用户名: 密码: 验证码:
PVT共控作用下油气的形成过程与演化模式
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含油气盆地烃源岩中油气生成演化过程是一个复杂的地质与地球化学作用过程,受到各种地质环境与物理化学边界条件的制约,不仅与影响油气形成的内因—干酪根类型、有机碳含量有关,还与温度、压力、岩石矿物及流体介质、孔隙空间等外因有关。为了更为合理地描述油气生成过程,定量评价其生成潜力,以满足日益精细地油气勘探需要,本论文通过选取我国东部典型断陷盆地与南方海相下古生界不同有机质丰度、类型(Ⅰ和Ⅱ型)和岩性(泥页岩、泥灰岩)烃源岩和地层水样品,根据取样区埋藏史、热演化史和关键生烃期的古温压值等实际地质条件,利用自行研制的地层孔隙热解模拟实验仪,开展了大量PVT-t-L(压力P、孔隙空间V、温度T、时间t、孔隙流体L)共同作用下烃源岩热解模拟实验,结合含油气盆地演化过程中烃源岩孔隙流体、岩石矿物、沉积有机质的物理化学特性,对比分析了地层水相态与压力、岩石矿物性质以及孔隙空间大小等对有机质热降解过程与烃类热裂解速度的影响,探讨了高温高压液态地层水-岩石矿物-有机质相互作用下油气形成的反应机理,并在此基础上建立了油气形成的动态定量演化模式与烃源岩生油气潜力评价方法。论文主要研究内容和取得的主要成果认识如下。
     (1)自行设计研制了具有多项国家专利授权的地层孔隙热压生排烃模拟实验仪,建立了相应的PVT共控热解模拟实验方法,探讨了温度、时间、流体压力、地层水及生烃空间大小等边界条件对实验室内热解生成油气过程的影响。结果表明温度是影响油气生成的主控因素,但其它实验条件的影响也不可忽略,需要综合考虑各种影响因素,才可能在实验室内更为合理地模拟地下油气形成过程。
     (2)在总结现有油气生成热解模拟实验仪器、设备及所选条件的基础上,开展了不同岩性、干酪根类型与起始成熟度烃源岩的PVT共控体系与高压釜封闭体系的加水热解实验,对比分析了两种热解体系的H2、CO2、烃气、热解油及总油气产率与镜质体反射率之间的关系,结果表明烃源岩热解模拟实验方式对烃源岩热解产物产率与组成以及演化过程影响都比较大。
     (3)结合水的相图与高温高压下水的近临界物理化学特性,利用自制的高温高压油气溶解与释放模拟实验仪,测定了油气水三相共存时高温高压下地层水在正常原油中、原油在地层水中以及氦气、CO2/甲烷混合气在油水中的溶解度。结合烃源岩埋藏过程中孔隙度-成熟度关系,探讨了烃源岩孔隙中地层水的赋存状态及其对油气形成的影响。基于烃源岩中地层水的相态,开展了高压液态水与低压平衡态水两种相态水的烃源岩热解模拟实验,分析了水的相态及流体压力对气体组成与产率、油、总油气产率、成熟度及剩余生油气潜力的影响。
     (4)对比研究了海相与陆相烃源岩矿物组成特征及其对有机质赋存形式的影响,开展了不同岩石矿物组成烃源岩PVT共控条件热解模拟实验以及含有不同矿物的可溶有机质热裂解模拟实验,通过对比分析热解实验产物特征,探讨了岩石矿物组成对油气形成的影响。
     (5)针对利用Rock-Eval热解参数评价烃源岩生烃潜力存在的不足,建立了PVT共控连续递进热解实验方法。在此实验基础上,精细刻画了Ⅱ型干酪根生油气过程,提出了一套评价干酪根热解生油气潜力参数,并结合可溶有机质(不同性质原油)热裂解转化成烃气的产率特征,提出了一种新的烃源岩生油气潜力评价方法。在综合前人有关油气形成机理的认识基础上,探讨了高温高压液态地层水-岩石矿物-流体压力相互作用下油气形成的反应过程,综合大量PVT共控热解模拟实验结果,建立了Ⅱ干酪根烃源岩生成油气的动态定量演化模式。
Petroleum generation and evolution process in the source rocks of the petroliferous basins is the complicated interaction of geology and geochemistry, which is controlled by geology and boundary conditions of the physical chemistry. It has not only relationship with the inner influence factors of the petroleum formation such as the kerogen type, total organic carbon, but also with the exterior influence factors such as the temperature, pressure, rock mineral, fluid medium, pore space et al. To describe the petroleum generation process, quantitatively estimate the petroleum generation potential and satisfy the requirement of the detail oil and gas exploration, large numbers of pyrolysis simulation experiments for the source rocks controlled by the PVT-t-L (P:pressure; V:pore space; T:temperature; t:time; L:fluid)conditions are carried out according to the actual geology conditions in the sample areas such as burial history, thermal history, paleo-temerature and pressure in the key timing of the hydrocarbon and so on to analyze the effect of formation water phases and pressure, rock mineral property, pore space in the source rocks on the hydrocarbon process of organic matter and thermal cracking rate of hydrocarbon by the combination of the fluid in the pore space, rock mineral, physical chemistry characters of organic matter in the source rocks, discuss the reaction mechanisms of the petroleum formation with the interaction of the high temperature and pressure liquid formation water, rock mineral and organic matter, and establish the dynamic quantitative evolution mode of the petroleum formation and oil and gas generation potential estimation methods of the source rocks. The selected source rocks with various organic abundant, kerogen types (type Ⅰ and Ⅱ), lithology(mudstones and marlite) and formation water samples are from the typical faulted basins in the eastern China and the lower paleozoic marine strata in the southern China. The following conclusions can be drawn:
     (1) We designed and manufactured the formation pressure pore space hydrocarbon generation and expulsion simulation experiments machine which has several nationality patents authorization, establish the pyrolysis simulation experiments methods controlled by PVT, discuss the effect of the boundary conditions such as the temperature, time, fluid pressure, formation water, pore space and so on. The research results indicate that the temperature is the main control factors on the hydrocarbon generation and the other experiment conditions can not ignore, which imply that more reasonable simulation the petroleum formation process in the laboratory need to take into account multiply influence factors.
     (2) Hydrous pyrolysis simulation of hydrocarbon generation controlled by PVT system for the different lithology, kerogen types and initial maturity of the source rocks are carried out based on the summarization of the hydrocarbon generation pyrolysis simulation experiments machines and experiment conditions to analyze the relationship between the vitrinite reflectance (Ro) and the generation rate of H2, CO2, hydrocarbon gas, pyrolysis oil and total oil and gas in two pyrolysis systems. The research results indicate that the modes of source rocks pyrolysis simulation experiments have important influence on the rate of the source rocks pyrolysis products, composes and evolution process.
     (3) The solubility of the formation water with oil, oil with formation water, and the mix of N2, CO2and CH4with oil and water on the coexistence of the oil, gas and water with high temperature and pressure are measured using the self-designed and manufactured high temperature and pressure petroleum solution and release simulation experiment machine by the combination of the the water phase figure and near critical physical chemistry characters with high temperature and pressure. The effect of formation water state in the pore space of the source rocks on the petroleum formation are discussed by the combination of the relationship between the porosity and maturity during the source rocks burial. Source rock pyrolysis simulation experiments with High pressure liquid water and low pressure balance state water are carried out based on the formation water phase in the source rocks to analyze the effect of the formation water phase and fluid pressure on the composes and generation rate of the nature gas, oil and total hydrocarbon generation rate, maturity and residual potential of petroleum generation.
     (4) The marine and continent source rocks mineral characters and the effect on the organic matter occurrence conditions are studied. The pyrolysis simulation experiments for the source rock with different mineral controlled by PVT and dissoluble organic matter with different mineral are carried out to analyze the products characters of the pyrolysis simulation experiments and discuss the effect of rock mineral on the petroleum formation.
     (5) The continuous increase pyrolysis experiments methods controlled by PVT are established on the base of the deficiency of the estimation the source rock hydrocarbon generation potential by Rock-Eval. On the base of the pyrolysis experiments, the hydrocarbon generation process of the type Ⅱ kerogen are described detailedly and the parameters of the estimation source rock hydrocarbon generation potential are suggested in this study. The new estimation methods of the source rock hydrocarbon generation potential are also suggested by the combination of the generation rate characters of the dissoluble organic matter (oil with different characters) thermal cracking into the gas. The reaction mechanisms of the petroleum formation with the interaction of the high temperature and pressure liquid formation water, rock mineral and organic matter are discussed on the base of the integration previous study on the mechanisms of the petroleum formation. The dynamic quantitative evolution mode of the petroleum generation for the type II kerogen source rocks are established by the integration large numbers of the pyrolysis simulation experiments results controlled by PVT.
引文
[1]Albrecht P, Ourission G. Diagenesis deshydrocarbures satures dans une serie sedimemtaire epaisse (Douala, Cameroum) [J]. Geochimica et Cosmochimica Acta,1969,33:138-142.
    [2]Andresen B, Thmndsen T, Raheim A, et al. Comparisou of pyrolysis products with models for natural gas generation[J]. Chemical Geology,1995,126:261-280.
    [3]Arndt S, Jean P B, Lewan, M D et al. Experimental controls on D/H and 13C/12C ratios of kerogen bitumen and oil during hydrous pyrolysis[J]. Organic Geochemistry,2001,32(8): 1009-1018.
    [4]Barker C. Calculated Volume and Pressure Changes During the Thermal Cracking of Oil to Gas in Peservoirs [J]. AAPG Builleum,1990,74(8):1254-1261.
    [5]Behar F, Lewan M D, Loranta F, et al.Comparison of artificial maturation of lignite in hydrous and nonhydrous conditions[J].Organic Geochemistry,2003,34(4):575-600.
    [6]Behar F, Vandenbroncke M, Teermann S C, et al. Experimental simulation of gas generation from coals and a maline kerogen[J]. Chem Ged,1995,126:247-260.
    [7]Behar F, Vandenbroucke M. Experimental simulation of gas generation from coals and a marine kerogen [J]. Chemical Geology,1995,126:247-260.
    [8]Braun R L and Burnham A K. Mathematical model of oil generation, degradation and expulsion[J]. Energy Fuels,1990.121,4(1):132-146.
    [9]Burnham A K and Sweeney J J. A chemical kinetic model of vitrinite maturation and reflectance[J].Geochimica et Cosmochimica Acta,1989,53,2649-2657.
    [10]Carr A D, Snape C E, Meredith W, et al. The effect of water pressure on hydrocarbon generation reactions:some inferences from laboratory experiments [J]. Petroleum Geoscience,2009,15:17-26.
    [11]Carr A D. A vitrinite reflectance kinetic model incorporating overpressure retardation [J]. Marine and Petroleum Geology,1999,16(3):355-377.
    [12]Cecil B, Stanton R, Robbins E. Geologic factors controlling coalification and hydrocarbon maturation [J]. AAPG Bulletin,1977,61:775.
    [13]Chandra D. Reflectance of coals carbonised under pressure [J]. Econimic Geology,1965,60: 621-629.
    [14]Dalla T M, Mahlmann R F, Ernst W G. Experim ental study on the pressure dependence of vitrinite mau-ration [J]. Organic Geochemistry,1997,67:2921-2928
    [15]Dembieki J H. Mineral matrix effeet during analytical pyrolysis of source rocks [J]. APGE Bulletin.1990,6:78-105.
    [16]Dembieki J H. The effeets of the mineral matrix on the determination of kinetic parameters using modified Rock Eval Pyrolysis [J]. Org.Geochem,1992 18(4):531-539.
    [17]Eglinton T I. Kerogen-mineral reactions at raised temperatures in the presence of water [J]. Organic Geochemistry,1986,10:1041-1052.
    [18]Espitalie J, Madee M, Tissot B. Role of mineral matrix in kerogen pyrolys is:influence on petroleum gneration and migration [J]. AAPG Bulletin,1980,69 (1):59-66.
    [19]Evans R J, Felbeck G. High temperature simulation of petroleum formation-(Ⅰ) the pyrolysis of Green River Shale [J]. Organic Geochemistry,1983,4:135-144.
    [20]Evans, R.J.,Felbeck, G.,1983. High temperature simulation of petroleum formation-(Ⅰ) the pyrolysis of Green River Shale. OrgGeochem,4:135-144.
    [21]Evans, R.J.,Felbeck, G.,1983. High temperature simulation of petroleum formation-(Ⅱ) Effect of inorganic sedimentary constituents on hydrocarbon formation. Org Geochem,4: 145-152.
    [22]Hanbaba P, Juntgen H. Zur ubertragbarkeit von laborationums-un-tersuchungen auf geochemische prozesse der gasildung aus steinkohleund uber den einfluss von saurestoff auf die gasbildung. In:Schenck P A, Havenaar I, eds. Advances in Organic Geochemistry,1968, Ox-ford:pergamon Press,1969,459-471.
    [23]Helgeson, H C, Knox, A M, Owens, C E, et al. Petroleum, oil field waters, and authigenic mineral assemblages Are they in metastable equilibrium in hydrocarbon reservoirs [J]. Geochimica et Cosmochimica Acta,1993,57(14):3295-3339.
    [24]Hetenyi M. Simulated thermal maturation of type Ⅰ and Ⅱ kerogens in the presence and absence of calctte and montmorillonite[J]. Organic Geochemistry,1995,23 (2):121-127.
    [25]Hoering T C. Thermal reactions of kerogen with added water, heavy water, and pure organic substances[J]. Organic Geochemistry,1984,5(4):267-278.
    [26]Horsfield B, Douglas A G. The influence of minerals on the pyrolysis of kerogens [J]. Geochimica et Cosmochimica Acta,1980,44:1119-1131.
    [27]Horsfield B. Pyrolysis studies and petroleum exploration. In:Brooks J, and Welte G H (Eds), Advances in Petroleum Geochemistry I. Academic Press,1984,247-298.
    [28]Horvath Z A. Study on maturation process of huminitic organic matter by means of high-pressure experiments [J]. Acta Geol Hung,1983,26:137-148.
    [29]Huang W L. Experimental study of vitrinite maturation:effects of temperature, time, pressure, water, and hydrogen index [J]. Organic Geochemistry,1996,24(2):233-241.
    [30]Huizinga B J, Tannenbaum E, Kaplan L R. The role of minerals in the thermal alternation of organic matter-4.Generation of n-alkanes, acyc isoprenoifls and alkenes in laboratory experiments [J]. Geochimica et Cosmochimica Acta,1987,51:1083-1097.
    [31]Huizinga B J. The role of minerals in the thermal alteration of organic matter-Ⅲ. Generation of bitumen in Laboratory experiment [J]. Organic Geochemistry,1987,11 (6):991-604.
    [32]Hunt J M. Petroleum geochemistry and geology [M]. San Francisco, Freeman:1979,617.
    [33]Jin Zhijun, Zhang Liuping, Yang Lei, et al. A Preliminary study of mantle-derived fluids and their effects on oil/gas generation in sedimentary basins [J]. Journal of Petroleum Science and Engineering,2004,41:45-55.
    [34]Landais P, Michels R, Elie M. Are time and temperature the only constraints to the simulation of organic matter maturation? [J]. Organic Geochemistry,1994,22:617-630.
    [35]Law B E. Basin-centered gas system[J]. AAPG Bulletin,2002,86(11):1891-1919.
    [36]Lewan M D, Stephanie R. Role of water in hydrocarbon generation from Type-I kerogen in Mahogany oil shale of the Green River Formation [J]. Organic Geochemistry,2011, (42): 31-41.
    [37]Lewan M D, Winters J C and McDonald J H. Generation of oil-like pyrolyzates from organic-rich shale [J]. Science,1979,203:897-899.
    [38]Lewan M D. Experiments on the role of water in petroleum formation [J]. Geochimica et Cosmochimica Acta,1997,61(17),3691-3723.
    [39]Lewan M D. Experiments on the role of water in petroleum formation [J]. Geochimica et Cosmochimica Acta,1997,61:3691-3723.
    [40]Lewan M D. Laboratory simulation of petroleum formation:hydrous pyrolysis [J]. Organic Geochemistry,1993,419-442.
    [41]Lewan M D. Sulphur-radical control on petroleum formation rates [J]. Nature,1998,391: 164-166.
    [42]Lisy G T. Characteristics and kinetics of catalytic degradation of immature kerogen in the presence of mineral and salt [J]. Organic Geochemistry,1998,29(5-7):1431-1439.
    [43]Louis M and Tissot B P. Influence de la temperature et de la pression sur la formation des hydrocarbures dans lesargiles a kerogen. Proc Seventh WorldPetrCong(Mexico),1967,2: 47-60.
    [44]Mango F D, and Elrod L W. The carbon isotopic composition of catalytic gas:Acomparative analysis with natural gas[J]. Geochimica et Cosmochimica Acta,1999,63 (7/8):1097-1106.
    [45]Mango F D, Hightower J W and James A T. Role of transition-metal catalysis in the formation of natural gas[J]. Nature,1994,368:536-538.
    [46]Mango F D, Hightower J W. The catalytic decomposition of petroleum into natural gas [J]. Geochimica et Cosmochimica Acta,1997,61(24):5347-5350.
    [47]Mango F D.Transition metaleatalysis in the generation of petroleum and natural gas [J]. Geochimica et Cosmochimica Acta,1992,56:553-555.
    [48]McCollom T M, Seewald J S. Experimental study of the hydrothermal reactivity of organic acids and acid anions:Ⅱ. Acetic acid, acetate and valeric acid[J]. Geochimica et Cosmochimica Acta,2003,67:3645-3664.
    [49]Mclver R D. Composition of Kerogen-clue to its role in the origin of petroleum. Proc Seventh World Petr Cong(Mexico),1967,2:25-36.
    [50]Monthioux M, Landais P and Durand B. Comparison between extracts from natural and artificial maturation series of Mahakam delta coals [J]. Organic Geochemistry,1986,10(2): 299-311.
    [51]Mortland MM, Raman K. V. Surface acidity of smectite in relation to hydration, exchangeable cation and struturce[J]. Clays and Clay Miner,1986,16(2):393-398.
    [52]Petersen H I, Nytoft H P. Oil generation capacity of coaks as a function of coal age and aliphatic structure [J]. Organic Geochemistry,2006,37(5):558-583.
    [53]Philppi G T. On the depth, time and mechanism of petroleum generation [J]. Geochem et Cosmochim Acta,1965,29:1021-1049.
    [54]Price L C, DeWitt E. Evidence and characteristics of hydrolytic disproportionation of organic matter during metasomatic processes [J]. Geochimica et Cosmochimica Acta,2001,65: 3791-3826.
    [55]Price L C, McNeil R.Thoughts on the birth, evolution, andcurrent state of petroleum geoch emistry [J]. Journal of Petroleum Geology,1997,20:118-123.
    [56]Price L C, Wenger L M. The influence of pressure on petroleum generation and maturation as suggested by aqueous pyrolysis [J]. Organic Geochemistry,1992,141-160.
    [57]Price L C. A possible deep-basin-high-rank gas machine via water-organic-matter redox reactions. In:Dyman T S.& Kuuska V A (eds). US Geological Survery, Gigital Data Series, 2001,67, Chapter H.
    [58]Price L C. Metamorphic free-for-all [J]. Nature,1994,370:253-254.
    [59]Price L.C. Thermal stability of hydrocarbon in nature:Limits evidence characteristics and possible controles [J]. Geochimica et Cosmochimica Acta,1993,57:3261-3281.
    [60]Reynolds J G Comparison of analysis of source rocks and kerogen concentrates [J]. Organic Geochemistry,1995,23(1):11.
    [61]Sajgo C S, McEvoy J, Wolef G A, et al. Influence of temperature and pressure on maturationprocess-I, preliminary report [J]. Organic Geochemistry,1986,10:331-337.
    [62]Saxby J D. Effects of clay minerals on produets from coal maturation [J]. Organic Geochemistry.1992,18(3):373-383.
    [63]Schimmelmann A, Boudou J P, Lewan M D, et al. Experimental controls on D/H and 13C/12C ratios of kerogen, bitumen and oil during hydrous pyrolysis [J]. Organic Geochemistry,2001,32(8):1009-1018.
    [64]Schimmelmann A, Lewan M D, Wintsch R P. D/H isotope ratios of kerogen, bitumen, oil, and water in hydrous pyrolysis of source rocks containing kerogen types Ⅰ, Ⅱ, ⅡS,Ⅲ [J]. Geochimica et Cosmochimica Acta,1999,63(22):3751-3766.
    [65]Seewald J S, Benttez-Nelson B C, Whelan J K. Laboratory and theoretical constraints on the generation and composition of natural gas[J]. Ceochim Cosnochim Acta,1998,62(9): 1599-1617.
    [66]Seewald J S, Eglinton L B and Ong Yea-Ling. An experimental study oforganic-inorganic interactions during vitrinite maturation[J]. Geochimica et Cosmochimica Acta,2000,64(9): 1577-1591.
    [67]Seewald J S. Organic-inorganic interactions in petroleum producing sedimentary basins [J]. Nature,2003,426(20):327-333.
    [68]Seewald, J S. Organic-inorganic interactions in petroleum producing sedimentary basins [J]. Nature,2003,426(20):327-333.
    [69]Simoneit B R T. Lonsdale Hydrothermal etroleum in mineralized monds at the seabed of Guaymas Basin [J]. Nature,1982,295(21):198-202.
    [70]Siskin M, Katritzky A R. Reactivitiy of organic compounds in hot w ater:Geochem ical and technological imp lications [J]. Science,1991,245:231-237.
    [71]Tannenbaum E. Role of mineral in thermal alteration of organic matter-Ⅱ a material balance[J]. AAPG Bulletin 1986,70 (9):1156.
    [72]Tissot B P and Welte D H. Petroleum formation and occurrence[M]. New York, Springer-Verlag,1984,699.
    [73]Tissot B P, Durand B, Espitalie J, et al. Influence of nature and diagenesis of organic matter in the formation of petroleum [J]. AAPG Bulletin,1974,58:499-506.
    [74]Ungerer P, Burrus J, Doligez B, et al. Basin evaluation by integrated two-dimensional modeling of heat transfer, fluid flow, hydrocarbon generation and migration [J]. AAPG Bulletn,1990,74(2):309-335.
    [75]Vassoevich N B, Akramkhodzhaev A M, Geodekyan A A. Principal zone of oil formation, In: Advances in Organic Geochemistry 1973(eds:Tissot B P, BiennerF). Paris:Technip,1974, 309-314.
    [76]陈晋阳,刘桂洋,金鹿江.地球内部水与无机生烃[J].地学前缘,2009,6(1):33-40.
    [77]陈晋阳,张红,郑海飞,等.高温高压下水中有机质降解过程的原位观测—以干酪根和沥青质为例[J].石油实验地质,2006,28(1):73-77.
    [78]陈晋阳,刘桂洋,金鹿江.地球内部水与无机生烃.地学前缘[J].2009,16(1):33-40.
    [79]陈晋阳,张红,郑海飞,等.高温高压下水中有机质降解过程的原位观测—以干酪根和沥青质为例.石油实验地质[J].2006,28(1):73-77.
    [80]陈晋阳,张红,郑海飞,等,2006.高温高压下水中有机质降解过程的原位观测—以干酪根和沥青质为例[J].石油实验地质,28(1):73-77.
    [81]陈晓东,王先彬.压力对有机质成熟和油气生成的影响[J].地球科学进展,1999,14(1):31-36.
    [82]程顶胜,郝石生.烃源岩热模拟实验研究进展.石油大学学报(自然科学版),1995,19(2):116.
    [83]程克明,等.吐-哈盆地与怄气生成[M].北京:石油工业出版社,1990:65-98.
    [84]程克明,王兆云,钟宁宁,等.碳酸盐岩油气生成理论与实践[M].北京:石油工业出版社,1996,139-175.
    [85]蔡春芳、梅博文、李伟.塔中古生界油田水化学与流体运移和演化[J].石油勘探与开发,1997,24(1):18-22.
    [86]丁福臣,王剑秋,钱泉麟.压力下生油岩热解动力学研究[J].石油学报,1991,12(3):44-51.
    [87]窦立荣.蒂索的生烃模式在深层遇到挑战(Ⅰ、Ⅱ)[J].石油勘探与开发,2000,(2):1.
    [88]杜小弟,兰恩济.蒂索烃源岩演化理论需要深化[J].大庆石油地质与开发,2001,20(6):8-9.
    [89]方杰,刘宝泉,郭树之,等.张家口下花园清白口系下马岭组灰质页岩热模拟实验[J].高校地质学报,2002,8(3):345-355.
    [90]冯子辉,迟元林.原油在储层介质中的加水裂解生气模拟实验[J].沉积学报,2002,20(3):505-509.
    [91]傅家淇,等.煤成烃地球化学[M].北京:科学出版杜,1990.
    [92]高波,陶明信,王万春.深部热流体对油气成藏的影响[J].矿物岩石地球化学通报,2001,20(1):30-34.
    [93]高岗,王延斌,等.煤的加水热模拟气特征对比[J].地质地球化学,2003,30(3):92-95.
    [94]高岗.油气生成模拟方法及其石油地质意义[J].天然气地球科学,2000,11(2):25-29.
    [95]高飞,吕秀阳,2006.高温液态水中的频那醇重排反应动力学.化工学报,57(1):57-60.
    [96]高岗,王延斌,韩德馨,等.两种海相未成熟烃源岩热解气特征比较研究[J].石油实验地质,2003,25(2):197-201.
    [97]高先志.矿物质对热解影响的研究[J].石油实验地质,1990,12(2):201-205.
    [98]耿安松,廖泽文.不同母质来源的沥青质热解动力学研究[J].科学通报,2000,45:2743-2749.
    [99]关德范,徐旭辉,等.烃源岩有限空间生排烃基础研究新进展[J].石油实验地质,2011,33(5):441-446.
    [100]关德范,徐旭辉,李志明,等.成盆成烃成藏理论思维与有限空间生烃模式[J].石油与天然气地质,2008,29(6):709-715.
    [101]关德范,徐旭辉,李志明,等.烃源岩有限空间生排烃基础研究进展[J].石油实验地质,2011,33(5):441-446.
    [102]郭占谦.中国原油的地球化学特征—兼论中国原油的有机与无机来源地质[J].地球化学,2001,29(4):7-13.
    [103]郝芳,等.超压盆地生烃作用动力学与油气成藏机理[J].北京:科学出版社,2005:47-131.
    [104]郝芳,姜建群,等.超压对有机质热演化的差异抑制作用及层次[J].中国科学(D辑),2004,34(5):443451.
    [105]郝芳,孙永传,李思田,等.活动热流体对有机质热演化和油气生成作用的强化.地球科学—中国地质大学学报,1996,21(1):68-72.
    [106]何生,叶加仁,石油及天然气地质学[M].武汉:中国地质大学出版社,2010,144-181.
    [107]胡宝群,吕古贤,王方正,等.水的临界奇异性及其对热液铀成矿作用的意义[J].铀矿地质,2008,24(3):129-136.
    [108]胡国艺,李志生,罗霞,等.两种热模拟体系下有机质生气特征对比[J].沉积学报,2004,22(4):718-723.
    [109]胡文瑄,金之钧,等.太平洋底软泥中发现低成熟烃类[J].科学通报,2002,47(1):68-73.
    [110]黄第藩,等.陆相有机质演化与成烃机理[M].北京:石油工业出版社,1984.
    [111]黄第藩,等.煤成油的形成和成烃机理[M].北京:石油工业出版社,1995,1425.
    [112]黄第藩.成烃理论的发展-(Ⅰ)未熟油及有机质成烃演化模式[J].地球科学进展,1996, 11(4):327-335.
    [113]黄健全,周中毅,等.盆地深部油气形成的高温高压实验研究[M].南京:江苏科学技术出版社,1992:244-245.
    [114]黄志龙,张四海,钟宁宁.碳酸盐岩生气的热模拟实验[J].地质科学,2003,38(4):455-459.
    [115]付小东,秦建中,滕格尔,等.烃源岩矿物组成特征及油气地质意义—以中上扬子古生界海相优质烃源岩为例[J].石油勘探与开发,2011,38(6):671-684.
    [116]姜峰,张友联,杜建国.油气生产热模拟实验研究进展[J].地球科学进展,1996,11(5):453-459.
    [117]姜峰,等.高温超高压模拟实验研究Ⅰ:温压条件下对有机质成熟作用的影响[J].沉积学报,1998,9(3):153-160.
    [118]解启来,等.压力对烃源层演化及产烃影响的模拟实验[J].矿物岩石地球化学通报,1996,15(2):91-93.
    [119]金之钧,张刘平,等.沉积盆地深部流体的地球化学特征及油气成藏效应初探[J].地球科学—中国地质大学学报,2002,27(6):659-665.
    [120]雷怀彦,等.铝硅酸盐粘土矿物对形成过渡带气的催化作用研究[J].中国科学(D辑),1997,27(1):39-44.
    [121]李宁,等.束缚水饱和度实验研究[J].天然气工业,2002,22:110-113.
    [122]李荣西,金奎励.煤成烃生成及排驱加水热模拟实验[J].沉积学报,1998,16(1):98-102.
    [123]李术元,林世静,等.矿物质对干酪根热解生烃过程的影响[J].石油大学学报(自然科学版),2002,26(1):69-71.
    [124]李术元,林世静,郭绍辉,等.无机盐类对干酪根生烃过程的影响[J].地球化学,2002,31(1):15-20.
    [125]李志明,徐二社,秦建中,等.烃源岩评价中的若干问题[J].西安石油大学学报(自然科学版),2010,25(6):8-12.
    [126]李志明,郑伦举,等.烃源岩有限空间油气生排模拟及其意义[J].石油实验地质,2011,33(5):447-451.
    [127]李志明,关德范,徐旭辉,等.有效泥质油源岩有机碳丰度评价标准研究—以东营凹陷为例[J].石油实验地质,2009,31(4):379-383.
    [128]李志明,秦建中,等.镜质体反射率抑制与烃源岩质量关系[J].石油实验地质,2008,30(3):276-280.
    [129]梁春秀,魏志平,毛超林,等.加水热模拟中深湖与煤系泥岩地化特征比较[J].沉积学报,2002,20(1):165-168.
    [130]刘宝泉,蔡冰.上元古界下马岭组页岩干酪根的油气生成模拟实验[J].石油实验地质,1990,12(2):147-161.
    [131]刘洛夫,李术元,等.烃源岩催化生烃机制研究进展[J].地质论评,2000,46(5):491-498.
    [132]刘洛夫,张守春,高岗,等.油气生排机理与模式[M].北京石油工业出版社,200, 3-16.
    [133]刘文汇,等.烃类的有机(生物)与无机(非生物)来源—油气成因理论思考之二[J].矿物岩石地球化学通报,2000,19(3):179-186.
    [134]刘晓艳.粘土矿物对有机质演化的影响[J].天然气地球科学,1995,6(3):23-26.
    [135]刘永建,王国强,丁伟,等,2008.沥青质在近临界水中的催化裂解.大庆石油学院学报,32(2):68-74.
    [136]卢双舫,付晓泰,等.油成气的动力学模型及其标定[J].天然气工业,1996,16(6):6-8.
    [137]卢双舫,付晓泰,曲佳燕,等.原油族组分成气的化学动力学模型及其标定[J].地质学报,1997,71(4):367-3731.
    [138]卢双舫,王民,等.密闭体系与开放体系模拟实验结果的比较研究及其意义[J].沉积学报,2006,24(2):282-288.
    [139]楼章华、高瑞祺、蔡希源,论松辽盆地地下水动力场演化与油气运移、聚集,沉积学报,1997,15(4):115-120。
    [140]楼章华、高瑞祺、蔡希源等,流体动力场演化与地层流体低压成因,石油学报,1999,20(6):27-31。
    [141]楼章华、曾允孚、高瑞祺等,扶、杨油层水化学场特征及其成因,大庆石油地质与开发,1994,13(1):21-26。
    [142]吕秀阳,何龙,郑赞胜,等.近临界水中的绿色化工过程.化工进展[J].2003,22(5):477-481.
    [143]马素萍,贺建桥,汤渭,等.高压釜对加水模拟实验中氢产物的影响[J].沉积学报,2003,21(4):713-716.
    [144]马素萍.高压釜对加水模拟实验中氢产物的影响[J].沉积学报,2003,21(4):713-716.
    [145]孟庆强.深部流体活动区天然气中微量氢气的地球化学特征及其地质意义[M].北京:中国石油大学(北京),2009.
    [146]米敬奎,戴金星,张水昌.煤在2种不同体系的生气能力研究.天然气[J].地球化学,2007,18(2):245-248.
    [147]秦建中,刘井旺,刘宝泉,等.加温时间、加水量对模拟实验油气产率及地化参数的影响[J].石油实验地质,2002,24(2):152-157.
    [148]秦建中.中国烃源岩[M].北京:科学出版社,2005,111-237.
    [149]秦建中,申宝剑,付小东,等.中国南方海相优质烃源岩超显微有机岩石学与生排烃潜力[J].天然气地球科学,2010,31(6):826-837.
    [150]邱军利,夏燕青,雷天柱.两种热模拟体系下热解产物的相关性研究[J].天然气地球科学,2011,22(1):144-148.
    [151]史继扬,等.未熟-低熟烃源岩中脂肪酸的热模拟实验及演化[J].科学通报,2001,46(18):1567-1572.
    [152]孙辉,吕秀阳,陈良.不同植物油脂在近临界水中水解反应动力学的比较[J].2007,化工学报,58(4):925-929.
    [153]王炫,段培高,戴立益.超(近)临界水在有机化学反应中的应用[J].化学通报,2005,68(53):1-6.
    [154]王铁冠,钟宁宁,侯读杰.低熟油形成机理与分布[M].北京:石油工业出版社,1995.
    [155]王晓锋,刘文汇,徐永昌,等.水在有机质形成气态烃演化中作用的热模拟实验研究[J].自然科学进展,2006,16(10):1275-1280.
    [156]王兆明,罗晓容,等.有机质热演化过程中地层压力的作用于影响[J].地球科学进展,2006,21(1):39-46.
    [157]王兆云,程克明.碳酸盐岩生烃机制及“三段式”成烃模式研究[J].中国科学(D辑),1997,27(3):250-254.
    [158]王兆云,程克明,张柏生.加水热模拟实验气态产物特征及演化规律研究[J].石油勘探与开发,1995,22(3):36-40.
    [159]王娟,金强,马国政,等.高成熟阶段膏岩等盐类物质在烃源岩热解生烃过程中的催化作用[J].天然气地球科学,2009,20(1):26-31.
    [160]王振平,付晓泰,等.原油裂解成气模拟实验、产物特征及其意义[J].天然气工业,2001,21(3):12-15.
    [161]王治朝,米敬奎,等.生烃模拟实验方法现状与存在问题[J].天然气地球化学,2009,20(4):592-597.
    [162]吴欣松,等.利用储集层岩石热解资料评价原油性质[J].新疆石油地质,2000,21(1):42-44.
    [163]夏燕青,罗斌杰,王春江.热模拟实验产物中烷烃参数的地球化学意义[J].石油学报,1996,17(2):36-40.
    [164]肖万生,等.聚乙烯与水反应的高温高压实验及热力学探讨[J].高压物理学报,2001,15(3):169-177.
    [165]熊永强,耿安松,等.干酪根二次生烃动力学模拟实验研究[J].中国科学(D辑),2001,31(4):315-320.
    [166]徐有生,侯渭,郑海飞,等,1995.超临界水的特性及其对地球深部物质研究的意义.地球科学进展,10(5):445-449.
    [167]杨雷,金之钧.深部流体中氢的油气成藏效应初探[J].地学前缘,2001,8(4):337-341.
    [168]杨天宇,王涵云.岩石中高温高压模拟试验[J].石油与天然气地质,1987,8(4):380-389.
    [169]曾治平,倪建华,王敏芳,等.地层流体活动与有机质成烃的关系[J].西南石油学院学报,2003,25(1):16-19.
    [170]张敏,林壬子.试论轻烃形成过程中过渡金属的催化作用[J].地质科技情报,1994,13(3):75-80.
    [171]张大江,姚焕新,王培荣,等.褐煤中干酪根、腐殖酸、抽提物对成油的作用和贡献.见:黄第藩,秦匡宗,王铁冠,等.煤成油的形成和成烃机理.北京:石油工业出版社,1995.1-32.
    [172]张国防.盐湖相石油的早期生成[J].石油勘探与开发,1993.20(5):43-48.
    [173]张荣华,张雪彤,胡书敏,2009.临界区流体与矿物和岩石在地球内部极端条件下的反应.地学前缘,16(1):53-67.
    [174]张守春,张林晔,等.开放、封闭两种体系对比模拟确定深层烃源岩成烃机制[J].地质 勘探,2010,30(9):16-18.
    [175]张水昌,梁狄刚,等.塔里木盆地海相油气的生成[M].北京:石油工业出版社,2004,346-383.
    [176]张在龙,等.未熟生油岩中含铁矿物对脂肪酸低温催化脱羧生烃的作用[J].科学通报,1998,43(24):2649-2653.
    [177]赵孟军,卢双舫.原油二次裂解—天然气重要的生成途径[J]-地质评论,2000,46(6):645-650.
    [178]赵文智,王兆云,等.有机质“接力成气”模式的提出及其在勘探中的意义[J].石油勘探与开发,2005,32(2):1-7.
    [179]郑伦举,何生,秦建中,等.近临界特性的地层水及其对烃源岩生排烃过程的影响[J].地球科学-中国地质大学学报,2011,36(1):83-92.
    [180]郑伦举,马中良,等.烃源岩有限空间热解生油气潜力定量评价研究[J].石油实验地质,2011,33(5):452459.
    [181]郑伦举,马中良.中国石化无锡石油地质研究所实验地质技术之地层孔隙热压生排烃模拟实验技术[J].石油实验地质,2010,31(3):封二.
    [182]郑伦举,秦建中,等.中国海相不同类型原油与沥青生气潜力研究[J].地质学报,2008,82(3):360-365.
    [183]郑伦举,何生,秦建中,等.近临界特性的地层水及其对烃源岩生排烃过程的影响[J].地球科学—中国地质大学学报,2011,36(1):83-92.
    [184]郑伦举,秦建中,何生,等.地层孔隙热压生排烃模拟实验初步研究[J].石油实验地质,2009,31(3):296-302,306.
    [185]周世新,王先彬,等.深层油气地球化学研究新进展[J].天然气地球科学,1999,10(6):9-15.
    [186]周世新,邹红亮来,等.沉积盆地油气形成过程中有机-无机相互作用[J].天然气地球科学,2006,17(1):4247.
    [187]邹艳荣,刘金钟,彭平安.压力对高硫干酪根轻烃产率的影响[J].地球化学,2000,29:431434.
    [188]邹艳荣,帅燕华,孔枫,等.油气生成过程实验研究的思考与展望[J].石油实验地质,2004,26(4):375-382.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700