用户名: 密码: 验证码:
月壤参数的辐射传输模拟与查找反演技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
探测月壤厚度,掌握月壤层参数及其分布特征是当前月球科学探测研究的前沿和热点之一,对月球资源的勘探、开发与利用都具有重要意义。论文依托国家“863”重大项目课题,基于辐射传输理论,建立月壤参数与微波辐射亮温之间的查找表,对月壤参数进行查找反演研究。
     研究中,首先详细介绍了月壤密度、介电常数、表面粗糙度、温度分布、厚度、水冰含量等参数相关模型以及研究中得到的月壤探测资料。然后,基于现有的月壤资料,改进了月壤辐射传输模型。最后,以微波辐射计数据的空间分辨率为标准,利用成像光谱仪数据计算得到微波辐射计数据每个像元的(FeO+TiO2)含量,进而计算月壤介电常数分布,利用激光高度计数据计算得到微波辐射计数据每个像元的表面有效反射率,基于月表有效反射率、月壤介电常数分布和王振占等模拟得到的月表月壤温度梯度,建立月壤厚度-亮温查找表;并根据月表微波探测数据,利用查找表进行月壤厚度反演。
     月壤厚度、密度、介电常数等参数信息对月球软着陆场的选择、未来月球基地的选址等都有重要意义。本文的成果对月壤成分研究、厚度分布、资源评估具有一定的参考意义。
The retrieval of the lunar regolith parameters is one of the important scientific aims for the lunar study. The knowledge about the distribution of the lunar regolith parameters is essential to explore and develop the lunar resources. This is also one of the four scientific objectives of our lunar project. However, it is difficult to simulate the lunar regolith microwave emission and to retrieve the lunar regolith parameters for the complexity of the lunar media component. The retrieval results gained by previous studies showed great difference from each other. The key problem is that the lunar parameters are unknown and need to be assumed or approximated.
     In this paper, we thoroughly generalize the distribution features, related models and other study results about such lunar regolith parameters as density, dielectric constants, (FeO+TiO2) content, surface roughness, temperature, thickness and water-ice content. Based on this, the complete lunar regolith model is constructed based on the related materials. In the model, the dielectric constant and the temperature are changing with depth and position, the surface is rough, and the regolith-rock surface is slantwise. Then the influences of the regolith thermal grads, media dielectric parameters, surface roughness and the parallel or not of the two surfaces on the microwave radiation of the lunar regolith are studied using the advanced radiative transfer equation. The results show that the regolith thermal grads, the dielectric constants and the roughness of the free space-regolith surface have great influences on the microwave radiation of the lunar regolith. The results also indicate that the roughness and the obliquity of the surface between regolith and rock have little effect on the simulation results, and they can be neglected in the following study. Therefore, a perfect lunar regolith model is constructed, which has thermal grads, changeable dielectric constants and rough upper surface.
     Then the lunar regolith parameters are retrieved using the data from the Chang’e-1 project and other missions. The (FeO+TiO2) content distribution is gained based on the model constructed by Lucey et al.[34][35] and Shkuratov et al.[37] with the data from the imaginary spectrum instrument. Meanwhile, the regolith dielectric constants is retrieved using the exponential density model, the filling model and the (FeO+TiO2) content. The spatial resolution of microwave radiometer image is 57×57km2, 35×35 km2, 35×35 km2, 35×35 km2 for 3.0, 7.8, 19.35, 37 GHz, respectively, which comprise 64 (3 GHz) or 25 (7.8, 19.35, 37 GHz) pixels from the laser elevation data. Therefore, the roughness parameters for every pixel in the microwave radiometer image can be calculated and the surface effective reflectivity can be obtained with Q/H model. The surface thermal grads, which takes the position and different time into account, is constructed with the surface temperature model provided by Wang Z Z[111] and the regolith thermal grads model designed by Ji Yaqiu, et al[17][19]. Thereafter, according to the dielectric constant distribution, thermal grads model and the surface effective reflectivity, the look-up table between lunar regolith parameters and the brightness temperature is constructed using the radiative transfer simulation.
     At last, the lunar regolith thickness map is gained with the look-up table and the microwave radiometer data from the Chang’e orbitor. The comparison is done between the retrieval results and the result for Apollo landing sites with multi-frequency electromagnetic probe and active moonquake methods, the evaluated result using the methods based on the shape and size frequencies of the lunar craters, the retrieval results using radar data onboard the earth and the result with multi-channel method. The results show that the look-up table method has a high accuracy within the latitude 70 o N and 70 o S, but rather low at other place.
     The study on the lunar water-ice content is also one of the important fields for lunar study. The existence of the water or ice can apparently change the dielectric constant of lunar regolith. So we do a physical experiment to test the effect of the bulk moisture content in the dense medium on its dielectric constant with Dobson model. Thereafter, we do abnormal analysis for the lunar regolith dielectric constants, and find 575 pixels’dielectric constants are abnormal. Then based on the advanced Dobson model, we gain that the water-ice content at permanent area of the lunar surface is about 1.269%, and the total area is about 9.19×104 km2. The method to evaluate the bulk moisture content is also provided.
     To verify the accuracy of the retrieval results, the BP neural network is introduced in our paper. Based on the passive microwave radiation transfer model and the lunar regolith parameters estimated by Shkuratov et al. [37], the vertical and horizontal polarized brightness temperatures are calculated when the frequencies used are 3.0、7.8、19.35、37.0GHz, respectively. Then, the simulated brightness temperatures of Mare Serenitatis, Mare Tranquillitatis, Mare Crisium, Mare Frecunditatis, Mare Frigoris, Mare Imbrium, Mare Humorum, Mare Nectaris and Mare Vaporum are used as the input of the BP neural network, and the output of the network is density, dielectric constant and thickness of the lunar regolith. The brightness temperatures of Mare Nubium, Mare Cognitum, Mare Roris, Mare Iridium, Mare Sinus and Mare Oceanus are input into the trained BP neural network to retrieve the lunar regolith parameters. The BP algorithm can avoid this complexity and provides a new method to retrieve the regolith parameters.
     The study results of the paper present that the look-up table between lunar regolith thickness and the surface microwave brightness temperature can be constructed perfectly through the radiation transfer simulation. It is feasible to retrieve the lunar regolith thickness using the look-up table method. The lunar regolith thickness map shows good accordance with the results gained by other methods within the latitude 70 o N and 70 o S. And the highest accuracy is up to 83.27%. That is to say, the look-up table method is better than the evaluation method based on the shape and size frequencies of the lunar craters. The water-ice content information gained with the dielectric abnormal analysis is reliable.
     The look-up table also shows bad accuracy at the southern and northern pole area. This is related to the selected regolith parameter models. The knowledge about such area is rarely. And the following study should be strengthened on the distributions of the regolith parameters. At the same time, the study on the lunar rock distribution should be paid more attention, which can provide great information on the lunar regolith density and the regolith dielectric constants.
引文
[1] SUN Hui-xian, DAI Shu-wu. Mission objectives and payloads for the first lunar exploration of China[J]. Acta Astronautica, 2005, 57(2-8): 561-565.
    [2] McKay D G, Heiken A, Basu, et al. The lunar regolith[M]. In Lunar Source-Book, 1991: 285-356.
    [3] Nakamura Y, Dorman J, Duennebier F, et al. Shallow lunar structure determined from the passive seismic experiment[J]. The Moon, 1975, 13(1-3): 3-15.
    [4] Gooper M R, Kevach R L, Watkins J S. Lunar near surface structure[J]. Review of Geophysics, 1974, 12(3): 291-308.
    [5] Duenneber F K, Watkins J S, Kovach R L. Results from the lunar surface profiling experiment[J]. Abstracts of the Lunar and Planetary Science Conference, 1974, 5: 183.
    [6] Strangway D, Pearce G, Olhoeft G. Magnetic and dielectric properties of lunar samples[J]. In kosmochimiya luny i planet, 1975: 712-728.
    [7] Quaide W L, Oberbeck V R. Thickness determinations of the lunar surface layer from lunar impact craters[J]. Journal of Geophysical Research, 1968, 73: 5247-5270.
    [8] Rennilson J J, Dragg J L, Morris E C, Shoemaker E M, Turkevich A. Lunar surface topography[J]. Surveyor I mission report, part II: Scientific data and results, NASA JPL Technical Report, 1966, 32-1023: 7-44.
    [9] Shoemaker E M, Morris E C. Thickness of the regolith. Surveyor: Program results[J]. NASA Special Paper, 1969, 184: 96-98.
    [10] Shoemaker E M, Batson R M, Holt H E, Morris E S, Rennilson J J, Whitaker E A. Observations of the lunar regolith and the Earth from the television camera on Surveyor 7[J]. Journal of Geophysical Research, 1969, 74: 6081-6119.
    [11] Florensky K P, Basilevsky A T, Pronin A A, Popova Z V. Prevoious Results of Panorama Geomorphologic Study[R]. Peredvizgnaya Laboratory on the Moon,Lunochod 1, 1971: 96-155.
    [12] Oberbeck V R, Quaide W L, Mahan M, Paulson J. Monte Carlo calculations of lunar regolith thickness distributions[J]. Icarus, 1973, 19: 87-107.
    [13] Basilevsky A T. The estimation of lunar regolith thickness and reworking degree by crater distribution[J]. Kosmicheskie Issledovaniya, 1974, 12: 606-609.
    [14] Florensky K P, Basilevsky A T. The processes of surface reworking at le monner on results of detailed study by Lunochod2[R]. Tektonika I Strukturnaya Geologiya, 1976: 205-235.
    [15] Willcox B B, Robinson M S, Thomas P C, Hawke B R. Constraints on the depth and variability of the lunar regolith[J]. Meteoritics & Planetary Science, 2005, 40: 695-710.
    [16] Shkuratov Y G, Bondarenko N V. Regolith layer thickness mapping of the moon by radar and optical data[J]. Icarus, 2001, 149: 329-338.
    [17]金亚秋,颜锋华,梁子长.微波辐射计对月面特征参数的遥感理论模拟[J].电波科学学报, 2003, 18(5): 477-486.
    [18]蓝爱兰,张升伟.利用微波辐射计对月壤厚度进行研究[J].遥感技术与应用, 2004, 19(3): 154-158.
    [19]蓝爱兰.月球表层媒质的被动遥感机理及厚度反演研究[D].北京:中国科学院, 2004.
    [20]法文哲,金亚秋.月球表面多通道辐射亮度温度的模拟与月壤厚度的反演[J].自然科学进展, 2006, 16(1): 86-94.
    [21]法文哲,金亚秋.光学观测与微波辐射模拟对月壤厚度的反演[J].电波科学学报, 2006, 21(3): 347-356.
    [22]法文哲,金亚秋.三层月壤模型的金通道微波辐射模拟与月壤厚度的反演[J].空间科学学报, 2007, 27(1): 55-65.
    [23]金亚秋,法文哲,徐丰.月球表面微波主被动遥感的建模模拟与反演[J].遥感技术与应用, 2007, 22(2): 129-134.
    [24] Matveev Y G, Suchkin G L, Troitskii V S. Change of lunite density with depth in the surface layer[J]. Soviet Astronomy, 1966, 9(4): 626-631.
    [25] Tikhonova T V, Troitskii V S. The spectrum of the reflection coefficient withchanging lunar material properties into the depth[R]. Presented at the Symposium of Physics of the Moon and Planets, Academy of Sciences of the USSR, Kiev, Ukraine, 1968.
    [26] Scott R F. The density of the lunar surface soil[J]. Journal of Geophysical Research, 1968,73(16): 5469-5471.
    [27] Carrier W D, Olhoeft G R, Mendell W. Physical properties of the lunar surface[M]. In Lunar Source-Book. New York: Cambridge Univ. Press, 1991.
    [28] Thompson T W. A study of radar scattering behavior of lunar craters at 70 cm[M]. Research Report RS 64, Cornel1 University Center for Radio-physics and Space Research, Ithaca, New York, 1965.
    [29] Tyler G L. Oblique-scattering radar reflectivity of the lunar surface: preliminary results from Explorer 35[J]. Journal of Geophysical Research, 1968, 73(24): 7609-7630.
    [30] Tyler G L. Brewster angle of the lunar crust[J]. Nature, 1968, 219(B): 1243-1244.
    [31] Anon: Surveyor project report[R]. Jet Propulsion Lab., Tech. Rept. 32-1265.
    [32] Yakovlev O E, Yefimov A E. An investigation of the reflection of meter radio-waves from the surface of the moon[J]. Doklady, Akademiia, Nauk, SSSR, 1967, 174: 583-584.
    [33] Ulaby F T, Moore R K, Fung A. Microwave remote sensing[M]. Reading, MA: Addison -Wesley–Longman, 1981.
    [34] Lucey P G, Blewett D T. Lunar iron and titanium abundance algorithms based on final processing of Clementine ultraviolet-visible images[J]. Journal of Geophysical Research, 2000, 105(E8): 20297-20305.
    [35] Lucey P G, Blewett D T, Hawke B R. Mapping the FeO and TiO2 content of the lunar surface with multispectral imagery [J]. Journal of Geophysical Research, 1998, 103: 3679-3699.
    [36] Lawrence D J, Feldman W C, Barraclough B L, et al. Global elemental maps of the Moon: the lunar prospector gamma-ray spectrometer [J]. Science, 1998, 281 (4): 1984-1988.
    [37] Shkuratov Y G, Kaydash V G, Opanasenko N V. Iron and titanium abundance and maturity degree distribution on the lunar nearside[J]. Icarus, 1999, 137: 222-234.
    [38] Wesselink A J. Heat conductivity and nature of the lunar surface material[J]. Bulletin of the Astronomical Institutes of the Netherlands, 1948, 10: 351-363.
    [39] Jaeger J C. The Surface Temperature of the Moon[J]. Australian Journal of Physics, 1953, 6: 10-21.
    [40] Jones W P, Watkins J R, Calvert T A. Temperatures and thermophysical properties of the lunar outermost layer[J]. The Moon, 1975, 13: 475-494.
    [41] Racca G D. Moon surface thermal characteristics for moon orbiting spacecraft thermal analysis[J]. Planetary Space Science, 1995, 43: 835-842.
    [42] Hapke B W. On the particle size distribution of lunar soil[J]. Planetary and Space Science, 1968, 16, 101.
    [43] Hagfors T, Evans J V. Radar Astronomy[M]. McGraw-Hill Book Co., New York, 1968.
    [44] Gold T. Apollo 11 observations of a remarkable glazing phenomenon on the lunar surface[J]. Science, 1969, 165: 1345-1349.
    [45] Thomas G . Apollo 11 and 12 close-up photography[J]. Icarus. 1970, 12(3):360-375.
    [46] Gold T, Pearce F, Jones R. In Apollo 12-preliminary science report[R]. NASA SP-235, 1970: 183-188.
    [47] Helfenstein P, Shepard M K. Sub-millimeter scale topography of the lunar regolith[J]. Icarus, 1999, 141: 107-131
    [48] Kari L, Hannu K, William M I. Roughness of the lunar soil[J]. Earth, Moon, and Planets. 1985, 33(1): 19-29.
    [49] Gear A E, Bastin J A. A corrugated model for the lunar surface[J]. Nature, 1962, 196: 1305
    [50] Evans J V, Pettengil G H. The scattering behavior of the moon at wavelength of 3.6, 68, and 784 centimeters[J]. Journal of Geophysical Research, 1963, 68: 423-447
    [51] Watson K, Murray B C, Brown H. The behavior of volatiles on the lunar surface[J]. Journal of Geophysical Research, 1961, 66, 3033-3045.
    [52] Arnold J R. Ice in the lunar polar regions[J]. Journal of Geophysical Research, 1979,54(B10): 5659-5668.
    [53] Lanzerotti L J, Brown W L,Johnson R E. Ice in the polar regions of the Moon[J]. Journal of Geophysical Research, 1981, 86: 3949-3950.
    [54] Hodges R. Exospheric transport restrictions on water ice in lunar polar traps[J]. Geophys. Res. Lett., 1991, 18(11): 2113-2116.
    [55]Morgan T H,Shemansky D E. Limits to the lunar atmosphere[J]. Journal of Geophysical Research, 1991, 96: 1351-1367.
    [56] Nozette S, Liehtenberg C L, Spaudis P, et al. The Clementine bistatic radar experiment[J]. Science. 1996, 274: 1495-1498.
    [57] Simpson R A, Tyler G L. Reanalysis of Clementine bistatic radar data from the lunar south Pole[J]. Journal of Geophysical Research, 1999, 104(E2): 3845-3862.
    [58] Chang T C, Shiue J C. A comparative study of microwave radiometer observations over snowfields with radiative transfer model calculations[J]. Remote Sensing of Environment, 1980, 10(3): 215-229.
    [59] Macelloni G, Paloscia S, Pampaloni P, Tedesco M. Microwave emission from dry snow: A comparison of experimental and model result[J]. IEEE Trans. Geosci. Remote Sens., 2001, 39(12): 2649-2656.
    [60] Chang A T C, Foster J L, Hall D K. Nimbus 7 SMMR derived global snow cover patterns [J]. Ann. Glaciol. , 1989, 9(39): 39-44.
    [61] Foster J, Chang A, Hall D. Comparison of snow mass estimates from a prototype passive microwave snow algorithm, a revised algorithm and a snow depth climatology[J]. Remote Sens. Environ., 1997, 62(2): 132-142.
    [62] Tedesco M, Pulliainen J, Pampaloni P, Hallikainen M. Artificial neural network based techniques for the retrieval of SWE and snow depth from SSM/I data[J]. Remote Sens. Environ., 2004, 90(1): 76-85.
    [63] Tsang L, Kong J A, Shin R T. Theory of microwave remote sensing[M]. Wiley -Intersciencem, New York, 1985.
    [64] Tsang L, Chen Zhengxiao, Seho O, et al. Inversion of snow parameters from passive microwave remote sensing measurements by a neural network trained with a multiple scattering model[J]. IEEE Transactions On Geoscience and Remote Sensing. 1992, 30(5): 1015- 1024.
    [65]朱樱.基于AMSR/E模拟地表冻土层微波发射率[D].北京:北京师范大学, 2005.
    [66] Zhang Weiguo, Tang Yixian, Wang Chao, Zhang Hong, Wu Xunying, Zhang Bo. Validation on retrieving land surface parameters using SMMR data In Takelamgan[J]. IEEE, 2004: 3654-3656.
    [67]张卫国,王超,吴迅英,张红.利用星载SMMR低频数据对塔克拉玛干沙漠地表要素的反演研究[J].电波科学学报, 2004, 19(4): 474-478.
    [68] Martin T, Howrad B, Mark H著,戴葵等译.神经网络设计[M].北京:机械工业出版社. 2002.
    [69] Colbeck S C. The layered character of snow covers[J]. Reviews of Geophysics. 1991, 29(1): 81-96.
    [70] West R, Winebrenner D, Tsang L. Comparison of dense medium radiative transfer theory with extinction, scattering and emission data for snow[R]. International Geoscience and remote sensing symposium, IGARSS’91, Espoo, Finland, 1991.
    [71] Hornik K, Stinchcombe M, White H. Multi-layer feedforward networks are universal approximators[J]. Neural Networks, 1989, 2(5): 359-366
    [72]吕恒,李新国,曹凯.基于BP神经网络模型的太湖悬浮物浓度遥感定量提取研究[J].武汉大学学报, 2006, 31(8): 683-686.
    [73] Ishimaru A, Kuga Y. Attenuation constant of coherent field in a dense distribution of particles[J]. J. Opt. Soc. Amer., 1982, 72: 1317-1320.
    [74]陈焕平.基于多光谱融合和神经网络分类的月壤分析研究[D].西安:西北工业大学, 2007.
    [75] Heiken et al. Lunar sourcebook: a user's guide to the moon[M]. Cambridge University Press, 1991.
    [76] Mendell. Lunar industrialization and settlement-birth of polyglobal civilization.Lunar Bases and Space Activities of the 21st Century[M]. Houston, TX, Lunar and Planetary Institute, 1985.
    [77]欧阳自远.月球科学概论[M].北京:中国宇航出版社, 2005.
    [78]胥涛.利用反射光谱和热辐射探测月球表面物质的理论和方法.北京:中国科学院, 2004.
    [79]郑永春.模拟月壤研制与月壤的微波辐射特性研究[D].北京:中国科学院, 2005.
    [80] Olhoeft G R, Strangway D W. Dielectric properties of the first 100 meters of the Moon[J]. Earth Planet Sci Lett, 1975, 24: 394-404.
    [81] Arvidson R, Drozd R, Hohenberg C, et al. Horizontal transport of the regolith, modification of features, and erosion rates on the lunar surface[J]. Moon, 1975, 13: 67-79.
    [82] Melosh H. Impact cratering: a geologic process[M]. New York: Oxford Univ. Press, 1989.
    [83]徐琳,刘建忠,邹永廖,李春来.月球表面水冰的探测和意义[J].空间科学学报. 2003, 23(1): 42-49.
    [84] Feldman W C, Maurice S, Binder A B, et al. Fluxes of fast and epithermal neutrons from lunar prospector: Evidence for water ice at the lunar Poles[J]. Science, 1998, 281: 1496-1500.
    [85] Saaria J M, Shorthilla R W. Isotherms of crater regions on the illuminated and eclipsed Moon[J]. Icarus, 1963, 2: 115-136.
    [86] Montgomery C G., Six N F J, Saari J M, Shorthill R W. Directional characteristics of lunar thermal emission[J]. Astrophysics Astronautics. 1966.
    [87]李雄耀,王世杰,程安云.月球表面温度物理模型研究现状[J].地球科学进展, 2007, 22(5): 480-485.
    [88] Langseth M G, Wechsler A E, Drake E M, et al. Apollo 13 lunar heat flow experiment[J]. Science, 1970, 168: 211-217.
    [89] Lucas J W, Conel J E, Hagemeyer W A. Lunar surface thermal characteristics from surveyor I[J]. Journal of Geophysical Research, 1967, 72: 779-789.
    [90] Vitkus G, Garipay R R, Hagemeyer W A, et al. Lunar surface temperatures andthermal characteristics, Surveyor VZZ A preliminary report[R]. NASA SP-173, 1968: 163.
    [91] Vitkus G, Garipay R R, Hagemeyer W A, et al. Lunar surface temperatures and thermal characteristics, Surveyor VI A preliminary report[R]. NASA SP-166, 1968.
    [92] Vitkus G, Lucas J W, Saari J M. Lunar surface thermal characteristics during eclipse from Surveyors III, V and after sunset from Surveyor V[R]. Los Angeles, Califunia, 1968: 68-747
    [93] Cremers C J, Birkebak R C. Thermal conductivity of fines from Apollo 12[C]. Proceeding of the Society Lunar Science Conference 3th. Cambridge: MIT Press, 1971: 2311-2 315.
    [94] Cremers C J, Birkebak R C, Dawson J P. Thermal conductivity of fines from Apollo11[C]. Proceedings of Apollo11 Lunar Science Conference. 1970, 3: 2045 -2050.
    [95] Keihm S J, Langseth M G. Surface brightness temperatures at the Apollo 17 heat flow site[C]. Thermal Conductivity of the Upper 15 cm of Regolith. Proceeding of the Lunar Science Conference, 4th. 1973: 2 053-2 513.
    [96] Lawson S L, Jakosky B M. Brightness temperatures of the lunar surface[C]. The Clementine Long-Wave Infrared Global Data Set, 30th Annual Lunar and Planetary Science Conference, 1999.
    [97] Lawson S L. Brightness temperatures of the lunar surface: Calibration and analysis of Clementine long-wave infrared camera images[D]. Boulder: University of Colorado, 2000.
    [98] Lawson S L, Jakosky B M. Lunar surface thermophysical properties derived from Clementine LWIR and UVVIS images[J]. Journal of Geophysical Research, 2001, 106: 27 911-27 932.
    [99] Lawson S L, Jakosky B M, Park H S, et al. Brightness temperatures of the lunar surface: Calibration and global analysis of the Clementine long-wave infrared camera data[J]. Journal of Geophysical Research, 2000, 105: 4 273-4 290.
    [100] Hagermann A, Tanaka S, Yoshida S, et al. Regolith thermal property inversion in the LUNAR-A heat-flow experiment[J]. Bulletin of the American Astronomical Society, 2001, 33: 1 147.
    [101] Little R C, Feldman W C, Maurice S, et al. Latitude variation of the subsurface lunar temperature: lunar prospector thermal neutrons[C]. American Geophysical Union, Spring Meeting, 2001.
    [102] Pettit E, Nicholson S B. Lunar radiation and temperatures[J]. Astrophysical Journal, 1930, 71: 102-135.
    [103] Sinton W M. Physics and astronomy of the moon[M]. New York: Academic Press, 1962.
    [104] Murray B C, Wildey M J. Surface temperature variations during the lunar nighttime[J]. The Astrophysical Journal, 1964, 139: 734-750.
    [105] Saari J M. The surface temperature of the antisolar point of the Moon[J]. Icarus, 1964, 3: 161-163.
    [106] Low F J. Lunar nighttime temperatures measured at 20 microns [J]. Astrophysical Journal, 1965, 142: 806-808.
    [107] Ingrao H C, Young A T, Linsky J L. The nature of the lunar surface[M]. Baltimore: The Johns Hopkins Press, 1966.
    [108] Stimpson L D, Lucas J W. Revised lunar surface thermal characteristics obtained from the Surveyor V spacecraft[R]. AIAA Paper, San Francisco, California, 1969: 69-594.
    [109] Pugh M J, Bastin J A. Infrared observations of the moon and their interpretation[J]. Earth, Moon and Planets, 1972, 5: 16-30.
    [110] Hagfors T. Remote probing of the Moon by microwave emissions and by radar[J]. Radio Science, 1970, 5: 189–227.
    [111] Wang Z Z, Li Y, Jiang J S, et al. Microwave transfer models and brightness temperature simulations of MWS for remote sensing lunar surface on CE-1 satellite[R]. International conference on microwave and millimeter wave technology, Nanjing, 2008: 1683-1686.
    [112]李雄耀,王世杰,陈丰等.月壤厚度的研究方法与进展[J].矿物学报. 2007, 27(1): 64-68.
    [113] Schuster A. Radiation through a foggy atmosphere. Astrophys. J., 1905, 21: 1-22.
    [114] Wen B, Tsang L, Winebrenner D P, Ishimaru A. Dense medium radiative transfer theory: comparison with experiment and application to microwave remote sensing and polarimetry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1990, 28: 46-59.
    [115] Tsang L. Passive remote sensing of dense nontenuous media[J]. J. Electromagnetic waves and applications, 1987, 1(2): 159-173.
    [116] Tsang L. Dense media radiative transfer theory for dense discrete random media with spherical particles of multiple sizes and permitivities[J]. Progress in electromagnetic Research, New York: Elsevier, 1992.
    [117]金亚秋.空间微波遥感数据验证的理论与方法[M].北京:科学出版社. 2005.
    [118] Josberger E G, Mognard N M. A passive microwave snow depth algorithm with a proxy for snow metamorphism[J]. Hydrological Processes, 2002, 16(8): 1557-1568.
    [119]金亚秋.电磁散射和热辐射的遥感理论[M].北京:科学出版社, 1998.
    [120] Bardaiti F, Solimini D, Tognolatti P. Effect of electrical and properties of materials on microwave brightness temperature of the trrestrial crust[J]. IGARSS, 1989, 7: 605~610.
    [121] Ulaby F T, El-Rayes M A. Microwave dielectric spectrum of vegetation, Part II: Dual-Dispersion model[J]. IEEE Transactions on Geoscience and Remote Sensing, 1987, 25: 550-557.
    [122] Schmugge T J, Gloersen P, Wilheit T, et al. Remote sensing of soil moisture with Microwave Radiometers[J]. JGR, 1974, 79(2): 317-323.
    [123] Dobson M C, Ulaby F T, Hallikainen M T, El-Rayes M A. Microwave dielectric behavior of wet soil: Part II: dielectric mixing models[J]. IEEE Transactions on Geoscience and Remote Sensing, 1985, 23(l): 35-46.
    [124] Topp G T. Electromagnetic determination of soil water content: measurements in coaxial transmission lines[J]. Water Resources Research, 1980, 16(3): 574-582.
    [125] Huisman J A. Measuring soil water content with ground penetrating radar[J]. Vadose Zone Journal, 2003, 2: 476-491.
    [126] http://webgis.wr.usgs.gov/pigwad/down
    [127] Zhang Lixin, Shi Jiancheng, Zhang Zhongjun, et al. The estimation of dielectric constant of frozen soil-water mixture at microwave bands[C]. Proceedings of IGRASS’03, Toulouse, France, 2003.
    [128]李丽英,张立新,赵少杰.冻土介电常数的实验研究[J].北京师范大学学报(自然科学版), 2007, 43(3): 241-244.
    [129]苏联科学院苏联科学院西伯利亚分院冻土研究所[M].普通冻土学.北京:科学出版社, 1988.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700