and geographical pattern recognition techniques for the multielement analysis and classification of Catalonian red wines. Journal of Agricultural and Food Chemistry.2007,55,219-225.
    [45]Martin, A. E., Watling, R. J., Lee, G S. The multi-element determination and regional discrimination of Australian wines. Food Chemistry.2012,133,1081-1089.
    [46]Sass-Kiss, A., Kiss, J., Havadi, B., Adanyi, N. Multivariate statistical analysis of botrytised wines of different origin. Food Chemistry.2008,110,742-750.
    [47]Rastija, V., Srecnik, G., Marica-Medic-Saric, Polyphenolic composition of Croatian wines with different geographical origins. Food Chemistry.2009,115,54-60.
    [48]Bellomarino, S. A., Conlan, X. A., Parker, R. M., Barnett, N. W. Adams, M. J. Geographical classification of some Australian wines by discriminant analysis using HPLC with UV and chemiluminescence detection. Talanta.2009,80, 833-838.
    [49]Anastasiadi, M., Zira, A., Magiatis, P., Haroutounian, S. A., Skaltsounis, A. L., Mikros, E.'H NMR-based metabonomics for the classification of Greek wines according to variety, region, and vintage, comparison with HPLC Data. Journal of Agricultural and Food Chemistry.2009,57,11067-1107.
    [50]Andreu-Navarro, A., Russo, P., Aguilar-Caballos, M. P., Fernandez-Romero, J. M. Gomez-Hens, A. Usefulness of terbium-sensitised luminescence detection for the chemometric classification of wines by their content in phenolic compounds. Food Chemistry.2011,124,1753-1759.
    [51]Jaitz, L., Siegl, K., Eder, R., Rak, G., Abranko, L., Koellensperger, G., Hann, S. LC-MS/MS analysis of phenols for classification of red wine according to geographic origin, grape variety and vintage. Food Chemistry.2010,122, 366-372.
    [52]Di Paola-Naranjo, R. D., Baroni, M. V., Podio, N. S., Rubinstein, H. R., Fabani, M. P., Badini, R. G., Inga, M, Ostera, H. A., Cagnoni, M., Gallegos, E., Gautier, E., Peral-Garcia, P., Hoogewerff, J., Wunderlin. D. A. Fingerprints for main varieties of Argentinean wines:Terroir differentiation by inorganic, organic, and stable isotopic analyses coupled to chemometrics. Journal of Agricultural and Food Chemistry.2011,59,7854-7865.
    [53]Ballabio, D., Skov, T., Leardi, R., Bro, R. Classification of GC-MS measurements of wines by combining data dimension reduction and variable selection techniques. Journal of Chemometrics.2008,22,457-463.
    [54]Berna. A. Z., Trowell, S., Clifford, D., Cynkar, W., Cozzolino, D. Geographical origin of Sauvignon Blanc wines predicted by mass spectrometry and metal oxide based electronic nose. Analytica Chimica Acta.2009,648,146-152.
    [55]Cynkar, W., Dambergs, R., Smith, P., Cozzolino, D. Classification of Tempranillo wines according to geographic origin:Combination of mass spectrometry based electronic nose and chemometrics. Analytica Chimica Acta.2010, 660,227-231.
    [56]Cuadros-Inostroza, A., Giavalisco, P., Hummel, J., Eckardt, A., Willmitzer, L., Pena-Cortes, H. Discrimination of wine attributes by metabolome analysis. Analytical Chemistry.2010,82,3573-3580.
    [57]Acevedo, F. J., Jimenez, J., Maldonado, S., Dominguez, E., Narvaez, A. Classification of wines produced in specific regions by UV-Visible spectroscopy combined with support vector machines. Journal of Agricultural and Food Chemistry.2007,55,6842-6849.
    [58]Vazquez, E. S., Segade, S. R., Dieguez, S. C. Classification of red and white wines by denomination of origin according to phenolic composition and colour characteristics and correlation with standard parameters. International Journal of Food Science and Technology.2011.46,542-548.
    [59]Cozzolino, D., Cynkar, W. U., Shah, N., Smith, P. A. Can spectroscopy geographically classify Sauvignon Blanc wines from Australia and New Zealand? Food Chemistry.2011,126,673-678
    [60]Riovanto, R., Cynkar, W. U., Berzaghi, P., Cozzolino, D. Discrimination between Shiraz wines from different Australian regions:the role of spectroscopy and chemometrics. Journal of Agricultural and Food Chemistry.2011, 59,10356-10360.
    [61]Saavedra, J., Fuentealba, C., Yanez, L., Bravo, M., Quiroz, W., Lukacsy, G., Carot, J. M. Chemometric approaches for the zoning of Pinot Noir wines from the Casablanca valley, Chile. Food Chemistry.2011,127,1842-1847.
    [62]Caruso, M., Galgano, F., Morelli, M. A. C., Lencioni, L., Favati, F. Chemical profile of white wines produced from 'Greco bianco' grape variety in different Italian areas by nuclear magnetic resonance (NMR) and conventional physicochemical analyses. Journal of Agricultural and Food Chemistry.2012,60,7-15.
    [63]Lopez-Rituerto, E., Savorani, F., Avenoza, A., Busto, J. H., Peregrina, J. M., Engelsen, S. B. Investigations of La Rioja terroir for wine production using'H NMR metabolomics. Journal of Agricultural and Food Chemistry.2012, 60,3452-3461.
    [64]Dutra, S. V., Adami, L., Marcon, A. R., Carnieli, G. J., Roani, C. A., Spinelli, F. R., Leonardelli, S., Ducarti, C, Moreira, M. Z., Vanderlinde, R. Determination of the geographical origin of Brazilian wines by isotope and mineral analysis. Analytical and Bioanalytical Chemistry.2011,401,1571-1576.
    [65]Fabani, M. P., Toro, M. E., Vazquez, F., Diaz, M. P., Wunderlin, D. A. Differential absorption of metals from soil to diverse vine varieties from the valley of Tulum (Argentina):consequences to evaluate wine provenance. Journal of Agricultural and Food Chemistry.2009,57,7409-7416.
    [66]La Torre, G. L., La Pera, L., Rando, R., Lo Turco, V., Di Bella, G., Saitta, M., Dugo, G. Classification of Marsala wines according to their polyphenol, carbohydrate and heavy metal levels using canonical discriminant analysis. Food Chemistry.2008,110,729-734.
    [67]Revilla, E., Garcia-Beneytez, E., Cabello, F. Anthocyanin fingerprint of clones of Tempranillo grapes and wines made with them. Australian Journal of Grape and Wine Research.2009,15,70-78.
    [68]Ferrandino, A.; Guidoni, S., Anthocyanins, flavonols and hydroxycinnamates:an attempt to use them to discriminate Vitis vinifera L. cv 'Barbera' clones. European Food Research and Technology.2010,230,417-427.
    [69]Vaclavik, L., Lacina, O., Hajslova, J., Zweigenbaum, J. The use of high performance liquid chromatography-quadrupole time-of-flight mass spectrometry coupled to advanced data mining and chemometric tools for discrimination and classification of red wines according to their variety. Analytica Chimica Acta.2011,685, 45-51.
    [70]Duarte-Mermoud, M. A., Beltran, N. H., Bustos, M. A. Chilean wine varietal classification using quadratic Fisher transformation. Pattern analysis and applications.2010,13,181-188.
    [71]Gutierrez, L., Quintana, F. A., von Baer, D., Mardones, C. Multivariate Bayesian discrimination for varietal authentication of Chilean red wine. Journal of Applied Statistics.2011,38,2099-2109.
    [72]Camara, J. S., Alves, M A., Marques, J. C. Classification of Boal, Malvazia, Sercial and Verdelho wines based on terpenoid patterns. Food Chemistry.2007,101,475-484.
    [73]Kruzlicova, D., Mocak, J., Balla, B., Petka, J., Farkova, M., Havel, J. Classification of Slovak white wines using artificial neural networks and discriminant techniques. Food Chemistry.2009,112,1046-1052.
    [74]Weldegergis, B. T., de Villiers, A., Crouch, A. M. Chemometric investigation of the volatile content of young South African wines. Food Chemistry.2011,128,1100-1109.
    [75]Villagra, E., Santos, L. S., Vaz, B. G, Eberlin, M. N., Laurie, V. F. Varietal discrimination of Chilean wines by direct injection mass spectrometry analysis combined with multivariate statistics. Food Chemistry.2012,131,692-697.
    [76]Pigani, L., Foca, G, Ionescu, K., Martina, V., Ulrici, A., Terzi, F., Vignali, M., Zanardi, C., Seeber, R. Amperometric sensors based on poly (3,4-ethylenedioxythiophene)-modified electrodes:Discrimination of white wines. Analytica Chimica Acta.2008,614,213-222.
    [77]Rodriguez-Nogales, J. M., Fernandez-Fernandez, E., Vila-Crespo, J. Characterisation and classification of Spanish Verdejo young white wines by volatile and sensory analysis with chemometric tools. Journal of the Science of Food and Agriculture.2009,89,1927-1935.
    [78]Garcia-Marino, M., Hernandez-Hierro, J. M., Santos-Buelga, C., Rivas-Gonzalo, J. C., Escribano-Bailon, M. T. Multivariate analysis of the polyphenol composition of Tempranillo and Graciano red wines. Talanta.2011,85, 2060-2066.
    [79]Tarantilis, P. A., Troianou, V. E., Pappas, C. S., Kotseridis, Y. S., Polissiou, M. G. Differentiation of Greek red wines on the basis of grape variety using attenuated total reflectance Fourier transform infrared spectroscopy. Food Chemistry.2008,111,192-196.
    [80]Louw, L., Roux, K.., Tredoux, A., Tomic, O., Naes, T., Nieuwoudt, H. H., van Rensburg, P. Characterization of selected south African young cultivar wines using FTMIR Spectroscopy, gas chromatography, and multivariate data analysis. Journal of Agricultural and Food Chemistry.2009,57,2623-2632.
    [81]Casale, M., Oliveri, P., Armanino, C., Lanteri, S., Forina, M. NIR and UV-vis spectroscopy, artificial nose and tongue:Comparison of four fingerprinting techniques for the characterisation of Italian red wines. Analytica Chimica Acta.2010,668,143-148.
    [82]Aleixandre, M., Lozano, J., Gutierrez, J., Sayago, I., Fernandez. M. J., Horrillo, M. C. Portable e-nose to classify different kinds of wine. Sensors and Actuators B:Chemical.2008,131,71-76.
    [83]Gutierrez, M., Domingo, C, Vila-Planas, J., Ipatov, A., Capdevila, F., Demming, S., Buttgenbach, S., Llobera, A.,Jimenez-Jorquera, C. Hybrid electronic tongue for the characterization and quantification of grape variety in red wines. Sensors and Actuators B:Chemical.2011,156,695-702.
    [84]Pigani, L., Foca, G, Ulrici, A., Lonescu, K., Martina, V., Terzi, F., Vignali, M., Zanardi, C., Seeber, R. Classification of red wines by chemometric analysis of voltammetric signals from PEDOT-modified electrodes. Analytica Chimica Acta.2009,643,67-73.
    [85]Son, H. S., Hwang, G S., Ahn, H. J., Park, W. M., Lee, C. H., Hong, Y. S. Characterization of wines from grape varieties through multivariate statistical analysis of 1H NMR spectroscopic data. Food Research International.2009, 42,1483-1491.
    [86]Charlton, A. J., Wrobel, M. S., Stanimirova, I., Daszykowski, M., Grundy, H. H., Walczak, B. Multivariate discrimination of wines with respect to their grape varieties and vintages. European Food Research and Technology. 2010,231,733-743.
    [87]Pizarro, C., Esteban-Diez, I., Saenz-Gonzalez, C., Gonzalez-Saiz, J. M. Vinegar classification based on feature extraction and selection from headspace solid-phase microextraction/gas chromatography volatile analyses:A feasibility study. Analytica Chimica Acta.2008,608,38-47.
    [88]Dall'Asta, C., Cirlini, M., Morini, E., Galaverna, G Brand-dependent volatile fingerprinting of Italian wines from Valpolicella. Journal of Chromatography A.2011,1218,7557-7565.
    [89]Guerrero, E. D., Bastante, M. J. C., Mejias, R. C., Marin, R. N., Barroso, C. G Characterization and differentiation of sherry brandies using their aromatic profile. Journal of Agricultural and Food Chemistry.2011,59,2410-2415.
    [90]Ragazzo-Sanchez, J. A., Chalier, R., Chevalier, D., Calderon-Santoyo, M., Ghommidh, C. Identification of different alcoholic beverages by electronic nose coupled to GC. Sensors and Actuators B:Chemical.2008,134,43-48.
    [91]Vera, L.; Acena, L., Guasch, J., Boque, R., Mestres, M., Busto, O. Characterization and classification of the aroma of beer samples by means of an MS e-nose and chemometric tools. Analytical and Bioanalytical Chemistry.2011,399, 3633-3634.
    [92]Fudge, A. L., Wilkinson, K. L.; Ristic, R.; Cozzolino, D., Classification of smoke tainted wines using mid-infrared spectroscopy and chemometrics. Journal of Agricultural and Food Chemistry.2012,60,52-59.
    [93]Sadecka, J., Tothova, J., Majek, P, Classification of brandies and wine distillates using front face fluorescence spectroscopy. Food Chemistry.2009,117,491-498.
    [94]Cozzolino, D., Holdstock, M., Dambergs, R. G., Cynkar, W. U., Smith, P. A. Mid infrared spectroscopy and multivariate analysis:A tool to discriminate between organic and non-organic wines grown in Australia. Food Chemistry.2009,116,761-765.
    [95]Ioannou-Papayianni, E., Kokkinofta, R. I., Theocharis, C. R. Authenticity of Cypriot sweet wine Commandaria using FT-IR and chemometrics. Journal of Food Science.2011,76, C420-C427.
    [96]Boffo, E. F., Tavares, L. A., Ferreira, M. M. C., Ferreira, A. G. Classification of Brazilian vinegars according to their 1H NMR spectra by pattern recognition analysis. LWT - Food Science and Technology.2009,42,1455-1460.
    [97]Guerrero, E. D., Mejias, R. C., Marin, R. N., Lovillo, M. P., Barroso, C. G. A new FT-IR method combined with multivariate analysis for the classification of vinegars from different raw materials and production processes. Journal of the Science of Food and Agriculture.2010,90,712-718.
    [98]Garrido-Delgado, R., Arce, L., Guaman, A. V., Pardo, A., Marco, S., Valcarcel, M. Direct coupling of a gas-liquid separator to an ion mobility spectrometer for the classification of different white wines using chemometrics tools. Talanta.2011,84,471-479.
    [99]Imparato, G., Di Paolo, E., Braca, A., Lamanna, R. Nuclear magnetic resonance profiling of wine blends. Journal of Agricultural and Food Chemistry.2011,59,4429-4434.
    [100]Ferrari, E., Foca, G., Vignali, M., Tassi, L., Ulrici, A. Adulteration of the anthocyanin content of red wines: Perspectives for authentication by Fourier Transform-Near InfraRed and 1H NMR spectroscopies. Analytica Chimica Acta.2011,701,139-151.
    [101]Maes, P., Monakhova, Y. B., Kuballa, T, Reusch, H., Lachenmeier, D. W. Qualitative and quantitative control of Carbonated Cola beverages using 1H NMR spectroscopy. Journal of Agricultural and Food Chemistry.2012,60, 2778-2784.
    [102]Astray, G., Castillo, J. X., Ferreiro-Lage, J. A., Glvezc, J. F.;Mejuto, J. C., Artificial neural networks:a promising tool to evaluate the authenticity of wine. CyTA - Journal of Food.2010,8,79-86.
    [103]Capron, X., Smeyers-Verbeke, J., Massart, D. L. Multivariate determination of the geographical origin of wines from four different countries. Food Chemistry.2007,101,1585-1597.
    [104]Pereira, A. C., Reis, M. S., Saraiva, P. M., Marques, J. C. Analysis and assessment of Madeira wine ageing over an extended time period through GC-MS and chemometric analysis. Analytica Chimica Acta.2010,660,8-21.
    [105]Marrufo-Curtido, A., Cejudo-Bastante, M. J., Duran-Guerrero, E., Castro-Mejias, R., Natera-Marin. R., Chinnici, F., Garcia-Barroso, C. Characterization and differentiation of high quality vinegars by stir bar sorptive extraction coupled to gas chromatography-mass spectrometry (SBSE-GC-MS). LWT-Food Science and Technology.2012, 47,332-341.
    [106]Lozano, J., Arroyo, T., Santos, J. P., Cabellos, J. M., Horrillo, M. C. Electronic nose for wine ageing detection. Sensors and Actuators B-Chemical.2008,133,180-186.
    [107]Ghasemi-Varnamkhasti, M., Mohtasebi, S. S., Siadat, M., Lozano, J., Ahmadi, H., Razavi, S. H., Dicko, A. Aging fingerprint characterization of beer using electronic nose. Sensors and Actuators B-Chemical.2011,159,51-59.
    [108]Rudnitskaya, A., Rocha, S. M., Legin, A., Pereira, V., Marques, J. C. Evaluation of the feasibility of the electronic tongue as a rapid analytical tool for wine age prediction and quantification of the organic acids and phenolic compounds. The case-study of Madeira wine. Analytica Chimica Acta.2010,662,82-89.
    [109]Prieto, N., Rodriguez-Mendezb, M. L., Leardic, R., Oliveri, P., Hernando-Esquisabeld, D., Iniguez-Crespod, M., de Sajaa, J. A. Application of multi-way analysis to UV-visible spectroscopy, gas chromatography and electronic nose data for wine ageing evaluation. Analytica Chimica Acta.2012,719,43-51.
    [110]Apetrei, I. M., Rodriguez-Mendez, M. L., Apetrei, C., Nevares, I., del Alamo, M., de Saja, J. A. Monitoring of evolution during red wine aging in oak barrels and alternative method by means of an electronic panel test. Food Research International.2012,45,244-249.
    [111]Pereira, A. C., Reis, M. S., Saraiva, P. M., Marques, J. C. Madeira wine ageing prediction based on different analytical techniques:UV-vis, GC-MS, HPLC-DAD. Chemometrics and Intelligent Laboratory Systems.2011,105, 43-55.
    [112]Consonni, R., Cagliani, L. R., Guantieri, V., Simonato, B. Identification of metabolic content of selected Amarone wine. Food Chemistry.2011,129,693-699.
    [113]Garcia-Martinez, T., Bellincontro, A., de Lerma, M. D. L., Peinado, R. A., Mauricio, J. C., Mencarelli, F., Moreno, J. J. Discrimination of sweet wines partially fermented by two osmo-ethanol-tolerant yeasts by gas chromatographic analysis and electronic nose. Food Chemistry.2011,127,1391-1396.
    [114]Anna Kutyla-Olesiuk, A., Zaborowski, M., Prokaryn, P., Ciosek, P. Monitoring of beer fermentation based on hybrid electronic tongue. Bioelectrochemistry 2012, doi:10.1016/j.bioelechem.2012.01.003.
    [115]Urtubia, A., Perez-Correa, J. R., Pizarro,F., Agosin, E. Exploring the applicability of MIR spectroscopy to detect early indications of wine fermentation problems. Food Control.2008,19,382-388.
    [116]Di Egidio, V., Sinelli, N., Giovanelli, G, Moles, A., Casiraghi, E. NIR and MIR spectroscopy as rapid methods to monitor red wine fermentation. European Food Research and Technology.2010,230,947-955.
    [117]Burattia, S., Ballabiob, D., Giovanellia, G, Zuluanga Dominguezc, C. M., Molesa, A., Benedettia, S., Sinelli, N. Monitoring of alcoholic fermentation using near infrared and mid infrared spectroscopies combined with electronic nose and electronic tongue. Analytica Chimica Acta.2011,697,67-74.
    [118]Cozzolino, D., McCarthy, J., Bartowsky, E. Comparison of near infrared and mid infrared spectroscopy to discriminate between wines produced by different Oenococcus Oeni strains after malolactic fermentation. Food Control.2012,26,81-87.
    [119]Soriano, A., Perez-Juan, P. M., Vicario, A., Gonzalez, J. M., Perez-Coello, M. S. Determination of anthocyanins in red wine using a newly developed method based on Fourier transform infrared spectroscopy. Food Chemistry.2007, 104,1295-1303.
    [120]Fernandez-Novales, J., Lopez, M. I., Sanchez, M. T., Garcia, J. A., Morales, J. A feasibility study on the use of a miniature fiber optic NIR spectrometer for the prediction of volumic mass and reducing sugars in white wine fermentations. Journal of Food Engineering.2008,89,325-329.
    [121]Cozzolino, D., Cynkar, W. U., Dambergs, R. G, Meagan D. Mercurio, M. D., Smith, P. A. Measurement of condensed tannins and dry matter in red grape homogenates using near infrared spectroscopy and partial least squares. Journal of Agricultural and Food Chemistry.2008,56,7631-7636.
    [122]Smyth, H. E., Cozzolino, D., Cynkar, W. U., Dambergs, R. G, Sefton, M., Gishen, M. Near infrared spectroscopy as a rapid tool to measure volatile aroma compounds in Riesling wine:possibilities and limits. Analytical and Bioanalytical Chemistry.2008,390,1911-1916.
    [123]Lorenzo, C, Garde-Cerdan, T., Pedroza, M. A., Alonso, G L., Salinas, M. R. Determination of fermentative volatile compounds in aged red wines by near infrared spectroscopy. Food Research International.2008,42,1281-1286.
    [124]Fernandez-Novales, J., Lopez, M. I., Sanchez, M. T., Morales, J., Gonzalez-Caballero, V. Shortwave-near infrared spectroscopy for determination of reducing sugar content during grape ripening, winemaking, and aging of white and red wines. Food Research International.2009,42,285-291.
    [125]Kemps, B., Leon, L.; Stanley Best, S., Baerdemaeker, J. D., Ketelaere, B. D. Assessment of the quality parameters in grapes using VIS-NIR spectroscopy. Biosystems Engineering.2010,105,507-513.
    [126]Castritius, S., Kron, A., Schafer, T., Radle, M., Harms, D. Determination of alcohol and extract concentration in beer samples using a combined method of near-infrared (NIR) spectroscopy and refractometry. Journal of Agricultural and Food Chemistry.2010.58,12634-12641.
    [127]Garde-Cerdan, T., Lorenzo, C., Alonso, G. L., Salinas, M. R. Employment of near infrared spectroscopy to determine oak volatile compounds and ethylphenols in aged red wines. Food Chemistry.2010,119,823-828.
    [128]Shah, N., Cynkar, W., Smith, P., Cozzolino, D. Use of attenuated total reflectance mid infrared for rapid and real-time analysis of compositional parameters in commercial white grape juice. Journal of Agricultural and Food Chemistry.2010,58,3279-3283.
    [129]Versari, A., Parpinello, G P., Scazzina, F., Rio, D. D. Prediction of total antioxidant capacity of red wine by Fourier transform infrared spectroscopy. Food Control.2010,21,786-789.
    [130]Fragoso, S., Acena, L., Guasch, J., Busto, O., Mestres, M. Application of FT-MIR spectroscopy for fast control of red grape phenolic ripening. Journal of Agricultural and Food Chemistry.2011,59,2175-2173.
    [131]Ferrer-Gallego, R., Hernandez-Hierro, J. M., Rivas-Gonzalo, J. C., Escribano-Bailon, M. T. Determination of phenolic compounds of grape skins during ripening by NIR spectroscopy. LWT-Food Science and Technology. 2011,44,847-853.
    [132]Cozzolino, D., Cynkar, W., Shah, N., Smith, P. Feasibility study on the use of attenuated total reflectance mid-infrared for analysis of compositional parameters in wine. Food Research International.2011,44,181-186.
    [133]Versari, A., Laghi, L.,; Thorngate, J. H., Boulton, R. B. Prediction of colloidal stability in white wines using infrared spectroscopy. Journal of Food Engineering.2011,104,239-245.
    [134]Cozzolino, D., Cynkar, W., Shah, N., Smith, P. Quantitative analysis of minerals and electric conductivity of red grape homogenates by near infrared reflectance spectroscopy. Computers and Electronics in Agriculture.2011,77, 81-85.
    [135]Romera-Fernandeza, M., Berruetaa, L. A., Garmon-Lobatoa, S.. Galloa, B., Vicentea, F., Moreda, J. M. Feasibility study of FT-MIR spectroscopy and PLS-R for the fast determination of anthocyanins in wine. Talanta.2012,88, 303-310.
    [136]Garde-Cerdan, T., Lorenzo, C., Zalacain, A., Alonso, G. L., Salinas, M. R. Using near infrared spectroscopy to determine haloanisoles and halophenols in barrel aged red wines. LWT - Food Science and Technology.2012,46, 401-405.
    [137]Regmi, U., Palma, M., Barroso, C. G Direct determination of organic acids in wine and wine-derived products by Fourier transform infrared (FT-IR) spectroscopy and chemometric techniques. Analytica Chimica Acta.2012, doi:10.1016/j.aca.2011.11.009.
    [138]Du, Y. Y., Bai, G. Y., Zhang, X., Liu, M. L. Classification of wines based on combination of'H NMR spectroscopy and principal component analysis. Chinese Journal of Chemistry.2007,25,930-936.
    [139]Yin, C., Li, H., Ding, C., Wang, H. Preliminary investigation on variety, brewery and vintage of wines using three-dimensional fluorescence spectroscopy. Food Science and Technology Research.2009,15,27-38.
    [140]Zhang, J., Li, L.,; Gao, N., Wang, D.. Gao, Q., Jiang, S. Feature extraction and selection from volatile compounds for analytical classification of Chinese red wines from different varieties. Analytica Chimica Acta.2010,662, 137-142.
    [141]Zhang, Y. L., Chen, J. B., Lei, Y, Zhou, Q., Sun, S. Q., Noda, I. Discrimination of different red wine by Fourier-transform infrared and two-dimensional infrared correlation spectroscopy. Journal of Molecular Structure. 2010,974,144-150.
    [142]Zhou. Q., Zhang, S., Li, Y., Xie, C., Li, H., Ding, X. A Chinese liquor classification method based on liquid evaporation with one unmodulated metal oxide gas sensor. Sensors and Actuators B:Chemical 2011,160,483-489.
    [143]Wei, Z., Wang, J., Ye, L. Classification and prediction of rice wines with different marked ages by using a voltammetric electronic tongue. Biosensors and Bioelectronics.2011,26,4767-4773.
    [144]Fan, W., Li, H., Shan, Y., Lv, H., Zhang, H., Liang, Y. Classification of vinegar samples based on near infrared spectroscopy combined with wavelength selection. Analytical Methods.2011,3,1872-1876.
    [145]Sun, S. Y, Jiang, W. G., Zhao, Y. P. Comparison of aromatic and phenolic compounds in cherry wines with different cherry cultivars by HS-SPME-GC-MS and HPLC. International Journal of Food Science and Technology.2012,47, 100-106.
    [146]Xiao, Z.. Dai, S., Niu, Y., Yu. H., Zhu, J. C., Tian, H., Gu. Y. Discrimination of Chinese vinegars based on headspace solid-phase microextraction-gas chromatography mass spectrometry of volatile compounds and multivariate analysis. Journal of Food Science.2011,76, C1125-C1135.
    [147]Ya, Z., He, K., Lu, Z., Yi, B., Hou, C., Shan, S., Huo, D., Luo, X. Colorimetric artificial nose for baijiu identification. Flavour and Fragrance Journal.2012,27,165-170.
    [148]Qin, H., Huo, D., Zhang, L., Yang, L., Zhang, S., Yang, M., Shen, C., Hou, C. Colorimetric artificial nose for identification of Chinese liquor with different geographic origins. Food Research International.2012,45,45-51.
    [149]郑岩,汤庆莉,吴天祥,田志强,张徐兰,张倩GC-MS法建立贵州茅台酒指纹图谱的研究.中国酿造.2008,(9):74-76+91.
    [150]朱美施,巫景铭,曾玩娴.GC指纹图谱在干邑白兰地真伪鉴别中的应用.酿酒科技.2011,(7):68-69+71.
    [151]李长文,魏纪平,李皴,张春辉,雷振河,孙素琴.运用FTIR分析不同酒龄基酒.酿酒科技.2008,(12):70-72.
    [152]房玉林,张昂,宋士任,王贞强,陈书霞.3个地区赤霞珠干红葡萄酒香气成分研究.西北林学院学报.2007,22(6):114-117.
    [153]张军翔,冯长根,李华.蛇龙珠葡萄酒酒龄花青素高效液相色谱(HPLC)指纹图谱研究.中国农业科学.2006,39(7):1451-1456.
    [154]郭海霞,王涛,刘洋,吴海云,左月明,宋海燕,贺晋瑜.基于可见/近红外光谱技术的葡萄酒真伪鉴别的研究.光谱学与光谱分析.2011,31(12):3269-3272.
    [155]徐抗震,宋纪蓉,任莹辉,马海霞,黄洁,杜晓丹.色谱指纹图谱在苹果酒质量评价中的应用.色谱.2007,25(1): 93-95.
    [156]顾睿,马永昆,林静,杨紫荔,贡培忠,许朝中.丹阳黄酒矿质元素指纹图谱建立方法的研究.酿酒科技.2009,(2):34-36.
    [157]胡健,池国红,吴苗叶,王雪花.利用风味物质鉴别黄酒产地.酿酒科技.2009,(6):17-19.
    [158]惠国华,陈裕泉.基于电子鼻系统的不同风味绍兴黄酒区分方法研究.传感技术学报.2011,24(12):1799-1803.
    [159]于海燕,许春华.,基于味觉特征的黄酒酒龄鉴别方法研究.食品工业科技.2011,(10):162-165.
    [160]江涛,李博斌,郑云峰,曾金红,黄晓丽,余燕飞.电子鼻对绍兴黄酒酒龄的判别研究.酿酒科技.2012,(1):39-41+46.
    [161]朱潘炜,周建弟,刘东红.不同年份黄酒基酒HS-SPME-GCMS指纹图谱的建立.中国食品学报.2012,12(2):165-172
    [162]冯爱军,赵文红,白卫东,庞杰.不同黄酒中有机酸的测定.中国酿造.2010,(8):144-146.
    [163]古越龙山http://www.shaoxingwine.com.cn/web/about.asp.
    [164]塔牌绍兴酒http://www.pagodawine.com/web/gsjj.asp
    [165]会稽山绍兴酒股份有限公司http://www.dongfengwine.com/info/?fcode=003002.
    [166]《黄酒中氨基酸的测定方法》行业标准(征求意见稿).
    [167]牛晓颖.基于傅立叶变换近红外光谱的绍兴黄酒风味成分定量分析及其酒龄鉴别的研究.浙江大学博士学位论文.2009.
    [168]Bauer, R., Nieuwoudt, H., Bauer, F. F, Kossmann, J., Koch, K. R., Esbensen, K. H. FTIR spectroscopy for grape and wine analysis. Analytical Chemistry.2008,80,1371-1379.
    [169]Patz, C. D., Blieke, A., Ristow, R., Dietrich, H. Application of FT-MIR spectrometry in wine analysis. Analytica Chimica Acta.2004,513,81-89.
    [170]Hisashi Maeda, H., Ozaki, Y. Near infrared spectroscopy and chemometrics studies of temperature-dependent spectral variations of water:relationship between spectral changes and hydrogen bonds. Journal of Near Infrared Spectroscopy.1995,3,191-201.
    [171]Kay, D., Crowther, J., Stapleton, C. M., Wyer, M. D., Fewtrell, L., Edwards, A., Francis, C. A., McDonald, A. T., Watkins, J., Wilkinson, J. Faecal indicator organism concentrations in sewage and treated effluents. Water Research. 2008,42,442-454.
    [172]Berrueta, L. A., Alonso-Salces, R. M., Heberger, K. Supervised pattern recognition in food analysis. Journal of Chromatography A.2007,1158,196-214.
    [173]Fu, X., Zhou, Y., Ying, Y., Lu, H., Xu, H. Discrimination of pear varieties using three classification methods based on near-infrared spectroscopy. Transactions of the ASABE.2007,50,1355-1361.
    [174]Casale, M., Zunin, P., Cosulich, M. E., Pistarino, E., Perego, P., Lanteri, S. Characterisation of table olive cultivar by NIR spectroscopy. Food Chemistry.2010,122,1261-1265.
    [175]Xie, L. J., Ying, Y. B., Ying, T. J. Classification of tomatoes with different genotypes by visible and short-wave near-infrared spectroscopy with least-squares support vector machines and other chemometrics. Journal of Food Engineering.2009,94,34-39.
    [176]Galtier, O., Abbas, O.. Le Dreau, Y.. Rebufa, C., Kister, J., Artaud, J.. Dupuy, N. Comparison of PLS1-DA, PLS2-DA and SIMCA for classification by origin of crude petroleum oils by MIR and virgin olive oils by NIR for different spectral regions. Vibrational Spectroscopy.2011,55,132-140.
    [177]Balabin, R. M.,; Safieva, R. Z., Lomakina, E. I. Near-infrared (NIR) spectroscopy for motor oil classification:From discriminant analysis to support vector machines. Microchemical Journal.2011,98,121-128.
    [178]Brereton, R. G., Lloyd, G. R. Support Vector Machines for classification and regression. Analyst.2010,135, 230-267.
    [179]Balabin, R. M., Lomakina. E. I. Support vector machine regression (SVR/LS-SVM)-an alternative to neural networks (ANN) for analytical chemistry? Comparison of nonlinear methods on near infrared (NIR) spectroscopy data. Analyst.2011,136,1703-1712.
    [180]Suykens, J. A. K., Vandewalle, J. Least squares support vector machine classifiers. Neural Processing Letters.1999, 9,293-300.
    [181]Yu, H. Y., Niu, X. Y., Lin, H. J., Ying, Y. B., Li, B. B., Pan, X. X. A feasibility study on on-line determination of rice wine composition by Vis-NIR spectroscopy and least-squares support vector machines. Food Chemistry.2009, 113,291-296.
    [182]Lau, C. C., Chan, C. O., Chau, F. T., Mok, D. K. W. Rapid analysis of Radix puerariae by near-infrared spectroscopy. Journal of Chromatography A.2009,1216,2130-2135.
    [183]Lerma-Garcia, M. J., Simo-Alfonso, E. F., Bendini, A., Cerretani, L. Rapid evaluation of oxidised fatty acid concentration in virgin olive oil using Fourier-transform infrared spectroscopy and multiple linear regression. Food Chemistry.2011,124,679-684.
    [184]吴琼,原忠虎,王晓宁.基于偏最小二乘回归分析综述.沈阳大学学报.2007,19(2):33-35.
    [185]Nicolai, B. M., Beullens, K., Bobelyn, E., Peirs, A., Saeys, W., Theron, K. I., Lammertyn, J. Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy:A review. Postharvest Biology and Technology.2007,46,99-118.
    [186]Cen, H. Y., He, Y, Theory and application of near infrared reflectance spectroscopy in determination of food quality. Trends in Food Science & Technology.2007,18,72-83.
    [187]Herrmann, S., Mayer, J., Michel, K., Ludwig, B. Predictive capacity of visible-near infrared spectroscopy for quality parameter assessment of compost. Journal of Near Infrared Spectroscopy.2009,17,289-301.
    [188]褚小立,袁洪福,陆婉珍.近红外分析中光谱预处理及波长选择方法进展与应用.化学进展.2004,16(4):528-542.
    [189]Xu, L., Zhou, Y. P., Tang, L. J., Wu, H. L., Jiang, J. H., Shen, G. L., Yu, R. Q. Ensemble preprocessing of near-infrared (NIR) spectra for multivariate calibration. Analytica Chimica Acta.2008,616,138-143.
    [190]Sjoblom, J., Svensson, O., Josefson, M., Kullberg, H., Wold, S. An evaluation of orthogonal signal correction applied to calibration transfer of near infrared spectra. Chemometrics and Intelligent Laboratory.1998,44, 229-244.
    [191]Wold, S., Antti, H., Lindgren, F., Ohman, J. Orthogonal signal correction of near-infrared spectra. Chemometrics and Intelligent Laboratory.1998,44,175-185.
    [192]沈丽尧,冷云伟,叶辉.黄酒的老熟机理与催陈因子的选择.中国酿造.2011,(6):179-181.
    [193]冯德明,孙诗清,马红霞,孙国昌,孙培龙.黄酒酸败时主要有机酸种类及含量分析.中国酿造.2010,(1):125-128.
    [194]鲍忠定.吹扫捕集-GC/MS法测定不同酒龄绍兴酒中挥发性化合物.浙江工业大学硕士学位论文.2008.
    [195]Wagner, S., Scholz, K., Donegan, M., Burton, L., Wingate, J., Volkel, W. Metabonomics and biomarker discovery: LC-MS metabolic profiling and constant neutral loss scanning combined with multivariate data analysis for mercapturic acid analysis. Analytical Chemistry.2006,78,1296-1305.
    [196]兰玉倩,薛洁,江伟,林奇,袁军川,杜丽娟.黄酒陈酿过程中主要成分变化的研究.中国酿造.2011,(5):165-170.
    [197]Bouveresse, E., Hartmann, C, Massart, D. L., Last, I. R., Prebble, K. A. Standardization of near-infrared spectrometric instruments. Analytical Chemistry.1996,68,982-990.
    [198]Rajer-Kanduc, K., Zupan, J., Majcen, N. Separation of data on the training and test set for modelling:a case study for modelling of five colour properties of a white pigment. Chemometrics and Intelligent Laboratory Systems. 2003,65,221-229.
    [199]Cozzolino, D., Smyth, H. E., Gishen, M. Feasibility study on the use of visible and near-infrared Spectroscopy together with chemometrics to discriminate between commercial white wines of different varietal origins. Journal of Agricultural and Food Chemistry.2003,51,7703-7708.
    [200]Dambergs, R. G, Kambouris, A., Francis, I. L., Gishen, M. Rapid analysis of methanol in grape-derived distillation products using near-infrared transmission spectroscopy. Journal of Agricultural and Food Chemistry.2002,50, 3079-3084.
    [201]魏桃英,徐大新,寿泉洪.浅析黄酒的勾兑.酿酒.2010,37(1):92-93.
    [202]Lachenmeier, D. W., Rapid quality control of spirit drinks and beer using multivariate data analysis of Fourier transform infrared spectra. Food Chemistry.2007,101,825-832.
    [203]Lobo, A. P., Valles, B. S., Tascon, N. F., Madrera, R. R., Garcia, O. F. Calibration models for routine analysis of cider by mid-infrared spectroscopy. LWT - Food Science and Technology.2006,39,1026-1032.
    [204]祝诗平,王一鸣,张小超,吴静珠.近红外光谱建模异常样品剔除准则与方法.农业机械学报.2004,35(4):1]5-119.
    [205]Cozzolino, D., Liu, L., Cynkar, W. U., Dambergs, R. G., Janik, L., Colby, C. B., Gishen, M. Effect of temperature variation on the visible and near infrared spectra of wine and the consequences on the partial least square calibrations developed to measure chemical composition. Analytica chimica acta.2007,588,2240239.
    [206]徐惠荣,汪辉君,黄康,应义斌;杨诚,钱豪,胡俊.PLS和SMLR建模方法在水蜜桃糖度无损检测中的比较研究.光谱学与光谱分析.2008,28(11):2523-2526.
    [207]Kawano, S., Abe, H. Development of a calibration equation with temperature compensation for determining the Brix value in intact peaches. Journal of Near Infrared Spectroscopy.1995,3,211-218.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700