用户名: 密码: 验证码:
三元复合驱化学剂的环境行为和污染特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三元复合驱(ASP)是20世纪80年代中期提出的三次采油新方法。它是由碱/表面活性剂/聚合物复配而成的三元复合驱油体系,具有表面活性剂和聚合物驱共同的优点,既能提高驱油效率,又能提高波及体积,并且能较大幅度地降低表面活性剂的用量,已被各大油田广泛使用,成为油田产量接替的主要措施。但随着化学驱油剂的大量应用,不可避免的给环境带来各种危害,因此有必要分析评价ASP化学剂的环境行为和污染特性,为油田的环境治理提供一定的理论基础,为三元复合驱大规模应用提供可靠的技术保证。
     本文通过现代分析手段,根据现有标准及环境评价方法,确定出ASP化学剂中对环境造成影响的主要特征污染物有碱(氢氧化钠)、表面活性剂(直链烷基苯磺酸盐、未磺化油)及聚丙烯酰胺(丙烯酰胺),并详细分析了它们对环境可能造成的影响与危害,结果表明,三元复合驱中碱和未磺化油具有很大的污染特性,且呈现持久和难处理的特点;表面活性剂毒性与其浓度和结构有关;聚丙烯酰胺本身对动植物无毒性,对环境产生的影响也很小,但其降解产物丙烯酰胺会给生态环境和人类健康带来很大的危害。
     通过室内实验着重研究了ASP化学剂在土壤中的环境行为。通过室内土柱模拟实验,模拟了单元污染物(NaOH、LAS、PAM)和三元污染物在土壤中的自然迁移行为和模拟降雨情况下的迁移行为,考查了不同土壤类型(黑土、黄土、盐碱土)、不同时间、不同污染物数量对迁移情况的影响,得出污染物在土壤中的垂向迁移规律。此外也研究了PAM和LAS在环境(土壤、水体)中的吸附和降解行为,结果表明LAS在环境中降解速度较快;土壤对PAM有很强的吸附能力,一旦吸附很难再解吸下来。
     本论文从数值模拟理论角度出发,综合考虑了可溶性污染物在均质土壤/水环境体系中对流-弥散作用下的理想情况,以及可能存在的源汇情况,以土壤溶质迁移机理和质量守恒定律为基础,建立了描述饱和土壤/水环境中污染物迁移转化的数学模型,并以三个月内LAS在饱和土壤环境下的迁移模拟结果来验证对流-水动力弥散迁移模型的有效性。结果表明,对于饱和土壤环境污染物迁移过程的描述,模型有较强的适用性。本论文在对复杂的土壤环境进行了适度理想化假设的前提下,针对大庆油田典型的ASP化学剂泄漏情况进行了模拟计算,通过求解分析得到了特征污染物在土壤环境中的浓度分布及污染物理论迁移范围预测。ASP化学剂意外泄漏后一年内,对于特征污染物之一的LAS,其浓度值在经过短时间内的浓度积聚后,最终基本停留在土壤表层中呈规律性分布,其浓度最高值为14.5mg/L;另一特征污染物PAM同样呈规律性分布,但由于其特殊的物理化学性质,泄漏后10年后PAM主体浓度约为4.5mg/L,迁移边缘深至1.9m处,迁移进程比较缓慢;而特征污染物NaOH由于具有较好的水溶性和反应活性,迁移速度较快,三个月即有可能穿透土壤表层进入含水层,但是其浓度基本上可以忽略不计,对水质pH值的影响在国家安全标准范围之内。通过对这3组求解的独立分析,总结得出了可溶性污染物在土壤环境中存在的共性归趋规律。
     经过对三元复合驱中特征污染物在土壤中环境行为的全面分析,发现上述污染物进入土壤后基本都停留在土壤表层,即使在降雨、地表聚集着大量污染物的情况下,也不会影响到大庆地下水;特征污染物表面活性剂降解速度快,不是环境持久污染物,聚丙烯酰胺本身无毒性,其降解产物丙烯酰胺虽对环境和人类有很大危害,但降解速度很快,不被列为三元复合驱中主要污染物;特征污染物碱等同环境中一般碱类污染物,未磺化油等同环境中一般苯系污染物,为油田开发中常见污染物,呈现持久和难处理的特点,值得人们重视。
Alkali-surfactant-polymer(ASP) compound flooding is a new method for tertiary oil recovery mentioned at the 80s of the 20th century. It is compounded by the alkaline, surfactant and polymer, containing the common advantage of surfactant and polymer flooding. It can improve oil displacement efficiency, increase the involved volume, meanwhile, it can reduce the usage of surfactant sharply. So it has been widely used in major oil fields, being a major measure to increase the oil productivity. However, as the ASP chemicals are applicated largely, the environment will be damaged inevitably. It is necessary to study and evaluate the pollutants environmental behaviors and impacts of ASP chemicals to provide a theoretical basis for environmental management of oil field and the reliable technology guarantee for the next ASP large-scale application.
     In this paper, according to the existing domestic and overseas environmental standards and evaluation methods, the main environmental particular pollutants in ASP are identified as alkali (sodium hydroxide), surfactant (linear alkylbenzene sulfonates, unsulphonic oil) and polyacrylamide (acrylamide) by modern analytical method. And the impact of main environmental particular pollutants in ASP on environment are analyzed in detail.The alkali and unsulphonic oil in ASP can cause enormous harms to ecological environment, showing the characteristics of durable and tractable. The toxicity of surfactant is related to the concentration and structure of surfactant. The polyacrylamide (PAM) is less environmental contamination and non-toxic to plants and animals, but its degradation product acrylamide (AM) can cause great harm to human beings and environment.
     The environmental behavior of ASP flooding chemicals in soil are studied with great focuses by experiments. The transfeering behavior under natural or simulated rainfall conditions of cell contaminant(sNaOH, LAS, PAM)and ternary pollutants are studied through the soil column experiments in different soils(black soil,loess soil,saline alkali soil), different times and different amount of pollutants. Effect of soil types (black soil,loess soil,saline alkali soil), time and amount of pollutants on the law of transferring in soil are investigated and the vertical migration law in soil are found. Moreover, the adsorption and degradation of PAM and LAS on the environment (river, soil) are also studied. LAS degradate fast in the environment. PAM has a high adsorptive affinity on soil and it is very difficult desorbed.
     This paper explained the conditions and building process of the migration and transformation model, established the mathematical equations and took series of possible extension in comprehensive consideration of soil solute transport mechanism, law of conservation of mass and the convection-dispersion of soluble contaminants in the homogeneous soil/water environment system under the ideal situation. Then, the equations, together with the initial conditions and the associated boundary conditions, make a specific meaningful soil solute transport model. In this paper, a one-dimensional soil column simulation of LAS migration in 3 months has been used as a validity comparison to the model application in the saturated soil environment. The results show that, for the description of contaminants migration process in saturated soil environment, model has a strong applicability. Contraposing the typical condition that ASP chemical agents have leaked of Daqing oilfield, simulation calculations have been carried out in the precondition of idealizing the complex soil environment. The distribution of contaminants concentration and the prediction of the range of theoretical migration have been figured out by means of calculations and analysis. After ASP chemical agents accidentally leaking within one year, the value of LAS concentration accumulate in a short period of time, then stay in the soil surface regularly. The highest concentration value is 14.5 mg/L. PAM, another sort of contaminants, due to its special physical and chemical properties, the concentration of PAM is about 4.5 mg/L after 10 years though it was regularly distributed. The edge of migration deep into 1.9 m, it follows that the migration process has been slow. As for NaOH, which can penetrate into the aquifer from the soil surface in only three months because of its great water solubility and high reactivity. But the concentration can be negligible, for the impact of water pH is also within the scope of national safety standards. After the independent thorough analysis of the accidental leaked contaminants, a general common migration law of the soluble contaminants in the soil environment can be drawn as a conclusion.
     Based on the comprehensive analysis of environmental behaviors of ASP pollutants in soil, we can conclude that most particular pollutants in ASP stay in the soil surface.Even much more pollutants on soil surface under rainfall conditions, it will not affect groundwater of daqing; LAS is not a durable pollutant, for it has a fast degradation speed. The polyacrylamide (PAM) is non-toxic, the degradation product acrylamide (AM) of PAM can cause great harm to human beings and environment, but it can degradate quickly in the environment, so they should not be contained in the main pollutants of ASP flooding. The alkali equivalent to the general alkaline pollutant, and the unsulphonic oil can be seemed as benzene pollutant. They are very common in the development of oil field, showing the characteristics of durable and intractable, so they should worth more attention of human beings.
引文
[1]姜继水,宋吉水.提高石油采收率技术[M].北京:石油工业出版社,1999.
    [2]高德利,赵文智,杨慧珠,等.面向二十一世纪的能源科技:中国科协第21次“青年科学家论坛”报告文集[M].北京:石油工业出版社,1997.
    [3]杨振宇,陈广宇.国内外复合驱技术研究现状及发展方向[J].大庆石油地质与开发,2004,23(5):94~96.
    [4]郭万奎,程杰成,廖广志.大庆油田三次采油技术研究现状及发展方向[J].大庆石油地质与开发,2002,21(6):1~6.
    [5]鞠野.一元/二元/三元驱油体系微观驱油机理研究[D].大庆:大庆石油学院,2006.
    [6]杨振宇,周浩,姜江,等.大庆油田复合驱用表面活性剂的性能及发展方向[J].精细化工,2005,22:22-23.
    [7]董秀勤,窦云芹,宋会美,等.三次采油复合驱表面活性剂性能概述[J].油气田地面工程,2007,26(9):58-59.
    [8]彭占刚.三元复合体系相行为特征实验研究[D].大庆:大庆石油学院,2004.
    [9]陈忠,罗蛰潭,沈明道,等.三元复合驱强化采油技术[J].西南石油学院学报,1997,19(4):44~47.
    [10]王志田.世界首例三元复合驱工业化现场试验启动[N].中国石油报,北京: 2006-11-24(001).
    [11]刘群.大庆油田二类油层三元驱矿场试验全面见效[N].大庆油田报,大庆:2007-5-17(002).
    [12]周志刚.聚驱采油:让深层油龙听“调遣”[N].大庆日报,大庆:2007-10-8(B01).
    [13]白军红,王庆改.天然盐碱化湿地土壤水分扩散率的分析[J].吉首大学学报(自然科学版),2004,25(3):40~43.
    [14]祁贵明.格尔木地区宜农地土壤盐渍化成因及其治理[J].青海气象,2006,(3):30.
    [15]康贻军,胡健,董必慧,等.滩涂盐碱土壤微生物生态特征的研究[J].农业环境科学学报,2007,26:181~183.
    [16]徐明岗,李菊梅,张青.pH对黄棕壤重金属解吸特征的影响[J].生态环境,2004,13(3):312~315.
    [17]于君宝,王金达,刘景双,等.典型黑土pH值变化对微量元素有效态含量的影响研究[J].水土保持学报,2002,16(2):93~95.
    [18]金相灿,王圣瑞,庞燕.太湖沉积物磷形态及pH值对磷释放的影响[J].中国环境科学,2004,24(6):707~711.
    [19]朱艳吉.油田压裂与试采废液的环境行为研究[D].大庆:大庆石油学院,2007.
    [20]楚伟华.石油污染物在土壤中迁移及转化研究[D].大庆:大庆石油学院,2006.
    [21]刘玉梅.大庆市云水资源开发潜力估算[J].气象与环境学报,2006,22(2):59-61.
    [22]万洪富,俞仁培,王遵亲.黄淮海平原土壤碱化分级的初步研究[J].土壤学报,1983,20(2):129-139.
    [23]李彬,王志春,迟春明.吉林省大安市苏打碱土碱化参数与特征[J].西北农业学报,2006,15(1):16-19.
    [24]盛建东,杨玉玲,陈冰,等.土壤总盐、pH及总碱度空间变异特征研究[J].土壤,2005,37(1):69-73.
    [25]赵国玺.表面活性剂物理化学[M].北京:北京大学出版社,1991.
    [26]饶品华,何明.表面活性剂在土壤中的行为及其对土壤物理特性的影响[J].上海交通大学学报(农业科学版),2005,23(3):325-331.
    [27]潘根兴,韩永庆.对土壤理化形状和生物活性的影响[J] .环境科学,2001,22(1):57-61
    [28] Roch F,Alexander M.Biodegradation of hydrophobic compounds in the presence of surfactant[J].Environ.Taxicol.Chem.1995,14:1151-1158.
    [29]姜霞,高学展,应佩峰,等.表面活性剂的增溶作用及在土壤中的行为[J].应用生态学报,2003,14(11):2072-2076.
    [30]陈玉成.表面活性剂对植物吸收土壤重金属的影响[D].武汉:武汉大学,2005.
    [31] Tibor C,Zolton I,Istvonne N.Effects of nonionic tensides on the growth of some soil bacteria[J].Appl.Microbiol.Biotechnol.1991,35:115-118.
    [32] Zigterman G J W,Schotanus K,Ernsmr E B H W.Nonionic block polymer surfactants modulate the humoral immure response against streptococcus pneumoniae-derived hexasaccharide-protein conjugate[J].Infect.Immun.,1989,57(9):2712-2718.
    [33] Regan S L,Javasuriya N,Fabianowsk W.Supramolecular surfactants amphiphilic polymers designed to disrupt lipid membranes[J].Biochem.Biophys.Res.Commun.,1989,159:566-571.
    [34] Kimerle R A . Aquatic and terrestrials eco-toxicology of linear alkyl benzenesulphonate[J].Tenside Surf Det.,1989,26(2):167-176.
    [35]谭渝云,崔永元,陈军建.14C标志直链烷基苯磺酸钠在鱼体内的积累、分布和释放[J].中国环境科学,1991,11(2):125-129.
    [36]刘红玉.表面活性剂对水生植物的损伤及生物降解研究[D].湖南农业大学.
    [37]刘红玉,廖柏寒,鲁双庆,等.LAS和AE对水生植物损伤的显微和亚显微结构观察[J].中国环境科学,2001,21(6):527-530.
    [38]刘红玉,周朴华,杨仁斌,等.非离子型表面活性剂AE对大损伤程度的酶学诊断应用与环境生物学报[J].2000,7(5):416-419.
    [39]黄士忠,陈国光,王德荣,等.合成洗涤剂(LAS)对农作物影响的研究[J] .农业环境保护,1994,13(2):58-62.
    [40]叶亚新.3种家用化学品的微核效应研究[J].农业环境保护,2000,19(5):315-316.
    [41] Water J,Feijtel J.Lethality of aminocarb and components of aminocarb fornoulation to jusenue atlantic salnoon,marine invertebrates and fresh water clam[J].Chemosphere,1995,30:1939-1956.
    [42]刘守涛,白子武.重烷基苯的应用及市场潜力分析[J].日用化学品科学,2006,29(9):8-9.
    [43]赵贤俊,孙彦波,帅虎,等.三采表活剂重烷基苯磺酸盐的工业化生产[J].化学工程师,2007,(9):47-49.
    [44]李佩军.重烷基苯磺酸的生产、性能及应用[J].日用化学工业,1998,(5):37-39.
    [45]饶俊,张锦瑞,李玉凤.饮用水源地水体有机物污染研究现状[J].河北理工学院学报,2005,27(2):137-138.
    [46]孙剑辉,王国良,张干,等.自然水体中主要有毒有机物的研究进展[J].环境污染与防治,2006,28(10):776-779.
    [47]冯海飞,黄伯越,谭华风,等.肇庆市制鞋行业苯系物职业危害调查[J].职业与健康,2006,22(21):1794-1795.
    [48]周明.石化企业生产区空气中挥发性有机化合物对作业工人健康影响的调查[J].江苏卫生保健,2006,8(3):8-9.
    [49]刘洁,刘云.烷基苯磺酸钠的环境评价[J].日用化学品科学.2002,25(6):11-14.
    [50] Knaebel D B,Federle T W,McAvoy D C.Effect of mineral and organic soil constituents on microbial mineralization of organic compounds in a natural soil[J].Appl Environ Microbiol,1994,60:4500-4508.
    [51]马玉新,郑西来,史凤梅,等.水和土壤环境非水溶相污染物的表面活性剂增效修复机制[J].中国海洋大学学报,2005,35(3):451-454.
    [52] PARIA S.Surfactant-enhanced remediation of organic contaminated soil and water[J].Advances in Colloid and Interface Science,2008,138:24-58.
    [53] Ou Zq,Yediler A,He Y W,et al.Adsorption of linear alkylbenzene sulfonate(LAS) on soils[J].Chemosphere,1996,32:827-839.
    [54] Siracusa P,Somasundaran P.The role of mineraldissolution in the adsorption of dodecyl benzenesulfonate on kaolinite and alumina[J].Colloids and SurfacesA,1987,26:55-62.
    [55] Vold R D,Sivaramakrishnan N H.The origin of the maxmium in the adsorption isothermsofassociation colloids[J].J PhysChem,1958,62:984-989.
    [56] Amebrant T,Backstrom K,Jonsson B,et al.An ellipsometry study of ionic surfactant adsorption on chromium surfaces[J].J Colloid Interface Sci,1989,128:303-312.
    [57] Yuan C,Jafvertc T.Sorption of linear alcohol ethoxylate surfactant homologs to soils[J].Journal of Contaminant Hydrology,1997,28:311-325.
    [58] Paria S,Yuetpk.Adsorption of nonionic surfactants onto sand and its importance in naphthalene removal[J].Ind EngChem Res,2007,46:108-113.
    [59] Kiewietat,D E Beerk G M,Parsons J R,et al.Sorption of linear alcohol ethoxylates on suspended sedmi ents[J].Chemosphere,1996,32:675-680.
    [60] Brownawell B J,Chen N H,Zhang W J,et al.Sorption of nonionic surfactantson sediment materials[J].Environ Sci,Technol,1997,31:1735.
    [61] Krogh K A,Halling-Sensen B,Mogensen B B,et al.Environmental properties and effects of nonionic surfactant adjuvant in pesticides , a review[J].Chemosphere,2003,50:871-901.
    [62] Xu Q . Mechanisms of ionic-nonionic surfactant mixture adsorption at solid/liquid interfaces:A study of adsorption,fluorescence spectroscopy and mathematical modeling[C].PhD Thesis.Columiba:Columbia University,1993.
    [63] Somasundaranp,Krishnakumar S.Adsorption of surfactants and polymers at the solid-liquid interface[J].Colloids and Surfaces A,1997,123-124:491-513.
    [64] Wang J,Han B,Daim,et al.Effects of chain length and structure of cationic surfactantson the adsorption onto Na-K aolinite[J].J Colloid Interface Sci,1999, 213:596-601.
    [65] Haigh S D.A review of the interaction of surfactants with organic contaminants in soil[J].Science of the Total Environment,1996,185:161-170.
    [66] Urano K , Saitom , Murata C . Adsorption of surfactants on sediments[J].Chemosphere,1984,13:293-300.
    [67] Matthijse,Dehenauh.Adsorption and desorption of LAS[J].Tenside SurfDet,1985,22:299-303.
    [68] Podoll R T,Irwin K C,Sheryl B.Sorption of water-soluble oligomerson sedmients[J].Environ Sci Technol,1987,21:562-568.
    [69] Snchez-Mart N M J,Doradom C,Hoyo C,et al.Influence of claymineral structure and surfactantnature on the adsorption capacityof surfactants by clays[J].J Hazard Mater,2008,150:115-123.
    [70] Gardner K H,Ariasm S.Clay swelling and formation permeability reductions induced by a nonionic surfactant[J].Environ Sci Technol,2000,34:160-166.
    [71] Liumw,Ro Y D.Surfactant induced interactions and hydraulic conductivity changes in soil[J].Waste Management,1995,15:463-470.
    [72] Torn L H,Keizer A D,Koopall K,et al.Mixed adsorption of poly (vinylpyrrolidone) and sodium dodecylbenzenesulfonate on kaolinite[J].J Colloid Interface Sci,2003,260:1-8.
    [73] Nevskaian D M,Guerreo-Ru Z A,L Pez-Gone Lez J D D.Adsorption of polyoxyethylenic nonionic and anionic surfactants from aqueous solution: Effects induced by the addition of NaCl and CaCl2 [J].J Colloid Interface Sci,1998,205:97-105.
    [74]戴树桂,董亮,王臻.表面活性剂在土壤颗粒物上的吸附行为[J].中国环境科学,1999,19(5):392-396.
    [75]袁平夫,廖柏寒,卢明.表面活性剂(LAS&NIS)的环境安全性评价[J].安全与环境工程,2004,11(3):31-34.
    [76]秦勇,张高勇,康保安.表面活性剂的结构与生物降解性的关系[J].日用化学品科学,2002,25(5):20-23.
    [77] Moreno A , Ferrer J , Berna J . Biodegradability of LAS in a sewer system[J].Tenside Surf Det,1990,27(5):312-315.
    [78] Hashim M A,Kulandai J.Biodegradability of branched alkylbenzene Sulfonates [J].J Chem Tech Biotechnol,1992,54:207-214.
    [79]郭伟,李培军.阴离子表面活性剂(LAS)环境行为与环境效应[J].安全与环境学报,2004,4(6):37-42
    [80]袁平夫.表面活性剂在土壤中的吸附解吸行为及其对土壤微生物和酶活性的影响[D].长沙:湖南农业大学,2005.
    [81] Denger K,Dertesz M A,Vock E H,et al.Anaerobic desulfonation of 4-tolylsulfonate and 2-(4-sulfophenyl) butyrate by a Clostridium sp[J].Applied and Environmental Microbiology,1996,62(5):1526-1530.
    [82] Denger K,Cook A M.Linear alkylbenzenesulphonate (LAS) bioavailable to anaerobic bacteria as a source of sulphur[J].Journal of Aplied Microbiology,1999,86:165-168.
    [83]王正武,李干佐,张笑一,等.表面活性剂降解研究进展[J].日用化学工业,2001,10(5):32-33.
    [84]杨丽娟.表面活性剂生物降解和光降解技术研究进展[J].精细化工,2002,19(8):113-114.
    [85]官景渠,李济生.表面活性剂在环境中的生物降解[J].环境科学,1994,15(2):81-85.
    [86] Larson R. J,等.表面活性剂在环境中的生物降解[J].日用化学工业,1989,32(6)5-9.
    [87] Petroquimica Espanola S A.表面活性剂生物降解性和环境安全性[J].日用化学品科学,2005,25(4):155-156.
    [88]李之平,巩效牧,李庆莹.用百里酚蓝-次甲基蓝混合指示剂测定阴离子表面活性剂[J].分析化学,1984,12(12):1058-1061.
    [89] Schoberl P M.Basic principles of LAS biodegradation[J].Tenside Surf Det,1989,26 (2):86-94.
    [90] Gelover S,Leal T,Bandala E R,et al.Catalytic photo degradation of alkyl Surfactants[J].Water Science and Technology,2000,42(5-6):101-106.
    [91]唐秀云,杨永泰.汾江河水LAS降解特性研究[J].佛山科学技术学院学报(自然科学版),2003,21(1):43-45.
    [92] Holt M S,Mathijis E,Water J.The concentrations and fate of linear alkylbenzene sulfonates in sludge amended soils[J].Water Resour,1989,23:749-759.
    [93]李昊翔,蒋小龙,陈锋,等.钝顶螺旋藻对阴离子表面活性剂(LAS)的富集与降解[J].浙江大学学报(理学版),2006,33(4):434-438.
    [94]王宪,李文权,陈清花.养殖池底泥中好氧生物对有机物的降解作用-阴离子表面活性剂的可降解性研究[J].台湾海峡,1998,17(4):451-455.
    [95]陈宏伟,陈智博.LAS降解菌的筛选及生物学特性的研究[J].克山师专学报,1999,(3):11-12.
    [96]刘嘉麒,张榆霞.滇池烷基苯磺酸钠的分布、降解及对鲤鱼的危害效应[J].重庆环境科学,1997,19(1):17-22.
    [97]陈宏伟,朱蕴兰,倪世峰,等.LAS对土壤微生物生物学指标的影响及降解条件的正交实验分析[J].农业环境科学学报,2006,25(4):908-912.
    [98] McAvoy D C,Eckhoff W S,Rapaport R A,et al.Fate of linear aylkybenzene sulfonates in the environment[J].Toxic Chem,1993,12:977-987.
    [99]郑富源.环境中LAS的最终生物降解[J].日用化学品科学,1995,(3):3-4.
    [100]张达生,朱圣贤.聚丙烯酰胺的生产现状[J].油气田地面工程,2004,23(8):60-61.
    [101]燕丰.聚丙烯酰胺的生产应用及市场分析[J].化工中间体,2002,(11):8-12.
    [102]张淑芬.坡耕地施用聚丙烯酰胺防治水土流失试验研究[J].水土保持科技情报,2001,(2):18-19.
    [103] Terry,R E,Nelson S D.Effect of polyacrylamide and irrigation method on soil physical properties[J].Soil.Sci,1986,141:317-320.
    [104] Lentz R D,Sojika R E.Field results using polyacrylamide to furrow erosion and infiltration[J].Soil Sci,1994,158:247-282.
    [105] Trout T J,Sojka R E,Lentz R D.Polyacrylamide effect on furrow erosion and infiltration[J].ASAE,1994,38(3):761-765.
    [106] RD Lentz,I.Shainberg,RE Sojka,et al.Preventing irrigation furrow erosion with small application of polymers[J].Soil.Sci,Soc.Am.J,1992,56:1926-1932.
    [107] Woodlhouse J,Jhnson M S.超吸水性多聚物对作物幼苗存活和生长的影响[J].党秀丽编译.水土保持科技情报,2001(3):17-19.
    [108]冯浩,吴普特,黄占斌.聚丙烯酰胺(PAM)在黄土高原雨水利用中的应用研究[A].全国雨水利用学术讨论会暨国际研讨会论文集[C],甘肃兰州:2001,174-177.
    [109] Bob , Sojka , Rick Lentz . Polyacrylamide for furrow-irrigation erosion control[J].Irrigation Journal.1996,1:8-11.
    [110] Shock,C C,Feibert B G,Saunders L D.A comparison of straw mulching and PAM for potato production[R].OSU,Malheyr Experiment Station Special Report.1997,978:71-78.
    [111] Levy G J,Ben-Hur M,Agassi M.The effect of polyacrylamide on run off erosion and cotton yield from fields irrigated with moving sprinkler system[J].Irri.Sci,1991,12:50-60.
    [112] Stern R,Van Der Merwe A J,et al.Effect of soil surface treatments on runoff and wheat yields under irrigation[J].Agron.J,1992,84:114-119.
    [113]方道斌,郭睿威,哈润华,等编.丙烯酰胺聚合物[M].北京:化学工业出版社,2006.
    [114]高景恒,郑刚,王忠媛.关于丙烯酰胺毒性的研究及相关规定(文献复习)[J].实用美容整形外科杂志,2002,13(3):148-152.
    [115] Mucci L A,Dickman P W,Steineck G,et al.Dietary acrylamide and cancer of the large bowel , kidney and bladder: Absence of an association in a population-based study in Sweden[J].Br J Cancer,2003 (88):84-89.
    [116]王爱红.丙烯酰胺危害健康的研究进展[J].中国公共卫生,2003,19(12):1534-1535.
    [117] Matthys C,Bilau M,Govaert Y,et al.Risk assessment of dietary acrylamide in take in flemish adolescents[J].Food Chem Toxicol,2005(43):271-278.
    [118]马晓霞,姚耿东,程浩,等.丙烯酰胺对人角质形成细胞DNA损伤的研究[J].中华劳动卫生职业病杂志,2003,21(2):96-98.
    [119] Tyl R W,Friedman H A.Effects of acrylamide on rodent reproductive performance[J].Reprod Toxicol,2003(17):1-13.
    [120] Yang H J,Lee S H,Jin Y,et al.Toxicological effects of acrylamide on rat testicular gene expression profile[J].Reprod Toxicol,2005(19):527-534.
    [121]鲁开化,周智,雷永红,等.奥美定注入小香猪体内生殖毒性的观察[J].实用美容整形外科杂志,2003, 14(1): 14-16.
    [122]关景芳,贾文英.丙烯酰胺单体的细胞染色体实验观察[J].吉林医学,2003,24(1):27-28.
    [123]贾松,吕立夏,杨翠香,等.丙烯酰胺对小鼠小脑SOD基因表达的影响[J].同济大学学报:医学版,2003,24(1): 28-30.
    [124] Besaratinia A,Pfeifer G P.Weak yet distinct mutagenicity of acrylamide in manmmlian cells[J].J Natl Cancer lnst,2003(95):889-896.
    [125] Johnson K,Gorzinski S,BodnerK,et al.Chronic toxicity and oncogenicity study on acrylamide incorporated in the drinkingwater of fischer 344 rats[J].Toxicol Appl Pharmacol,1986,85(2):154-168.
    [126] Friedman MA,DulakLH,StedhamMA.A life time on cogenitcity study in rats with acrylamide[J].Toxicol Sci,1995,27(1):95-105.
    [127] A1unad B,Gcrd P.Weak yet distinct mutagenicity of acrylamide in mammalian cells[J].J Nat1 Cancer Insf,2003,(95):889-896.
    [128] Gamboa da C G,Churchwell M I,Hamilton L P,et al.DNA adduct formation from acrylamide via conversion to glycidamide in adult and neonatal mice[J].Chem Res Toxicol,2003,16(10):1328-1337.
    [129] Rice J M.The carcinogenicity of acrylamide[J].Mutat Res,2005 (580):3-20.
    [130]美国NIOSH(职业安全与卫生研究所)编制的RTECS(Regisery of Toxie Effeets of ChemicalSubstances) AS 3325000(NIOSH号)Acrylamide 1981-1982.
    [131] Fullerton P.M.et al.1966,Br.J.Ind.Med,23,210-211.
    [132] BullR.J,RobinsonM.Carcinogenic effects of Acrylamide in Sencar and A/J Mice.PB84-2404060/XAD 9P,1984.
    [133] Bull R J,Robinson M.Carcinogenic activity on acrylamide in the skin and lung of Swiss-IRC Mice PB85-146173/XAD,6P,1984.
    [134] Hi11s B,Greife B,PB85-234763/XAD,19P.29.Apr.1983.
    [135] Smith M K,Zenick H.PB86-204663/XAD,7P C1986.
    [136] Sickles D W,Wrenn P W,Acrylamide Neurotoxieity,PB89-129365/XAD,25P.87.
    [137] Sleet R B.Field E A,PB89-164669/XAD.402P.28,Nov.1988.
    [138]魏肖莹,张敬先.聚丙烯酰胺生产环境及对作业人员健康影响研究,《丙烯酰胺生产技术培训资料》P74.1987.
    [139]曾凡刚,陈忠,刘晓,等.含石英二元矿物复配物对聚丙烯酰胺吸附的协同效[J].岩矿测试,2003,22(2):134-136.
    [140]刘晓,陈忠,曾凡刚.矿物性质对聚丙烯酰胺吸附的影响[J].矿物岩石,2004,24(1):97-100.
    [141]李富生,冯玉军,郭拥军,等.疏水改性聚丙烯酰胺在粘土表面吸附机理的研究[J].石油与天然气化工,2002,31(5):263-265.
    [142]孙维林,胡靖邦,林雅琴,等.聚丙烯酰胺在配浆粘土颗粒上的吸附试验研究[J].钻井液与完井液,1989,(1):45-50.
    [143]郝明耀,唐善法.驱油剂在双河油砂上的静态吸附研究[J].内蒙古石油化工,2006,(10):95-97.
    [144]杨继萍,李惠生,黄鹏程.XPS分析部分水解聚丙烯酰胺在石英砂上的静态吸附行为[J].高等学校化学学报,1997,18(4):647-651.
    [145]杨继萍,李惠生,黄鹏程.部分水解聚丙烯酰胺在多孔介质中的静态吸附研究-水解度对吸附量的影响[J].高分子学报,1997,(5):601-605.
    [146] Theng B K G.Clay-polymer interaction: summary and perspectives[J].Clays and Clays Minerals,1982,30:1-10.
    [147] Nabzar L,Pefferkorn E.Polyacrylamide-sodium kaolinite interactions:Flocculation behavior of polymer clay suspensions[J].J Colloid and Interface Sci,1984,102(2):380-388.
    [148]杨世光,杨林,饶晓桐.聚丙烯酰胺浓度的测定-碘/淀粉比色法的改进[J].西南石油学院学报,1992,14(2):105-109.
    [149]包木太,骆克峻,耿雪丽,等.油田含聚丙烯酰胺废水的生物降解研究[J].油田化学,2007,24(2):188-192.
    [150]詹亚力,杜娜,郭绍辉.聚丙烯酰胺水溶液的氧化降解作用研究[J].石油大学学报(自然科学版),2005,29(2):108-111.
    [151] Mccollister D D,Hake C L,Sadek S E,et al.Toxicologic Investigations of Polyacrylamides[J].Toxicol Appl Pharmacol,1965,7:639-651.
    [152]韩昌福,郑爱芳,李大平.聚丙烯酰胺生物降解研究[J].环境科学,2006,27(1):151-153.
    [153]雒维国,徐苏欣,王世和.采油污水中聚丙烯酰胺的化学降解特性研究[J].环境污染治理技术与设备,2004,5(12):38-42.
    [154] Tolstikh L I,Akimov N I,Golubeva I A,et al.Degradation and stabilization of polyacrylamide in polymer flooding conditions[J].Int J Polymeric Material,1992,17:177-193.
    [155]刘晓冰.影响聚丙烯酰胺在土壤和水分管理应用的因素[J].农业系统科学与综合研究,2003,19(3):164-168.
    [156] Lande S S,Boach S J,Howar P H.Degradation and leaching of acrylamide in soil[J].J Environ Qual.1979,8(1):133-137.
    [157] Bologna L S,Andrawes F F,Barvenik F W,et al.Analyais of residual acrylamide in field crops[J].Journal of Chromatographic Science,1999,37(7):240-244.
    [158] Shanker R,Ramakrishna C,Seth P K.Microbial degradation of acrylamide monomer[J].Archives of Microbiology,1990,154:192-198.
    [159]董英,郭绍辉,詹亚力.聚丙烯酰胺的土壤改良效应[J].高分子通报.2004,(5):83-87.
    [160]单存龙,宗丽平,徐艳姝,等.烷基苯磺酸盐在大庆油砂上的吸附特征研究[J].中外能源,2006,11(5):45-47.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700