用户名: 密码: 验证码:
凹凸棒石/γ-Fe_2O_3/炭复合材料制备及对苯酚吸附性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用凹凸棒石特殊晶体形态、优良吸附性能、表面化学活性以及对晶体成核和生长的控制作用,通过铁盐水解与热处理,在凹凸棒石表面负载纳米磁赤铁矿和炭,通过调控凹凸棒石/磁赤铁矿/炭复合材料组成、粒径,调控复合材料孔径分布和性能,制备具有超顺磁性、优良吸附性能的廉价多功能纳米复合材料。目的是通过改性凹凸棒石高效吸附和复合材料磁分离介质的作用去除水中溶解性微量有机污染物,通过复合材料超顺磁特性实现吸附剂磁选回收,通过各种表征技术着重研究复合材料制备方法及制备条件对复合材料相组成、微结构、表面性质、吸附性能、磁学特性、磁分离效果的影响以及污染物在复合材料上吸附性能、机理。结果表明,复合材料的磁化率值为2769×10~(-8)·m~3/kg,用磁分离工序即可把该吸附材料从溶液中快速分离出来;铁的磁性氧化物以γ-Fe_2O_3的形态负载到了凹凸棒石表面,颗粒直径为10~60纳米;炭以无定形的形态负载在凹凸棒石晶体表面;复合材料中的含炭量为7.4%,并且材料中出现了有机官能团-CH_3、-CH_2-和-C=O。对苯酚的吸附实验表明,复合材料对有机污染物苯酚的去除率是凹凸棒石原矿的3倍。在298k~328k温度范围内,吸附热力学参数焓变值ΔH(-20.35kJ/mol)、熵变值ΔS(-71.88 J/K·mol)、自由能变值ΔG均为负值,说明复合材料对苯酚的吸附是一个自发、放热、熵增的过程。在研究的浓度、转速和温度的范围内,在凹凸棒石/γ-Fe_2O_3/炭复合材料对苯酚的吸附动力学数据能够较好地符合准二级动力学方程。凹凸棒石/γ-Fe_2O_3/炭复合材料对苯酚的吸附活化能为11.92 kJ/mol,说明此吸附并不是由单一的化学吸附为速率控制步骤,是由化学吸附和液膜扩散共同控制的吸附过程。
     成果对水深度处理、饮用安全保障技术研究具有重要意义,对环境矿物学、环境地球化学、地质微生物学、环境工程等学科研究具有重要意义。
Using the special crystal form, excellent absorption properties, surface chemical activity, as well as crystal nucleation and growth control of attapulgite, through molysite hydrolysis and heat treatment, hematite and magnetic nano-carbon load in the surface of it; by controlling the composition and the size of palygorskite/γFe_2O_3 / carbon composites, control size distribution and performance, prepared a superparamagnetic iron, excellent absorption properties of low-cost multi-functional nanocomposites. In order to through the action of modified attapulgite’high adsorption and magnetic separation to remove the trace organic pollutants and suspended solids that dissolved in the water. using the superparamagnetic characteristic to achieve magnetic recovery of adsorbent; through biodegradable absorbent to achieve regeneration, solving the absorbent clay minerals solid-liquid separation and recycling problem.
     Simulate to using each kind of attribute technology to research the influence of the compound materials’preparation method and condition which affects on the composition, the microstructure, the surface properties, the adsorption performance, magnetism characteristic as well as the effect of magnetism separation, the biology - mineral correlation that pollutants affect on the adsorption performance, mechanism and absorbent regeneration of the compound materials. The results suggested that the nanocomposite could be subsequently removed from the water by a simple magnetic procedure. The magnetic iron oxides in the form ofγ-Fe_2O_3 were loaded onto the surface of the palygorskite, with particle diameter from 10 to 60 nm. The carbon in the form of amorphous was loaded onto palygorskite crystal surface and the content of carbon in the composite material was 7.4%. Furthermore, functional group -CH_3, -CH_2- and -C=O were found in the nanocomposite material. The efficiency of composite material for phenol removal was three times higher than that of palygorskite, which was suggested by the adsorption comparative test. Over the temperature range of 298k-328k, the thermodynamics parameters including Gibb’s free energy changes (ΔG), enthalpy(ΔH), and entropy changes (ΔS) were : -20.35(kJ/mol), 71.88 (J/K·mol) respondingly. These indicates that adsorption thermodynamics of phone on palygorskite/γFe_2O_3 / carbon nanocomposite materials were a spontaneous and exothermic process.
     The achievement has the important meaning on water advanced treatment and potable water safety control technology, also in study of environment mineralogy, environment geochemistry ,Geological microbiology, environment engineering and so on.
引文
[1]王占生,刘文君.微污染水源饮用水处理[J].中国建筑工业出版社, 1999, 1-306
    [2]潘碌亭.中国微污染水源水处理技术研究现状与进展[J].工业水处理, 2006, 26(6): 6-9
    [3] Lílian Zarpon, et al. Montmorillonite as an adsorbent for extraction and concentration of atrazine, propazine, deethylatrazine, deisopropylatrazine and hydroxyatrazine[J]. Analytica Chimica Acta, 2006, 579: 81-87
    [4] Abate G, Santos LBO, Colombo SM, Masini JC. Removal of fulvic acid from aqueous media by adsorption onto modified vermiculite[J]. Applied Clay Science, 32 (3-4): 261-270
    [5]何宏平.蒙脱石等粘土矿物对重金属离子吸附选择性的实验研究[J].矿物学报, 1998, 19(2): 125-134
    [6] Pantani O, Calamai L, Fusi P. Influence of clay minerals on adsorption and degradation of a sulfonylurea herbicide (Cinosulfuron)[J]. Applied Clay Science, 1994, 8: 373-387
    [7]朱利中.有机膨润土吸附本酚的性能及其在水处理中的应用初探[J].中国环境科学, 1994, 14(5): 346-350
    [8]田煦,郑自立,易发成.中国坡缕石矿石特征及物化性能研究[J].矿产综合利用,1996,(6): 1-4
    [9]郑自立,田煦,王濮.中国坡缕石粉晶X射线衍射特征研究[J].矿产综合利用, 1996, (6): 4-8
    [10]周杰,刘宁,李云.凹凸棒石粘土的显微结构特征[J].硅酸盐通报, 1999, 18(6): 50~55
    [11] Necip Güven. The coordination of aluminum ions in the palygorskite struc- ture [J]. Clays and Clay Minerals, 1992, 40(4): 457-461
    [12] Serna G J, Vamscoyoc G E. Infrared study of sepiolite and palygorskite surfaces[J]. International Clay Conference, 1979, 27, 197-206
    [13]陈天虎,徐晓春,岳书仓.苏皖凹凸棒石黏土纳米矿物学及地球化学[M].北京:科学出版社, 2004: 1-297
    [14]孙家寿,周卫军,袁金桃.交联粘土矿物处理造纸废液的研究[J].工业用水与废水, 1999, 30(4):13-15.
    [15] M Srimura li, A Pragathi, J Karthikeyan. Environmental Pollution, 1998, 99: 285-289.
    [16]聂发辉,李田.粘土矿物在污水处理中的应用及展望[J].华东交通大学学报, 23(4): 22-26
    [17]夏士朋,石诚.改性膨润土处理含甲苯废水的试验研究[J].河南化工, 2002, 5: 24-26.
    [18]何宏平,郭九皋,谢先德.膨润土粘土矿物吸附重金属的研究[J].重庆环境科学, 1993, 15(1): 4-6.
    [19]刘伟,王林山.水处理用膨润土的改性方法研究进展环境科技[J], 1998, 17(6): 62-63.
    [20]肖子敬,戴敬草.膨润土基多孔材料对红色染料的脱色[J].华侨大学学报, 2002, 2(12): 144-148.
    [21]曾秀琼.弱酸性深蓝GR在羟基铁柱撑膨润土上的吸附研究[J].水处理技术, 2001, 27(4): 200-203.
    [22]王连军,黄中华,刘晓东.膨润土的改性研究[J].工业水处理, 1999, 19(1): 9-11
    [23]冯秀娟.改性海泡石在环境污染治理中的应用[J].环境污染治理技术与设备, 2004, 5(4): 80-83
    [24]徐媛媛,范雪荣,王强.凹凸棒石粘土对水溶性染料的吸附脱色研究[J].印染技术, 2006, 32(18): 107-205
    [25]王金明,易发成.改性凹凸棒石对模拟核素Sr2+的吸附性能的研究[J].水处理技术, 2006, 32(10): 207-214
    [26]王金明,易发成.改性凹凸棒石表征及其对模拟核素Cs+的吸附研究[J].非金属矿, 2006, 29(2): 307-314
    [27]宋金如.凹凸棒石粘土吸附铀的性能研究及应用[J].华东地质学院学报, 1998, 21(3): 265-272
    [28] Ye Hengpeng, Chen Fanzhong, Sheng Yanqing. Adsorption of phosphate from aqueous solution onto modified palygorskites[J]. Separation and Purification Technology, 2006, 50: 283-290
    [29]彭书传.坡缕石对直接耐晒大红的吸附动力学特征[J].矿物学报,2006, 26(3): 267-271
    [30] Peng Shuchuan, et al. Study on adsorption kinetics of methylene blue onto palygorskite from aqueous solutions[J]. Acta of Geologica Sinica, 2006, 80(2): 236-242
    [31]彭书传,王诗生.坡缕石吸附水中阳离子桃红FG染料的热力学研究[J].矿物学报, 2005, 25(2): 113-117
    [32]彭书传,王诗生.凹凸棒石吸附水溶性染料的热力学研究[J].硅酸盐学报, 2005, 33(8): 1012-1017
    [33]陈天虎.凹凸棒石粘土吸附废水中污染物机理探讨[J].高校地质学报, 2000, 6(2): 265-270
    [34] Helmy AK, Bussetti SG. The surface energy of palygorskite[J]. Powder Technology, 2007, 171: 126-131
    [35] Keil RG, Hedges DB. Sorption of organic matter to mineral surfaces and the preservation of organic matter in coastal marine sediments[J]. Chem.Geol. 1993, 107:385-388
    [36] Kubicki JD, et al. Attenuated total relectance fourier-transform infrared spectroscopy of carboxylic acids adsorbed onto mineral surfaces[J]. Geochimica and Cosmochimica Acta, 1999, 63(18): 2709-2725
    [37]陈天虎,李宏伟,汪家权.凹凸棒石载银抗菌剂的制备和表征.硅酸盐通报[J], 24(2):123-126
    [38] Sanchez MS. Efficiency of different clay minerals modified with a cationic surfactant in the adsorption of pesticides: Influence of clay type and pesticide hydrophobicity[J]. Applied Clay Science. 2006, 31: 216-228
    [39] Vico LI, Acebal SG. Some aspects about the adsorption of quinoline on fibrous silicates and Patagonian saponite[J]. Applied Clay Science, 2006, 33: 142-148
    [40] Zadaka D, Mishael YG, Polubesova T, Serban C, Nir C.Modified silicates and porous glass as adsorbents for removal of organic pollutants from water and comparison with activated carbons[J]. Applied Clay Science, In Press, Corrected Proof, Available online 10 January
    [41]包军杰,余贵芬.改性凹凸棒石对模拟含酚废水处理机制的研究[J].环境化学, 2006, 25(1): 331-336
    [42]陈天虎.改性凹凸棒石粘土吸附性能对比实验研究.工业水处理, 2000, 20(4): 27-29
    [43]胡涛,张强华,李东,金叶玲.改性凹凸棒石黏土处理含氟废水研究[J].非金属矿, 2006, 29(3): 342-349
    [44]惠天凯,裘祖楠,汪学才.改性凹凸棒土对水溶液中苯的吸附研究[J].上海环境科学, 2006, 25(1): 331-336
    [45]李万山. HDTMA改性粘土对模拟地下水中苯系物的吸附[J].中国环境科学, 1999, 19(3):211-214
    [46]栾兆坤,马钢平,赵春禄.改性凹凸棒氧化膜吸附剂的除氟性能[J].大连铁道学院学报, 2006, 25(1): 331-336
    [47]王红艳,赵宜江,张莉莉,张艳,周守勇.改性凹凸棒石粘土吸附工艺的研究[J].电镀与环保, 2005, 25(4): 373-376
    [48]陈天虎,张国生,范文元.凹凸棒石粘土处理印染废水的研究[J].环境污染与防治, 1995, 17(1): 24-26
    [50]张国宇,王鹏.凹凸棒石粘土及在水处理中的应用[J].工业水处理, 2003, 23(4): 373-376
    [51]裘祖楠.活性凹凸棒石对阳离子染料脱色作用及其应用研究[J].中国环境科学, 1997, 17(4): 373-376
    [52]王连军,黄中华,孙秀云.改性凹凸棒土处理染化废水研究.南京理工大学学报, 2006, 25(1): 331-336
    [53]崔龙鹏.试论粘土矿物在淮河水污染治理中的应用前景[J].环境保护科学, 2006, 26(4): 373-376
    [54]范文元.利用凹凸棒石粘土吸附处理含铬废水[J].化工环保, 1989, 9(4): 248-249
    [55]裘祖楠,姚振淮,漆德瑶.用凹凸棒石净化污染河水的研究[J].上海环境科学, 2006, 26(4): 373-376
    [56]胡春.凹凸棒负载TiO2对偶氮染料和纺织废水光催化脱污[J].环境科学学报, 2001, 21(1): 123-125
    [57]彭书传,谢晶晶,庆承松.负载TiO2凹凸棒石光催化氧化法处理酸性品红染料废水[J].硅酸盐学报, 2006, 34(10): 1208-1212
    [57] Ilisz I, Dombi A, Mogyorósi K, Farkas A, Dékány I. Removal of 2-chlorophenol from water by adsorption combined with TiO2 photocatalysis[J]. Applied Catalysis B: Environmental, 2002, 39: 247-256
    [58]陈天虎.凹凸棒石-TiO2纳米复合材料制备和表征[J].硅酸盐通报, 2006, 23 (1): 112-114
    [59]赵娣芳.铜改性凹凸棒石/纳米二氧化钛复合粉体的微观结构.硅酸盐学报[J], 2006, 34: 792-795
    [60] Ayari F, Srasra E, Trabelsi-Ayadi M. Characterization of bentonitic clays and their use as adsorbent[J]. Desalination, 2005, 185: 391-397
    [61] Anirudhan TS, Ramachandran M. Surfactant-modified bentonite as adsorbent for the removal of humic acid from wastewaters[J]. Applied Clay Science, 2007,35: 276-281
    [62] Nava Narkis, Bella Ben-David. Adsorption of non-ionic surfactants on activated carbon and mineral clay[J]. Water Research, 1985, 19: 815-824
    [63] Booker NA, Keir D, Priestley A. Sewage clarification with magnetic particle[J]. Water Science Technology, 1991(23): 103-112
    [64] WU R C, QU J H, HE H, et al. Removal of azo2dye Acid Red B (ARB ) by adsorp tion and combustion using magnetic CuFe2 O4 powder [J]. Applied Catalytic B: Environmental, 2004, 8: 49-56.
    [65]包军杰,余贵芬.改性凹凸棒石对模拟含酚废水处理机制的研究[J].环境化学, 2006, 25(1):35-38
    [66]李万山,高斌,冯建坊,王晓蓉. TMA改性粘土矿物对模拟地下水中苯系物的吸附[J].环境化学, 1999, 18(5):403-407
    [67] Pollard STP, Sollars CJ, Perry R. A clay-carbon adsorbent derived from spent bleaching earth[J]. Surface characterisation and adsorption of chlorophenols from aqueous solution. Carbon, 1992(30): 639-645
    [68] Leboda R, Charmas B, Chodorowski S et al. Improved carbon–mineral adsorbents derived from cross-linking carbon-bearing residues in spent palygorskite[J]. Microporous and Mesoporous Materials, 2006(87): 207-216
    [69] Tsai Wen-Tsain, Lai Chi-Wei. Adsorption of herbicide paraquat by clay mineral regenerated from spent bleaching earth[J]. Journal of Hazardous Materials, 2006(134): 144-148
    [70] Tsai WT, Chen HP, Hsieh MF et al. Regeneration of spent bleaching earth by pyrolysis in a rotary furnace[J]. Journal of Analytical and Applied Pyrolysis, 2002(63): 157-170
    [71] Tsai WT, Chen HP, Hsien WY et al. Thermochemical regeneration of bleaching earth waste with zinc chloride[J]. Resources, Conservation and Recycling, 2003(29): 65-77
    [72] Tsai WT, Chang YM, Lai CW. Adsorption of basic dyes in aqueous solution by clay adsorbent from regenerated bleaching earth[J]. Applied Clay Science, 2005(29): 149-154
    [73]陈天虎,徐惠芳,鲁安怀等.蒙脱石和凹凸棒石纳米复合材料制备、表征和潜在应用[J].硅酸盐通报, 2004, 23(1):41-44
    [74]陈天虎,徐惠芳,彭书传等.凹凸棒石与酸反应纳米尺度研究[J].高校地质学报, 2004, 10(1):98-105
    [75] Liu T, Guo L, Tao Y. Synthesis and interfacial structure of nanoparticlesγFe2O3 coated with surfactant DBS and CTAB[J]. Nanostructured Materials, 1999, 11(4): 487-492
    [76] Tsai Wen-Tien and Lai Chi-Wei. Adsorption of herbicide paraquat by clay mineral regenerated from spent bleaching earth[J]. Journal of Hazardous Materials, 2006, 134: 144-148
    [77] Leboda R, Charmas B, Chodorowski S, Skubiszewska-Zi?ba J, Gun’ko VM. Improved carbon–mineral adsorbents derived from cross-linking carbon-bearing residues in spent palygorskite[J]. Microporous and Mesoporous Materials, 87: 207-216
    [78] Pollard STP, Sollars CJ, Perry R. A clay-carbon adsorbent derived from spent bleaching earth: Surface characterisation and adsorption of chlorophenols from aqueous solution[J]. Carbon, 2006, 30: 639-645
    [79]鲍士旦.土壤农化分析[M].北京:中国农业出版社, 2004, 30-34
    [80] Fried T ,Shemer G, Markovich G. Ordered two-dimensional arrays of ferrite nanoparticles. Adv Mater, 2001, 13(15): 1158
    [81]李发伸,王涛,王颖. H2O2氧化法制备Fe3O4纳米颗粒及与共沉淀法制备该样品的比较.物理学报, 2005, 54(7): 310-317
    [82]娄敏毅,王德平,黄文品,等.纳米Fe3O4磁性粒子合成过程中分散体系的影响.建筑材料学报, 2005, 8(2): 169
    [83]王全胜,刘颖,王建华,等.沉淀氧化法制备四氧化三铁的影响因素研究.北京理工大学学报, 1994, 45-34
    [84]都有为,罗河烈.磁记录材料.电子工业出版社, 1992,北京: 113-227
    [85] Fang JY, et al. Materials Research Bulletin, 2003, 38: 461-467
    [86] Xiang Liren, Huang Jing, Liu Shengcong. Metall Anal (China), 1999, 19(4): 16-18.
    [87]陈天虎,王健,庆承松等.凹凸棒石热处理结构、形貌和表面性质变化[J].硅酸盐学报, 2006, 34(11):106-110
    [88]庆承松,谢晶晶,陈天虎.凹凸棒石-TiO2-磁性颗粒纳米复合材料的制备[J].矿物岩石地球化学通讯, 2006, 25(4):309-313
    [89]陈天虎.凹凸棒石粘土吸附废水中污染物机理探讨[J].高校地质学报, 2000, 6(2):265-270
    [90]吴大清,刁桂仪,魏俊峰,等.矿物表面基团与表面作用[J].高校地质学报, 2000,6(4):225~232
    [91] Wu Daqing, Diao Guiyi, Peng Jinlian. Experimental study on the competitive adsorption of metal ions onto minerals [J]. Chinese Journal of Geochemistry, 1998,17(3):213~220
    [92]魏俊峰,吴大清.矿物-水界面的表面离子化合络合反应模式[J].地球科学进展, 2000, 15(1):90~96
    [93] Wu Honghai, Wu Daqing, Peng Jinlian. Experimental study on surface reactions of heavy metal ions with quartz-aqueous ion concentration dependence[J]. Chinese Journal of Geochemistry,1999, 18(3):201~207
    [94]徐则民,黄润秋,唐正光.硅酸盐矿物溶解动力学及其对滑坡研究的意义[J].岩石力学与工程学报, 2005, 24(9):1048~1058
    [95] Viseras C, Meeten GH, Lopex-Galindo A. Pharaceutical grade phyllosilicate dispersions: the influence of shear history on floc structure[J]. InternationalJournal of Pharmaceutics,1999,182(1):7~20
    [96] Yu Y, Zhuang Y Y, Wang Z H, et al. Adsorption of water-soluble dyes onto modified resin [J]. Chemosphere, 2004, 54(3): 425-430
    [97]范顺利,孙家寿.活性炭自水溶液中吸附酚的热力学与机理研究[J].化学学报, 1995, 53: 526-531
    [98]顾惕人,朱步瑶,李外郎.表面化学[M].北京:科学出版社, 1999
    [99] Boyd G E, Adamson A M, Mvers L S. The exchange adsorption behavior of ions from aqueous solutions by organic zeolites [J]. II kinetics J Am Chem Soc, 1947, 69: 2836-2848
    [100] HO Y S, McKay G. The sorption of lead (II) ions on peat [J]. Water Research, 1998, 33(2): 578-584
    [101] Lagergern S. About the theory of so-called adsorption of soluble substances [J]. Kungliga Svenska Vetenskapsakademiens. Handlingar, Band.1898, 24 (4): 1-39
    [102] Ho Y S. Adsorption of heavy metals from waste streams by peat [D]. UK Birmingham: University of Birmingham, 1995

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700