用户名: 密码: 验证码:
东南景天锌超积累过程中基因表达差异的cDNA-AFLP分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于重金属超积累植物在治理重金属污染土壤方面,有广阔的应用前景,已引起国际土壤——植物营养学界和环境科学界的浓厚情趣和政府部门的高度重视。但目前对植物超积累重金属机制认识的不足限制了该技术的应用和改良。东南景天(Sedum alfredii Hance)是在我国东南部地区一些古老的铅锌矿区发现的一种新的锌/镉超积累植物,同时对铅具有富集作用。本研究以超积累东南景天为材料,以其他近缘种为对照,分析了铅锌矿区东南景天在长期的重金属胁迫条件下,进化成超积累植物后的基因组变异情况;以及利用cDNA-AFLP技术对超积累生态型东南景天在锌超积累过程中的基因表达差异进行研究;另外还采用水培方法,观察超积景天在锌镉积累过程中的GSH、H_2O_2、总硫含量随锌镉积累量的变化,探讨了GSH和H_2O_2在超积累过程中的作用,取得的主要研究结果如下:
     1.植物长期生长在重金属污染的生境中,逐渐进化成不同的生态型,利用我国原生的Zn/Cd超积累生态型东南景天(Hyperaccumulated ecotype:HE)为材料,以与其亲缘关系较近的非超积累生态型东南景天(NHE)、圆叶景天(Sedum MakinoiMaxim:SMM)、凹叶景天(Sedum emarginatum Migo:SEM)、垂盆草(SedumSarmentoum Bunge:SSB)以及株芽景天(Sedum Bulbiferum Makino:SBM)为对照,利用RAPD方法,研究超积累生态型东南景天基因组变异的程度,并对部分超积累景天特有的PCR条带进行测序,分析特异基因片段与超积累的关系。遗传进化树分析表明:六种不同生态型的景天可以分成两组,其中两种东南景天为一组,另外四种为一组;超积累生态型和野生型东南景天有着相似的遗传背景,相似系数显示变异程度已超过种的界限。说明污染土壤对植物的进化有着非常大的影响;部分超积累景天特异PCR片段测序表明,ATP-硫酰化酶(ATP sulfuryase)、脱水调节相关蛋白及一些未知基因片段可能与超积累性状有一定的关系。
     2.植物对重金属锌/镉超积累与过氧化氢产生关系的研究表明,在1000uM Zn~(2+)或200uM Cd~(2+)处理条件下,超积累生态型东南景天地上部Zn~(2+)的积累量高于Cd~(2+)的积累量。地上部Zn~(2+)/Cd~(2+)积累时间动力学显示在前15天,呈线形增加,随后积累速度下降。同样,地上部总硫、GSH以及H_2O_2的含量也是在前15天迅速增加,后10天逐渐下降。总硫和GSH的含量都是Cd~(2+)处理下较Zn~(2+)处理的高,而H_2O_2的含量则是Cd~(2+)处理下较Zn~(2+)处理的低;地上部Zn~(2+)含量变化与地上部GSH、总硫及H_2O_2变化趋势相似,而Cd~(2+)则是在第5天时含量就达到最大,以后开始逐渐下降。以上结果推测:含硫有机物可能不是超积累生态型东南景天Zn~(2+)/Cd~(2+)积累的主要配体,GSH的功能主要是解除体内游离态Zn~(2+)/Cd~(2+)的毒性,H_2O_2很可能是与超积累相关的一种信号分子。增加硫元素的供应对提高zn~(2+)/Cd~(2+)的积累有一定的作用;东南景天对Zn~(2+)和Cd~(2+)的吸收和积累存在不同的调控机制。
     3.为方便比较锌超积累生态型东南景天在不同条件下的基因表达差异,需要克隆一个稳定表达的基因作为对照。在本试验中,利用设计的兼并引物通过PCR方法获得了一段actin基因的序列,然后根据获得的序列再通过3′-RACE和5′-RACE方法,得到了全长的actin基因序列;克隆得到的actin基因全长为1418bp,预测的编码区域为1131bp,编码377个氨基酸。
     4利用cDNA-AFLP(cDNA扩增长度片段多态性:cDNA-amplified fragment lengthpolymorphism)方法,研究了我国原生的东南景开在锌超积累过程中的基因表达差异。结果表明:随着处理时间的增加,地上部锌含量也呈逐渐增加趋势;在5个时间点的多态性电泳图中,共出现4000多个条带,其中约有100个左右的转录差异片段(TDFs:transcript-derived fragments),并成功克隆了87个TDFs。;经数据库对比分析,其中有47个与已知或假定的基因存着明显的同源性,6个与未知功能的基因有同源性,34个与数据库中现有的基因没有明显的相似性。随机地从87个克隆片段中的选取23个做Real-time PCR验证,有16个表达谱与cDNA-AFLP完全相同;在38个与现有已知功能基因相似的片段中,按照功能可分成转录因子、胁迫响应、转录促进、细胞和组织代谢、光合作用、表达调节以及混合功能等几类;34个没有同源性的和15个与未知功能基因(假定的基因和未知功能的基因)同源的加在一起共有49个,占总数87个的56.3%。说明植物的超积累能力,与许多目前尚不清楚的基因有关。在38个能通过BLAST方法确定具体功能的TDFs中,包含有信号转导、胁迫响应、转录因子、表达调节等各种类型,表明东南景天锌超积累过程需要各种类型的酶系参与,锌超积累性状的形成包括复杂的信号通路和生理生化代谢途径。
Phytoremediation is defined as the use of plants to decontaminate and/or remove pollutants from the environment.It has emerged as an alternative technique for removing toxic metals from soil and offers the benefits of being in situ,cost effective and environmentally sustainable plants with high metal uptake and accumulation capacity have been termed as hyperaccumulator species.Sedum Alfredii Hance(S.Alfredii)was found in an old Pb/Zn mined area,Southern China and was originally identified as a new Zn/Cd co-hyperaccumulating plant,it was probably mutants from the non-hyperaccumulating ecotypes of S.Alfredii after a considerably long period(more than one thousand years)of inhabitation the highly heavy metal polluted environments.It has an extraordinary ability to tolerate and accumulate high concentration of environmental Zn and Cd,and with the characteristics of large biomass,fast growth speed,asexual propagation and perennial. Therefore,it is an ideal plant for studying mechanisms which are responsible for hyperaccumulation and phytoremediation practice.In the present study,we focused on generating dendrogram by using RAPD methods,and the analysis of the band sequences that only observed in HE as compared with other species of Sedum;otherwise, cDNA-amplified fragment length polymorphism(cDNA-AFLP)analysis was employed to identify the genes of Sedum alfredii H.that exhibit a modulated expression under Zn treatment applied in hydroponics culture;in addition,Zn and Cd concentrations in plants, reduced glutathione and Hydrogen Peroxide,total Sulphur were detected,and the role were analyzed in hyperaccumulations.The major results were summarized as follows:
     1.Sedum alfredii Hance has been identified as a new Zn/Cd co-hyperaccumulating plant species from heavy metal polluted area native to China.However,little information is available for the genetic differences among this ecotype and its relatives.In this paper, genetic variation and relationship among several species of Sedum including hyperaccumulating ecotype(HE)and the non-hyperaccumulating ecotype(NHE)of S. alfredii H,well as Sedum including Sedum Makinoi Maxim(SMM),Sedum emarginatum Migo(SEM)、Sedum Sarmentoum Bunge(SSB),and Sedum Bulbiferum Makino:(SBM),was determined by random amplified polymorphic DNA(RAPD) analysis.Phytogenetic analysis suggested that they can be divided into two groups and the non-hyperaccumulating ecotype(NHE)of Sedum alfredii H is the nearest relatives of the hyperaccumulating ecotype(HE).However,genetics variation of HE and NHE is notable,which indicated that long term pollution of soil exerted great influenceon the genetic diversity and plant evolution.
     2.Hyperaccumulation of heavy metals in plants is closely related to metal detoxification in plant cells to metal toxicity,however the mechanisms is not fully understood yet.In this study,the possible roles of superoxide(H_2O_2)in zinc and cadmium hyperaccumulation of Sedum alfredii Hance were analyzed.The results showed that Zn/Cd concentration in the shoots of Sedum afredii Hance increased linearly within 15 days,after then leveled off.Concentration of total GSH,total S,as well as H_2O_2 in the shoot also increased within 15 days correspondingly,and then decreased with further increasing time of metal treatment.Shoot total S and glutathione(GSH)were higher for Cd than for Zn treatment.However,reverse trends in shoot H_2O_2 concentration were noted,i.e.much higher H_1O_2 concentration was observed in Zn-treated plant shoot than in Cd-treated plant shoot.Increasing external S supply could increase Zn and Cd accumulation in Sedum alfredii H.These results suggested that S containing compounds coundn't be the main chelator of Zn or Cd in the hyperaccumulating ecotype of Sedum alfredii Hance.GSH may play an important role in the detoxification of dissociated Zn and Cd,and H_2O_2 may be a kind of signal molecule in correlation with Zn and/or Cd hyperaccumulation.
     3.A pair of degenerate primers were designed using the plant actin sequences already available,actin genes from the hyperaccumulator Sedum alfredii H.were PCR-amplified, cloned,and sequenced.Then,both 5'-and 3'-rapid amplification of cDNA ends(RACE) were performed.The actin gene of full-length is 1418bp,and putative reading frame from 19bp to 1149bp(together 113 lbp).
     4.cDNA-amplified fragment length polymorphism(cDNA-AFLP)analysis was employed to identify genes that exhibited an indusibleexpression under Zn treatment in Sedum alfredii H.grown in hydroponic culture,plants were treated for 3h,8h,24h and 1 weeks with 500μM Zn and untreated plants were used as controls.The results showed that there existed over 4000 expression bands appeared at different treatment times.Among over 100 transcript-derived fragments(TDFs)87 TDPs cloned as Zn responsive.. According to the analysis with genomic database,about were identified 47 TDFswere identified t are obviously homologous to the genes that have known or putative function, 6 TDFs were homologous to uncharacterized genes while 34 TDFs did not show significant matches to any genes in the Genodatabase.Real-time PCR analysis showed that the expression profiles of 16 in 23 TDFs which were randomly selected from 87 TDFs had high similarity to those with cDNA-AFLP.Thirty eight genes of known function TDFs coud be devided into different functional groups including transcriptional factors,expression regulators,and stress responding and transport facilitation genes,as well as genes involved in cellular metabolism and organization and the photosynthetic process.These results,suggest that a multitude of processes are implicated in Zn hyperaccumulating process in Sedum alfredii H..There have been 49 responsive genes identified in the HE of Sedum alfredii H composing of,34 known genes with blast and 15 unknown or putative genes,which accounted for 56.3%of total 87 genes,. implying Zn hyperaccumulation is associated with many related to the functions of many unkonown genes.According to BLAST analysis of the functions for the known 38 genes, zinc hyper-accumulation seemed to be controlled by different pathways including signal transduction,stress response,transcriptal factors,and expression regulation.These results indicate that the process of Zn hyperaccumulation could be regulated by a complex system of signal induction and physi-biochemical metablism.
引文
1. Abdul G. Khan. Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. Journal of Trace Elements in Medicine and Biology, 2005, 18:355-364
    2. Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ.. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 1997. 25, pp: 3389-3402
    3. Andreas J. Meyer and Mark D. Flicker. Control of Demand-Driven Biosynthesis of Glutathione in Green Arabidopsis Suspension Culture Cells. Plant Physiology, 2002,130:1927-1937
    4. Andres-Colas N, Sancenon V, Rodriguez-Navarro S, Mayo S, Thiele DJ, Ecker JR, Puig S, Penarrubia L. The Arabidopsis heavy metal P-type ATPase HMA5 interacts with metal lochaperones and functions in copper detoxification of roots. Plant Journal. 2006,45(2):225-236
    5. Andrew DV, Kapulnik M. David IR, Salt E. The role of EDTA in lead transport and accumulation by indian mustard. Plant Physiology, 1998,117: 447-453
    6. Annamaria Ranieri, Antonella Castagna, Francesca Scebba, Maria Careri, Ingrid Zagnoni, Giovanni Predieri, Massimo Pagliari, Luigi Sanita di Toppi. Oxidative stress and phytochelatin characterisation in bread wheat exposed to cadmium excess. Plant Physiology and Biochemistry, 2005,43:45-54
    7. Annamaria Ranieri, Antonella Castagna, Francesca Scebba, Maria Careri, Ingrid Zagnoni, Giovanni Predieri, Massimo Pagliari, Luigi Sanita di Toppi. Oxidative stress and phytochelatin characterisation in bread wheat exposed to cadmium excess. Plant Physiology and Biochemistry, 2005,43: 45-54
    8. Aravind P, Prasad M N. Modulation of cadmium-induced oxidative stress in Ceratophyllum demersum by zinc involves ascorbate-glutathione cycle and glutathione metabolism. Plant Physiology and Biochemistry, 2005,43:107-116.
    9. Assuncao AGL, Martins PDC, De Folter S, Vooijs R, Schat H, Aarts MGM. Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens. Plant, Cell & Environment, 2001,24(2):217-226
    10. Assuncdo AGL. Elevated express of the metal hyperaccumulator Thtaspi caerulescens. Plant Cell Environmen, 2001, 24: 217-226
    11. Atienzar FA, Jha AN. The random amplified polymorphic DNA (RAPD) assay and related techniques applied to genotoxicity and Carcinogenesis studies: a critical review. Mutat Res. 2006 Nov-Dec;613(2-3):76-102. Epub 2006 Sep 18
    12. Axelsen KB. and Palmgren MG. Inventory of the superfamily of P-type ion pumps in Arabidopsis. Plant Physiology. 2001, 126:696-706
    13. Bachem CWB, Oomen RJFJ, Visser RGF. Transcript imaging with cDNA-AFLP: a step-by-step protocol. Plant Mol Biol Rep, 1998, 16: 157-173.
    14. Bachem CWB, van der Hoeven RS, de Bruijn SM, Vreugdenhil D, Zabeau M, Visser RGF. Visualization of diferential gene expression using a novel method of RNA fingerprinting based onAFLP: analysis of gene expression during potato tuber development. Plant J., 1996,9:745-753.
    15. Baker AJM, Brooks RR 1989 Terrestrial higher plants which hyperaccumulate metallic elements-a review of their distribution, ecology and phytochemistry. Biorecovery, 1:81-126.
    16. Barroso C, Romero LC, Cejudo FJ, Vega JM, Gotor C. Salt-specific regulation of the cytosolic Oacetylserine(thiol)lyase gene from Arabidopsis thaliana is dependent on abscisic acid. Plant Molecular Biology, 1999, 40: 729-736.
    17. Baxter I, Tchieu J, Sussman MR, Boutry M, Palmgren MG, Gribskov M, Harper JF and Axelsen KB. Genomic comparison of P-type ATPase ion pumps in Arabidopsis and rice. Plant Physiology. 2003,132:618-628
    18. Bayiock MJ, Salt DES, Dushenkov O. Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ SO Tech, 1997,31: 860-865
    19. Becher M, Talke IN, Krall L, Kramer U. Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant Journal. 2004, 37(2):251-268
    20. Begonia GB, Davis MFT Begonia CNG. Growth responses of Indian Mustard(Brassica juncea (L) Czern.) and its phytoextraction of lead from a contaminated soil. Bull Environ. Contam. Toxicol., 1998,61:38-43
    21. Belouchi A, Kwan T, Gros P, Cloning and characterization of the OsNramp family from Oryza sativa, a new family of membrane proteins possibly implicated in the transport of metal ions.plant Molecular Biology, 1997, 33: 1085-1092.
    22. Bert V, Bonnin I, Ssumitou Laprade P, de Laguerie P, Petit D 2002 Do Arobidopsis halleri from nonmetalliferous populations accumulate zinc and cadmium more effectively than those from metalliferous populations? New Phytol., 146:225-233.
    23. Bizily SP, Kim T, Kandasamy MK and Meagher RB. Subcellular targeting of methylmercury lyase enhances its specific activity for organic mercury detoxification in plants. Plant Physiology. 2003, 131(2):463-471
    24. Blein JP, Coutos-Thevenot P, Marion D, Ponchet M. From elicitins to lipid transfer proteins: a new insight in cell signaling involved in plant defence mechanism. Trends of Plant Science. 2002, 7:293-296
    25. Boominathan R, Doran PM. Cadmium tolerance and antioxidative defenses in hairy roots of the cadmium hyperaccumulator, Thlaspi caerulescens. Biotechnology and Bioengineering. 2003, 83(2): 158-167
    26. Boominathan R, Doran PM. Organic acid complexation, heavy metal distribution and the effect of ATPase inhibition in hairy roots of hyperaccumulator plant species. Journal of Biotechnology. 2003, 101(2):131-146
    27. Bouchereau A, Aziz A, Larher F, Martin-Tanguy J. Polyamines and environmental challenges: recent development. Plant Science. 1999,140:103- 125
    28. Bovet L, Kammer PM, Meylan-Bettex M, Guadagnuolo R, Matera V 2006 Cadmium accumulation capacities of Arabis alpina under environmental conditions. Environ. Exp. Bot., 57:80-88.
    29. Breyne P, Dreesen R, Vandepoele K, Veylder LD, Breusegem FV, Callewaert L, Rombauts S, Raes J, Cannoot B, Engler G, Inze D, Zabeau M. Transcriptome analysis during cell division in plants. Proc Natl Acad Sci USA, 2002, 99:14825-14830.
    30. Breyne P, Zabeau M, Genome-wide expression analysis of plant cell cycle modulated genes. Curr Opin Plant Biol, 2001,4:136-142.
    31. Brown SL. The phytoavailability of cadmium to lettuce in long-term biosolids-amended. J Envrion. Qual., 1998, 27:1071-1078
    32. Cadmium Accumulation and Antioxidative Responses in the Sesbania drummondii Callus. M Israr, S V Sahi 1 and J Jain
    33. Campalans A, Pages M, Messeguer R. Identification of diferentially expressed genes by the cDNA-AFLP technique during dehydration of almond. Tree Physiol, 2001, (21)10: 633-643
    34. Chen CD, Wu ZL, Chen JK, Ji WD. Crystalline nickel sulfide-induced genomic instability in transformed human broncho-epithelial cells. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi. 2004 Feb;22(1):57-9
    35. Chen YX, Lin Q, Luo YM, He YF, Zhen SJ, Yu YL, Tian GM, Wong MH. The role of citric acid on the phytoremediation of heavy metal contaminated soil. Chemosphere, 2003,50: 807-811
    36. Chen Z, Hong X, Zhang H, Wang Y, Li X, Zhu JK, Gong Z. Disruption of the cellulose synthase gene, AtCesA8/IRXl, enhances drought and osmotic stress tolerance in Arabidopsis. Plant Jouranl. 2005,43:273-283
    37. Chengbin Xiang and David J. Oliver. Glutathione Metabolic Genes Coordinately Respond to HeavyMetals and Jasmonic Acid in Arabidopsis. The Plant Cell, 1998, Vol(10): 1539-1550
    38. Chiang HC, Lo JC, Yeh KC. Genes associated with heavy metal tolerance and accumulation in Zn/Cd hyperaccumulator Arabidopsis halleri: a genomic survey with cDNA microarray. Environmental Science Technology. 2006,40(21):6792-6798
    39. Christophe Laloi, Klaus Apel and Antoine Danon. Reactive oxygen signalling: the latest news. Current Opinion in Plant Biology, 2004,7: 323-328
    40. Clemens S. Molecular mechanisms of plant metal tolerance and homeostasis. Planta. 2001, 212(4):475-486
    41. Clijsters H, Vangronsveld J, van der Lelie N, Colpaert J 2000 Ecological aspects of phytostabilization of heavy metal contaminated soils. In: Ceulemans R, Bogaert J, Deckmyn G, Nijs I(Eds.), Topics in Ecology. Structure and Function in Plants and Ecosystems. University of Antwerp, UIA, Wilrijk, Belgium, pp. 299-306.
    42. Cobbett CS, May MJ, Howden R, Rolls B. The glutathione-deficient, cadmium-sensitive mutant, cad2-l, of Arabidopsis thaliana is deficient in gamma-glutamylcysteine synthetase. Plant Journal. 1998,16(1):73-78
    43. Conte C, Mutti I, Puglisi P, Ferrarini A, Regina G, Maestri E, Manmiroli N 1998 DNA fingerprinting analysis by a PCR based method for monitoring the genotoxic effects of heavy metals pollution. Chemosphere 37: 2739-2749.
    44. Craciun AR, Courbot M, Bourgis F, Salis P, Saumitou-Laprade P, Verbruggen N. 2006. Comparative cDNA-AFLP analysis of Cd-tolerant and -sensitive genotypes derived from crosses between the Cd hyperaccumulator Arabidopsis halleri and Arabidopsis lyrata ssp. petraea. Journal of Experimental Botany. 2006, 57:2967-2983
    45. Cristina Ortega-Villasante, Ruben Rellan-Alvarez, Francisca F. Del Campo, Ramon O. Carpena-Ruiz and Luis E. Hernandez. Cellular damage induced by cadmium and mercury in Medicago sativa. Journal of Experimental Botany 2005 56(418):2239-2251
    46. Cunninghan SD, Ow, DW. Promises and prospects of phytoremediation. Plant Physiology, 1996, 110:715-719
    47. Dahmani-Muller H, Oort FV, Gdlie B, Balabane M. Strategies of heavy metal uptake by three plant species growing near a metal smelter. Environmental pollution. 100: 231-238 POPGsm: Their role in ion accumulation by plants. Botany Review, 2000,46: 75-99.
    48. Daniel C. Medina, Eissa Hanna, Ian J. MacRae, Andrew J. Fisher, and Irwin H. Segel. Temperature Effects on the Allosteric Transition of ATP Sulfurylase from Penicillium chrysogenum. Archives of Biochemistry and Biophysics, 2001, (393)1: 51-60
    49. David ES, Michael B, Nanda PB. Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology, 1995,13:468-474
    50. David G Mendoza-Co' zatl, Rafael Moreno-Sa' nchez. Control of glutathione and phytochelatin synthesis under cadmium stress. Pathway modeling for plants. Journal of Theoretical Biology 238 (2006)919-936.
    51. De Kenechtj A, Koeviets PLM, Verkleij JAC,et al. Evidence against a role for phytochelatins in naturally selected increased cadmium tolerance in Silene vulgaris (Moenech) Garcle. new phytologist. 1992,122:681-688
    52. Dellagi A, Birch PRJ, Heilbronn 1, Lyon GD, cDNA-AFLP analysis of diferential gene-expression in the prokaryotic plant pathogen Erwinia-Carotovora. Microbiology. 2000,146:165-171
    53. DeYulia GJ Jr, Carcamo JM, Borquez-Ojeda O, Shelton CC, Golde DW. Hydrogen peroxide generated extracellularly by receptor-ligand interaction facilitates cell signaling, proceedings of the national academy of sciences of the united states of America (PNAS). 2005,102(14):5044-5049
    54. Dhankher O P, Li Y, Rosen B P, et al. Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and γ-glutamylcysteine synthetase expression [J]. Nature Biotechnol, 2002,20: 1140-1145.
    55. Dhankher OP, Li YJ, Rosen BP, Shi J, Salt D, Senecoff JF, Sashti NA and Meagher RB. Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and γ-glutamylcysteine synthetase expression, nature biotechnology, chnol., 2002, 20(11):1140-1145
    56. Dhankher OP, Rosen BP, McKinney EC and Meagher RB. Hyperaccumulation of arsenic in the shoots of Arabidopsis silenced for arsenate reductase (ACR2), proceedings of the national academy of sciences of the united states of America (PNAS). 2006,103(14):5413-5418
    57. Diwan H, Ahmad A, Iqbal M. Genotypic Variation in the Phytoremediation Potential of Indian Mustard for Chromium. Environmental Manage. 2007,20 (in press)
    58. Dobois S, Cheptou PO, Petit C, Meerts P, Poncelet M, Vekemans X, Escarre J 2003 Genetic structure and mating systems of metallicolous and nonmetallicoloeus populations of Thlaspi caerulescen. New Phytol., 157: 633-641.
    59. Downes BP, Saracco SA, Lee SS, Crowell DN, Vierstra RD. 2006. MUBs, a family of ubiquitin-fold proteins that are plasma membrane-anchored by prenylation. Journal of Biology Chemistry.2006, 281:27145-27157
    60. Drew MC. Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia. Annual of Reviews Plant Physiology and Plant Molecular Biology. 1997,48:223-250
    61. Dubos C, Plomion C. Identification of water-deficit responsive genes in maritime pine roots. Plant Mol Biol, 2003, 51: 249-262.
    62. Dulce Eleonora de Oliveira, Marcio Alves-Ferreira. Jorge Mauricio Costa Mondego, Jean Luiz Simoes-Araujo, A gene similar to bacterial translocase I (mra Y) identified by cDNA-AFLP is expressed during flower bud development of Arabidopsis thaliana. Plant Science, 2003,164: 323-331
    63. Durrant WE, Rowland O, Piedras P, Hammond-Kosack KE, Jones JDG. cDNA-AFLP reveals a striking overlap in race-specific resistance and wound response gene expression profiles. Plant Cell, 2000,12:963-977
    64. Ebbs SD. Lasat MM. Brady DJ. Phytoextraction of cadmium and zinc from a contaminated soil. Journal of Environmental Quality, 1997,26:1424-1430
    65. Elena Torricelli, Gessica Gorbi, Barbara Pawlik-Skowronska, Luigi Sanita di Toppi, Maria Grazia Corradi. Cadmium tolerance, cysteine and thiol peptide levels in wild type and chromium-tolerant strains of Scenedesmus acutus (Chlorophyceae). Aquatic Toxicology, 2004, 68: 315-323
    66. Elena Torricelli, Gessica Gorbi, Barbara Pawlik-Skowronska, Luigi Sanita di Toppi, Maria Grazia Corradi. Cadmium tolerance, cysteine and thiol peptide levels in wild type and chromium-tolerant strains of Scenedesmus acutus (Chlorophyceae). Aquatic Toxicology, 2004,68: 315-323
    67. Elmayan T and Tepfer M. Synthesis of a bifunctional metallothionein/p-glucuronidase fusion protein in transgenic tobacco plants as a means of reducing leaf cadmium levels, Plant Jouranl, 1994, 6(3):433-440
    68. Emiko Harada, Yube Yamaguchi, Nozomu Koizumi, Hiroshi Sano. Cadmium stress induces production of thiol compounds and transcripts for enzymes involved in sulfur assimilation pathways in Arabidopsis. J. Plant Physiol, 2002, (159): 445-448
    69. Enan MR. Application of random amplified polymorphic DNA (RAPD) to detect the genotoxic effect of heavy metals. Biotechnol Appl Biochem. 2006 Mar;43(Pt 3): 147-54
    70. Enrique Olmos, Juan R. Martinez-Solano, Abel Piqueras and Eladio Hellin. Early steps in the oxidative burst induced by cadmium in cultured tobacco cells (BY-2 Line). Journal of Experimental Botany, Vol. 54, No. 381, 2003:291-301
    71. Erika Kothe, Hans Bergmann, Georg Buchel. Molecular mechanisms in bio-geo-interactions: From a case study to general mechanisms. Chemie der Erde, 2005,65: 7-27
    72. Escarre J, Lefebure C, Gruber W, Leblance M, Lepart J, Riviere Y, Delay B 2000 Zinc and cadmium hyperaccumulation by Thlaspi caerulesens from metalliferous and nonmetalliferous sites in the Mediterranean area: implications for phytoextraction. New Phytol., 145:429-437.
    73. Evangelou MW, Ebel M, Schaeffer A. Evaluation of the effect of small organic acids on phytoextraction of Cu and Pb from soil with tobacco Nicotiana tabacum. Chemosphere. 2006, 63(6):996-1004
    74. Fayiga AO, Ma LQ, Cao X, Rathinasabapathi B. Effects of heavy metals on growth and arsenic accumulation in the arsenic hyperaccumulator Pteris vittata L. Environmental Pollution. 2004, 132(2):289-296
    75. Foyer C H, Souriau N, Perret S, et al. Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees [J]. Plant Physiol, 1995,109:1047-1057
    76. Francesca Decorosi, Carlo Viti,T, Alessio Mengoni, Marco Bazzicalupo, Luciana Giovannetti. Improvement of the cDNA-AFLP method using fluorescent primers for transcription analysis in bacteria. Journal of Microbiological Methods, 2005,63: 211—215
    77. Freeman J.L., Persans M.W., Nieman K., Albrecht C., Peer W., Pickering I.J. and Salt D.E., Increased Glutathione Biosynthesis Plays a Role in Nickel Tolerance in Thlaspi Nickel Hyperaccumulators. Plant Cell, 2004, vol. 16(8), pp. 2176-91
    78. Freeman JL, Persans MW, Nieman K, Albrecht C, Peer W, Pickering IJ, Salt DE. Increased glutathione biosynthesis plays a role in nickel tolerance in thlaspi nickel hyperaccumulators. Plant Cell. 2004, 6(8):2176-2191
    79. Fukuda T, Kido A, Kajino K. Cloning of differentially expressed genes in highly and low metastatic rat Osteosarcomas by a modified cDNA-AFLP method. Biochem Biophysic Res Commu, 1999,261:35-40.
    80. Fusco N, Micheletto L, Dal Corso G, Borgato L, Furini A. 2005. Identication of cadmium-regulated genes by cDNA-AFLP in the heavy metal accumulator Brassica juncea L. Journal of Experimental Botany. 2005, 56:3017-3027
    81. Garbisu C, Alkorta I 2001 Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresources Technol.,77: 229-236.
    82. Garbisu C, Alkorta I. Basic concepts on heavy metal soilbioremediation [J]. Eur J Min Proc Environ Protect 2003; 13:58-66.
    83. Garbisu, C, Alkorta, I. Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresource Technology, 2001,77:229-236
    84. Garcia R, Millan E. Assessment of Cd, Pb and Zn contramination in road side soils and grasses from gipuzkoa (spain). Chemosphere, 1998, (27)8:1615-1625
    85. Garrett J. DeYulia, Jr, Juan M. Carcamo, Oriana Borquez-Ojeda, Christopher C. Shelton, and David W. Golde. Hydrogen peroxide genetated extracellularly by receptor-ligand interaction facilitates cell signaling. PNAS, Vol.102,2005, Aprill 5, 5044-5049
    86. Gekeler W, Grill E, Winnacker EL,et al. Survey of the plant kingdom for the ability to bind heavy metals through phytochelatins [J]. Z Narurforsch Teil C, 1989,44: 361-9.
    87. Gerd P. Bienert, Jan K. Schjoerring, Thomas P. Jahn. Membrane transport of hydrogen peroxide. Biochimica et Biophysica Acta, 2006, 1758: 994-1003
    88. Gremion F, Chatzinotas A, Kaufmann K, Von Sigler W, Harms H 2004 Impacts of heavy metal contamination and phytoremediation on a microbial community during a twelve-month microcosm experiment. FEMS Microbiol. Ecol., 48 (2): 273-283.
    89. Groppa MD, Benavides MP. Benavides. Polyamines and abiotic stress: recent advances. Amino DOI:10.1007/s00726-007-0501-8 (Acids in press) 2007.
    90. Guadalupe de la Rosa a,c, Jose R. Peralta-Videa a, Milka Montes, et al. Cadmium uptake and translocation in tumbleweed (Salsola kali), a potential Cd-hyperaccumulator desert plant species: ICP/OES and XAS studies [J]. Chemosphere, 2004, 55:1159-1168
    91. Guus Simons, Martin Reijans, et al. Quantitative comparison of cDNA-AFLP, microarrays, and GeneChip expression data in Saccharomyces cerevisiae. Genomics 82 (2003) 606-618
    92. Halim M, Conte P, Piccolo A. Potential availability of heavy metals to phytoextraction from contaminated soils induced by exogenous humic substances [J]. Chemosphere, 2003,52(1): 265-75.
    93. Hammond JP, Bowen HC, White PJ, Mills V, Pyke KA, Baker AJ, Whiting SN, May ST, Broadley MR. A comparison of the Thlaspi caerulescens and Thlaspi arvense shoot transcriptomes. New Phytol 2006,170:239-260
    94. Harada E, Choi YE, Tsuchisaka A, Obata H and Sano H. Transgenic tobacco plants expressing a rice cysteine synthase gene are tolerant to toxic levels of cadmium. Plant Physiology. 2001, 158:655-661
    95. He B, Yang XE, Wei YZ, Ye ZQ, Ni WZ 2002 A new lead resistant and accumulating ecotype -Sedum alfredii H. Acta Bot. Sin., 44(11):1365-1370.
    96. Heaton ACP, Rugh CL, Wang N. 1998, Phytoremediation of mercury and methylmercury-pollued soils using genetically engineered plants. J Soil Contam., 7(4): 497-509
    97. Howden R, Andersen CR, Goldsbrough PB, Cobbett CS. A cadmium-sensitive, glutathione-deficient mutant of Arabidopsis thaliana. Plant Physiology. 1995, 107(4): 1067-1073
    98. Howden R, Cobbett CS. Cadmium-Sensitive Mutants of Arabidopsis thaliana. Plant Physiology. 1992,100(1):100-107
    99. Huang B, Hatch E,Goldsbrough PB. Selection and characterization of cadmium tolerant cells in tomato. Plant Science. 1987, 52:211-222
    100. Huang JW, Chen J,Berti WR, Cunningham SD. Phytoremediation of lead-contaminated soils: role of synthetic chelates in phytoextration. Environ Sci Technol., 997, 31: 800-805
    101. Hui Zhao And David Eide. The yeast ZRT1 gene encodes the zinc transporter protein of a high-affinity uptake system induced by zinc limitation. Proc. Natl. Acad. Sci. USA, 1996, 93: 2454-2458
    102. Hung WC, Huang DD, Y CM, Huang HJ. Reactive oxygen species, calcium and serine/threonine phosphatase arerequired for copper-induced MAP kinase gene, OsMAPK2, expression in rice. Plant Growth Regulation. 2005,45:233-241
    103. Hussain D, Haydon MJ, Wang Y, Wong E, Sherson SM, Young J, Camakaris J, Harper JF. and Cobbet CS. Ptype ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. Plant Cell, 2004,16:1327-1339
    104. Inaba Shoko and Takenaka Chisato. Effects of dissolved organic matter on toxicity and bioavailability of copper for lettuce sprouts [J]. Environment International, 2005,31:603- 608
    105. Inna M. Spkolova , Eugene P. Sokolov, Kavita M. Ponnappa. Cadmium exposure affects mitochondrial bioenergetics and gene expression of key mitochondrial proteins in the eastern oyster Crassostrea virginica Gmelin (Bivalvia: Ostreidae). Aquatic Toxicology, 2005,73: 242-255
    106. Inna M. Sokolova, Eugene P. Sokolov, Kavita M. Ponnappa. Cadmium exposure affects mitochondrial bioenergetics and gene expression of key mitochondrial proteins in the eastern oyster Crassostrea virginica Gmelin (Bivalvia: Ostreidae). Aquatic Toxicology, 2005,73: 242-255
    107. Isaure M P , Fayard B, Sarret G, et al. Localization and chemical forms of cadmium in plant samples by combining analytical electron microscopy and X-ray spectromicroscopy [J]. Spectrochimica Acta Part B, 2006,61: 1242-1252.
    108.Jarvis MD, Leung MWD. Chelated lead transport in Pinus radiate: an ultrastructural study Environmental and Expermental Botany. 2002, 48: 21-32
    109. John L F, Michael W P, Ken N, et al. Increased Glutathione Biosynthesis Plays a Role in Nickel Tolerance in Thlaspi Nickel Hyperaccumulators [J]. The Plant Cell, 2004, 16: 2176-2191.
    110. John L. Freeman, Michael W. Persans, Ken Nieman, Carrie Albrecht, Wendy Peer, Ingrid J. Pickering, and David E. Salta. August, Increased Glutathione Biosynthesis Plays a Role in Nickel Tolerance in Thlaspi Nickel Hyperaccumulator. The Plant Cell, 2004,16: 2176-2191,
    111. Johnes IT, Rower HA comparison the eficiency of diferential display and cDNA-AFLPs as a tools for the isolation of diferentially expressed parasite genes. Fundamental and Applied Nemadity, 1998,21:81—88
    112. Kagi JHR, Schaffer A. Biochemistry of metallothionein. Biochemistry, 1998, 27:8509-8551
    113.Kehoe DM, Villand (?) Omerville S. DNA microarrays for studies of higher plants and other photosynthethic organisms, Trends Plant Sci. 1999, 4: 38-41
    114. Klapheckj A, Fliegner W, Zimmer I. Hydroxymethyl-phytoche [(v-glu-tamylcysteine)_n-serine] are metal-induced peptides of the Poaceae. Plant Physiology, 1994,104:1325-1302
    115. Klusener B, Young JJ, Murata Y, Allen GJ, Mori IC, Hugouvieux V, Schroeder JI. Convergence of calcium signaling pathways of pathogenic elicitors and abscisic acid in Arabidopsis guard cells. Plant Physiology. 2002,130:2152-2163
    116. Kneer R, Zenkm H. Phytochelatins protect plant enzymes from heavy metal poisoning. Phytochemistry, 1992, 31:2663-2667.
    117. Knight H, Trewavas AJ, Knight MR. Calcium signalling in Arabidopsis thaliana responding to drought and salinity. Plant Jouranl. 1997,12,1067-1078
    118. Kojima (?) Habu (?) lida S, OgiharaYDirect isolation of diferentially expressed genes from a specific chromosome region of common wheat-Application of the amplified fragment length polymorphism-based messenger-RNA fingerprinting (Amt) method in combination with a deletion line of wheat. Molecular and General Genetics. 2000,263 (4): 635-641
    119. Kramer U, Pickering IJ, Prince RC, Raskin I, Salt DE. Subcellular localization and speculation of nickel in hyperaccumulator and non-accumulator Thlaspi species. Plant Physiol 2000;122:1343—53.
    120. Kramer U, Smith RD, Wenzel WW, Raskin I, Salt DE. The role of metal transport and tolerance in nickel hyperaccumulation by Thlaspi goesingense Halacsy. Physiol Plant 1997;115:1641-50.
    121. Kramer U, Smith RD, Wenzel WW, et al. The role of metal transport and tolerance in nickel hyperaccumulation by Thlaspi goesingense Halacsy. Plant Physiology. 1997,115:1641-1650
    122. Kruamer U, Smith RD, Wenzel WW, Raskin I, Salt DE. The role of metal transport and tolerance in nickel hyperaccumulation by Thlaspi goesingense Halacsy. Plant Physiology. 1997, 115:1641-1650.
    123. Kuhlbrandt W. Biology, structure and mechanism of P-type ATPases. nature reviews molecular cell biology. 2004, 5:282-295
    124. Kupper H, Zhao FJ, McGrath SP. Cellular compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescens. Plant Physiol 1999;119:305-11
    125. Kuznetsov VV, Radyukina NL, N. Shevyakova I. 2006. Polyamines and stress: Biological role, metabolism, and regulation. Russian Journal of Plant Physiology. 2006, 53:583-604
    126. L.M.Sandalio, H.C.Dalurzo, M.Gomez, M.C.Romero-Puertas and L.A.del Rio. Cadmium-induced chandes in the growth and oxidative metabolism of pea plants. Jourmal of Experimental Botany, 2001 November, Vol. 52, No. 364, 2155-2126
    127. Laloi C, Apel K, Danon A. Reactive oxygen signalling: the latest news. Current Opinion in Plant Biology. 2004, 7(3):323-328.
    128. Lane B, Kajioka R, Kennedy T. The wheat germ Ec protein is a zinc-containing metallothionein. Biochemistry Cell Biology. 1987, 65:1001-1005
    129. Lasat MM ,BA KER A J M ,KOCHIAN L V. Physiological characterization of root Zn2 + absorption and t ranslocation to shoot s in Zn
    130. Lasat MM, Baker A, Kochian LV. Physiological Characterization of Root Zn~(2+) Absorption and Translocation to Shoots in Zn Hyperaccumulator and Nonaccumulator Species of Thlaspi. Plant Physiology. 1996, 112(4): 1715-1722
    131. Lee Sangman and Rang Beom Sik. Expression of Arabidopsis Phytochelatin Synthase 2 Is Too Low to Complement an AtPCS1-defective Cad1-3 Mutant [J]. Mol. Cells, 2005,19(1): 81-87.
    132. lena k. Atamaniuk v, mari ste'phane, et al. AtPCS1, a phytochelatin synthase from Arabidopsis: Isolation and in vitro reconstitution [J]. Proc. Natl. Acad. Sci. USA, 1999,96:7110-7115.
    133. Li Lijun, Liu Xuemei, Guo Yaping, Ma Enbo, Activity of the enzymes of the antioxidative system in cadmium-treated Oxya chinensis (Orthoptera Acridoidae). Environmental Toxicology and Pharmacology, 2005 20: 412-416
    134. Li Lijun, Liu Xuemei, Guo Yaping, Ma Enbo, Activity of the enzymes of the antioxidative system in cadmium-treated Oxya chinensis (Orthoptera Acridoidae). Environmental Toxicology and Pharmacology, 2005 20: 412-416
    135. Li TQ, Yang XE, He ZL, Yang JY 2005 Root morphology and Zn~(2+) uptake kinetics of the Zn hyperaccumulator of Sedum alfredii Hance. J. Int. Plant Biol., 47:927-934.
    136. Li TQ, Yang XE, He ZL, Yang Jy, Long XX. Zn accumulation and subcellular distribution in leaves of Zn hyperaccumulator species of Sedum alfredii Hance. Pedosphere 2005, in press.
    137. Lidon FC, Barreiro MG, Ramalho JC. Manganese accumulation in rice: implications for photosynthetic functioning. Journal of Plant Physiology. 2004, 161:1235-1244
    138. Liu J, Zhu JK. A calcium sensor homolog required for plant salt tolerance. Science. 1998, 280:1943-1945
    139. Liu W, Li PJ, Qi XM, Zhou QX, Zheng L, Sun TH, Yang YS. DNA changes in barley {Hordeum vulgare) seedlings induced by cadmium pollution using RAPD analysis. Chemosphere, 2005, 61: 158-167.
    140. Liu W, Li PJ, Qi XM, Zhou QX, Zheng L, Sun TH, Yang YS. DNA changes in barley (Hordeum vulgare) seedlings induced by cadmium pollution using RAPD analysis. Chemosphere. 2005, 61(2): 158-167
    141. Long X, Ni W, Ye Z, Yang X . Zinc tolerance and hyperaccumulation of Sedum alfredii Hance: a greenhouse experiment with artificial polluted soils. Bull. Environ. Contam. Toxicol., 2006, 76(2): 264-270.
    142. Long XX, Yang XE, Ye ZQ, Ni WZ and Shi WY. Study on differences in Zn uptake and accumulation in four species of Sedumlinn. Acta Bot. Sin., 2002, 44:152-157.
    143. M, Kaukinen KH, Tranbarger TJ, Gupta PK, Misra S. The isolation of a novel metallothioncin-related cDNA expressed in somatic and zygotic embryos of Douglas-fir: regulation by AB (?), osmoticum, and metal ions. Plant Mol Bial, 1997, 34:243-254
    144. M. C. Romero-Puertas, J. M. Palma, M. Gomez, L. A. Del Rio. L. M. Sandalio. Cadmium causes the oxidative modification of proteins in pea plants. Plant, Cell and Environment, 2002, 25: 677-686
    145. M. C. Romero-Puertas, J. M. Palma, M. Gomez, L. A. Del Rio. L. M. Sandalio. Cadmium causes the oxidative modification of proteins in pea plants. Plant, Cell and Environment, 2002,25: 677-686
    146. Macnair MR. Within and between population genetic variation for zinc accumulation in Arabidopsis halleri. New Phytol., 2002,155: 59-66.
    147. Maria R S, Maria C R P, Ana Z, et al. Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo [J]. Plant, Cell and Environment, 2006, 29:1532-1544.
    148. Marie-Pierre Isaure, Barbara Fayard, Geraldine Sarret, Sebastien Pairis, Jacques Bourguignon. Localization and chemical forms of cadmium in plant samples by combining analytical electron microscopy and X-ray spectromicroscopy. Spectrochimica Acta Part B. 2006,61:1242-1252
    149. Mario Moniz DE Sa and Guy Drouin. Phylogeny and substitution rates of angiosperm actin genes. Mol. Biol. Evol. 1996, 9:1198-1212
    150. Marion D, Douliez JP, Gautier MF, Elmorjani K. Plant lipid transfer proteins: relationships between allergenicity and structural, biological and technological properties. In: Mills ENC, Shewry PR, editors. Plant food allergens. Oxford: Blackwell science, 2004, 57-69
    151. Marnik Vuylsteke, Hilde Van Den Daele, Annelies Vercauteren, Marc Zabeau and Martin Kuiper. Genetic dissection of transcriptional regulation by cDNA-AFLP. The Plant Journal (2006) 45, 439-446
    152. Martin Reijans, Romeo Lascaris, Antoinette Oude Groeneger, Alexander Wittenberg, Erik Wesselink, Jan van Oeveren, Elzo de Wit,b Andre' Boorsma, Betsy Voetdijk, Hans van der Spek, Leslie Alan Grivell, and Guus Simons. Quantitative comparison of cDNA-AFLP, microarrays, and GeneChip expression data in Saccharomyces cerevisiae. Genomics, 2003, 82:606-618
    153. Martin Reijans, Romeo Lascaris, Antoinette Oude Groeneger, et al. Quantitative comparison of cDNA-AFLP, microarrays, and GeneChip expression data in Saccharomyces cerevisiae. Genomics, 2003,82:606-618
    154. Martinez M, Bernal P, Almela C, Velez D, Garcia-Agustin P, Serrano R and Navarro-Avino J. 2006, An engineered plant that accumulates higher levels of heavy metals than Thlaspi caerulescens, with yields of 100 times more biomass in mine soils, Chemosphere. 2006, 64(3):478-485
    155. Meharg AA and Macnair MR. Relationship between plant phosphorus status and the kinetics of arsenate influx in clones of Deschampsia cespitosa (L.) beauv. that differ in their tolerance to arsenate, Plant and Soil. 1994,162:99-106
    156. Mendoza-Cozatl D, Loza-Tavera H, Hernandez-Navarro A, Merona-Sanchez R. Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants. REMS Microbio rev 2005,(29)4:653-71.
    157. Mengoni A, Gonnelli C, Galardi F, Gabbrielli R, Bazzicalupo M. Genetic diversity and heavy metal tolerance in populations of Silene paradoxa L. (Caryophyllaceae): a random amplified polymorphic DNA analysis. Mol. Ecol., 2000, (9)9:1319-1324.
    158. Meyer AJ, Fricker MD. Control of demand-driven biosynthesis of glutathione in green Arabidopsis suspension culture cells. Plant Physiol. 2002, (130)4:1927-37.
    159. Meyer AJ, Fricker MD. Control of demand-driven biosynthesis of glutathione in green Arabidopsis suspension culture cells. Plant Physiology. 2002,130(4):1927-1937
    160. Mills RF, Krijger GC, Baccarini PJ, Hall JL. and Williams LE. Functional expression of AtHMA4, a P-1B-type ATPase of the Zn/Co/Cd/Pb subclass. Plant Journal. 2003, 35:164-176
    161. Mishra S, Srivastava S, Tripathi RD, Govindarajan R, Kuriakose SV, Prasad MN. Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L. Plant physiol biochem. 2006, (44)1:25-37
    162. Mishra S, Srivastava S, Tripathia RD, Govindarajan R, Kuriakose SV, Prasad MNV. Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L.. Plant Physiology and Biochemistry. 2006,44:25-37
    163. Mitch M. Lasat, Alan J. M. Baker, and Leon V. Kochian. P lhysiological Characterization of Root Zn~(2+) Absorption and Translocation to Shoots in Zn Hyperaccumulator and Nonaccumulator Species- of Thlaspi. Plant Physiol. 1996, (112): 1715-1722
    164. Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Science. 2002, 7(9):405-410.
    165. Money T, Reader S, Qu L 1, Dunford R P, Moore G. AFLP-based mRNA fingerprinting. Nucl Acid Res. 1996,24:2616-2617
    166. Murphy A, Zhou J, Goldsbrough PB, and Taiz L. Purification and immunological identification of metallothioneins 1 and 2 from Arabidopsis thaliana, Plant Physiology, 1997,113(4):1293-1301
    167. Murphy A, Zhou J, Goldsbrough PB. Purification and immunological identification of metallothioneins 1 and 2 from Arabidopsis thaliana. Plant Physiology, 1997,113:1293-1301
    168. Murray MG, Thompson WF. Rapid isolation of high molecular weight plant DNA. Nucleic Acid Res., 1980, 8: 4321-4325.
    169. Muthukumar B, Yakubov B, Salt DE. Transcriptional activation and localization of expression of Brassica jmcea putative metal transport protein BjMTP1. BMC Plant Biol. 2007,7:1-12
    170. Natasha Grotz, Mary Lou Guerinot. Molecular aspects of Cu, Fe and Zn homeostasis in plants. Biochimicaet Biophysica Acta, 2006, (176)3: 595-608
    171. Nathalie ALM, Hassinen VH, Hakvoort HWJ (2001) . Enhanced copper tolerance in Silene vulgaris (Moench) garcke populations from copper mines is associated with increased transcript levels of a 2b-type metallothionein gene. Plant Physiology, 2001, 126:1519-1526
    172. Nedelkosk TV. Characteristic of heavy metal uptake by plant species with potential for phytoremediation. Minerals Engineering, 2000, 13(5): 549-561
    173. Neill S, Desikan R and Hancock J. Hydrogen peroxide signaling. Current Opinion in Plant Biology. 2002, 5:388-395
    174. Nevena Basic, Nicolas Salamin, Catherine Keller, Nicole Galland, Guillaume Besnard. Cadmium hyperaccumulation and genetic differentiation of Thlaspi caerulescens populations. Biochemical Systematics and Ecology, 2006,34: 667-677
    175. Nevena Basic, Nicolas Salamin, Catherine Keller, Nicole Galland, Guillaume Besnard. Cadmium hyperaccumulation and genetic differentiation of Thlaspi caerulescens populations. Biochemical Systematics and Ecology, 2006,34: 667-677
    176. Nicola Fusco, Lorenza Micheletto, Giovanni Dal Corso, Lorena Borgato and Antonella Furini. Identi.cation of cadmium-regulated genes by cDNA-AFLP in the heavy metal accumulator Brassica juncea L. Journal of Experimental Botany, 2005, 56: 3017-3027
    177. Nicole S. Pence, Paul B. Larsen, Stephen D. Ebbs, Deborah L. D. Letham, Mitch M. Lasat, David F. Garvin, David Eide, and Leon V. Kochian. The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. PNAS, 2000, (97)9: 4956-4960
    178. Nirmala J, Brueggeman R, Maier C, Clay C, Rostoks N, Kannangara CG, von Wettstein D, Steffenson BJ, Kleinhofs A. Subcellular localization and functions of the barley stem rust resistance receptor-like serine_threonine-specific protein kinase Rpg1. Proc Natl Acad Sci USA 2006, 103:7518-7523
    179. olena k. Atamaniuk v, mari ste'phane, et al. AtPCS1, a phytochelatin synthase from Arabidopsis: Isolation and in vitro reconstitution [J]. Proc. Natl. Acad. Sci. USA, 1999,96:7110-7115.
    180. Olmos E, Martinez-Solano J R, Piqueras A, et al. Early steps in the oxidative burst induced by cadmium in cultured tobacco cells (BY-2 line) [L]. Journal of Experimental Botany, 2003,54(381): 291-301.
    181. Olmos E, Martinez-Solano JR, Piqueras A, Hellin E. Early steps in the oxidative burst induced by cadmium in cultured tobacco cells (BY-2 line). Journal of Experimental Botany, 2003, 54(381):291-301
    182. Orna A K, Yardena G D, Simcha L Y, et al. The Salt-Stress Signal Transduction Pathway That Activates the gpxl Promoter Is Mediated by Intracellular H2O2, Different from the Pathway Induced by Extracellular H2O2 [J]. Plant Physiology, 2004,135:1685-1696.
    183. Ortiz DF, Ruscitti T, Mccue Kf ,et al. Transport of metal-binding peptides by HMT1, a fission yeast ABC-type vacuolar membrane protein. Journal of Biology Chemistry. 1995,270:4721-4728
    184. Ozturk L, Karanlik S, Ozkutlu F, Cakmak I, Kochian LV. Shoot biomass and zinc/cadmium uptake for hyperaccumulator and non-accumulator Thlaspi species in response to growth on a zinc-deficient calcareous soil. Plant Science, 2003, (164)6:1095-1101.
    185. P. Aravind, M.N.V. Prasad. Cadmium-induced toxicity reversal by zinc in Ceratophyllum demersum L. (a free .oating aquatic macrophyte) together with exogenous supplements of amino-and organic acids. Chemosphere, 2005,61 :1720-1733
    186. P. Aravind, M.N.V. Prasad. Cadmium-induced toxicity reversal by zinc in Ceratophyllum demersum L. (a free.oating aquatic macrophyte) together with exogenous supplements of amino-and organic acids. Chemosphere, 2005,61:1720-1733
    187. Parameswaran A, Majeti N V P. Modulation of cadmium-induced oxidative stress in Ceratophyllum demersum by zinc involves ascorbate-glutathione cycle and glutathione metabolism [J]. Plant Physiology and Biochemistry, 2005,43:107-116
    188. Parameswaran Aravind, Majeti Narasimha Vara Prasad. Modulation of cadmium-induced oxidative stress in Ceratophyllum demersum by zinc involves ascorbate-glutathione cycle and glutathione metabolism. Plant Physiology and Biochemistry, 2005, (43): 107-116
    189. Parameswaran Aravind, Majeti NarasimhaVara Prasad. Modulation of cadmium-induced oxidative stress in Ceratophyllum demersum by zinc involves ascorbate-glutathione cycle and glutathione metabolism. Plant Physiology and Biochemistry, 2005, (43): 107-116.
    190. Pascale Goupil, Yonis Soubere Mahamoud, Jerome Poulain, David Windels, Patrice Crete, Brigitte Huss, Serge Rambour. cDNA-AFLP display for the isolation of differentially expressed genes during chicory root development. J. Plant Physiol, 2003,160:03-309
    191. Pellinen RI, Korhonen MS, Tauriainen AA, Palva ET, Kangasjarvi J. Hydrogen peroxide activates cell death and defense gene expression in birch. Plant Physiology. 2002,130(2):549-560
    192. Perata P, Alpi A. Plant responses to anaerobiosis. Plant Science. 1993, 93:1-17
    193. Pierre Vollenweider, Claudia Cosio, Madeleine S. Gunthardt-Goerg, Catherine Keller. Localization and effects of cadmium in leaves of a cadmium-tolerant willow (Salix viminalis L.) Part II Microlocalization and cellular effects of cadmium. Environmental and Experimental Botany, 2006, (58): 25-40
    194. Pollard AJ, Powell KD, Harper FA, Smith JAC. The genetic basis of metal hyperaccumulation in plants. Crit. Rev. Plant Sci, 2000, (21)6: 539-566.
    195. Postepy Biochem. 2006, 52(1): 101-7. Molecular aspects of plant responses to oxygen deprivation stress.
    196. Prasad MNV, Freitas H. Removal of toxic metals from solution by leaf, stem and root phytomass of Quercus ilex L. (holly oak). Environmental Pollution. 2000,110:277-283
    197. programmed cell death. The Journal of Cell Biology. 2005,168(1): 17-20
    198. Quintela-Sabaris C, Kidd PS, Fraga MI. Identification of metalliferous ecotypes of Cistus ladanifer L. using RAPD markers. Z Naturforsch [C]. 2005, (60)3:229-35
    199. Ramassamy C, Averill D, Beffert U, Bastianetto S, Theroux L, Lussier-Cacan S, Cohn JS, Christen Y, Davignon J, Quirion R, Poirier J. Oxidative damage and protection by antioxidants in the frontal cortex of Alzheimer's disease is related to the apolipoprotein E genotype, free radical biology and medicine. 1999,27(5-6):544-553.
    200. Ranieri A, Castagna A, Scebba F, Careri M, Zagnoni I, Predieri G, Pagliari M, di Toppi LS. Oxidative stress and phytochelatin characterisation in bread wheat exposed to cadmium excess . Plant Physiol Biochem. 2005, (43)1: 45-54.
    201. Rauser WE. Phytochelatins and related peptides structure, biosynthesis and function. Plant Physiology. 1995,109:1141-1149.
    202. Reddy MM, Rajasekharan R. Role of threonine residues in the regulation of manganese-dependent arabidopsis serine/threonine/tyrosine protein kinase activity. Arch Biochemistry Biophysiology. 2006,455:99-109
    203. Riikka I. Pellinen, Minna-Sisko Korhonen, Airi A. Tauriainen, E. Tapio Palva, and Jaakko Kangasjarvi. Hydrogen Peroxide Activates Cell Death and DefenseGene Expression in Birch. Plant Physiology, 2002, Vol(130): 549-560
    204. Rodriguez-Serrano M, Romero-Puertas M C, Zabalza A. Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant Cell and Environment, 2006, 29:1532-1544
    205. Rodriguez-Serrano M, Romero-Puertas MC, Zabalza A, Corpas FJ, Gomez M, Del Rio LA, Sandalio LM. Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant Cell and Environment. 2006, 29(8):1532-1544.
    206. Ron Mittler. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 2002, Vol(7)9: 405-410
    207. Ronald J.F.J. Oomen, Marjan J.E.M. Bergervoet, ChristianW.B. Bachem, Richard G.F.Visser, ean-PaulVincken. Exploring the use of cDNA-AFLP with leaf protoplasts as a tool to study rimary cell wall biosynthesis in potato. Plant Physiology and Biochemistry, 2003,1:965-71
    208. Rong Z, Yin H. A method for genotoxicity detection using random amplified polymorphism DNA with Danio rerio. Ecotoxicol Environ Saf. 2004, (58)1:96-103
    209. Roosens NH, Leplae R, Bernard C, Verbruggen N. Variations in plant metallothioneins: the heavy metal hyperaccumulator Thlaspi caerulescens as a study case. Planta. 2005,222(4):716-729
    210. Rossens N, Verbruggen N, Meerts P, Ximenez Embun P, Smith JAC. Natural variation in cadmium tolerance and its relationship to metal hyperaccumulation for seven populations of Thlaspi caerulescens from western Europe. Plant Cell Environ., 2003,26:1657-1672.
    211. Rugh CL, Wilde HD, Stack NM, Deborah MT, Summers AO and Meagher RB. Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene, proceedings of the national academy of sciences of the united states of America (PNAS), 1996,93(8):3182-3187
    212. S. Mishra, S. Srivastava, R.D. Tripathi, R. Govindarajan, S.V. Kuriakose, M.N.V. Prasad. Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L. Plant Physiology and Biochemistry, 2006,44:25-37
    213. S. Mishra, S. Srivastava, R.D. Tripathi, R. Govindarajan, S.V. Kuriakose, M.N.V. Prasad. Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L. Plant Physiology and Biochemistry, 2006, 44:25-37
    214. Sachs MM, Subbaiah CC, Saab IN. An aerobic gene expression and flooding tolerance in maize. Journal of Experimental Botany. 1996,47:1-15
    215. Salt D E, Blaylock M, Kumar N P B A,et al. Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants [J]. Biotechnology 1995,13:468-474.
    216. Salt DE, Prince RC, Backer AJM, Raskin I and Pickering IJ . Zinc ligands in the metal hyperaccumulator Thlaspi caerulescens as determined using X-ray absorption spectroscopy, environmental engineering science, 1999, 33:713-717.
    217. Salt DE, Prince RC, Pickering IJ, et al. Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiology. 1995,109:1427-1433
    218. Sandalio LM, Dalurzo HC, Gomez M, Romero-Puertas MC, del Rio LA. Cadmium-induced changes in the growth and oxidative metabolism of pea plants. Journal of Experimental Botany, 2001,52(364):2115-2126.
    219. Sanita di Toppi L, Gabbrielli R. Response to cadmium in higher plants. Environmental Experimental Botany. 1999,41:105-130
    220. Seon-Hee Oh, Sung-Chul Lim. A rapid and transient ROS generation by cadmium triggers apoptosis via caspase-dependent pathway in HepG2 cells and this is inhibited through N-acetylcysteine-mediated catalase upregulation. Toxicology and Applied Pharmacology, 2006, (212): 212—223
    221. Shu WS, Ye ZH, Lan CY, Zhang ZQ, Wong MH. Lead, zinc and copper accumulation and tolerance in populations of Paspalum distichum and Cynodon dactylon. Environ. Pollut. 2002, 120(2): 445-53.
    222. Sinha S, Gupta M, Chandra P. Oxidative stress induced by iron in Hydrilla verticillata (l.f.) Royle: response of antioxidants, ecotoxicology and environmental safety. 1997,38(3):286-291
    223. Song WY, Martinoia E, Lee J, Kim D, Kim DY, Vogt E, Shim D, Choi KS, Hwang I and Lee Y. A novel family of cys-rich membrane proteins mediates cadmium resistance in Arabidopsis. Plant Physiology. 2004,135(2): 1027-1039
    224. Suarez MC, Bemal A, Gutierrez I, Tohme J, Fregene M. Developing expressed sequence tags (Ests) from polymorphic transcript-derived fragments (Tdfs) in cassava (Manihot esculenia Craniz). Genome. 2000,43: 62-67
    225. Sun Q, Ye ZH, Wang XR, et al. Increase of glutathione in mine population of Sedum alfredii: a Zn hyperaccumulator and Pb accumulator [J]. Phytochemistry, 2005, (66)21:2549-56.
    226. T. Van Huysen, N. Terry, and E. A. H. Pilon-smits. Exploring the Selenium Phytoremediation Potential of Transgenic Mustard Overexpressing ATP Sulfurylase or Cystathionine—Synthase. International Journal of Phytoremediation. 2004, (6 )2:111-118
    227. Takafumi K, Sachiko M, Yusuke T, et al. Enhancing the tolerance of zebrafish (Danio rerio) to heavy metal toxicity by the expression of plant phytochelatin synthase [J]. Journal of Biotechnology, 2006, 122: 316-325.
    228. Talke IN, Hanikenne M, Kramer U. Zinc-dependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri. Plant Physiology. 2006,142(1):148-167
    229. Talke IN, Hanikenne M, Kramer U. Zinc-dependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri. Plant Physiology. 2006, 142:148-167
    230. Taylor SI, Macnair MR. Within and between population variation for zinc and nickel accumulation in two species of Thalspi (Brassicaceae). New Phytol., 2006,169: 505-514.
    231. Tolerance in Thlaspi Nickel Hyperaccumulators [J]. The Plant Cell, 2004,16: 2176-2191.
    232. Ueda A, Yamamoto-Yamane Y, Takabe T. Salt stress enhances proline utilization in the apical region of barley roots. Biochemistry Biophysiology Research Communication. 2007,355:61-66
    233. Vaillant N, Monnet F, Hitmi A, Sallanon H, Coudret A. Comparative study of responses in four Datura species to a zinc stress. Chemosphere. 2005, 59:1005-1013
    234. van der Zaal BJ, Neuteboom LW, Pinas JE, Chardonnens AN, Schat H, Verkleij JA, Hooykaas PJ. Overexpression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation. Plant Physiology. 1999, 119(3): 1047-1055
    235. Vanderbiezen E (?) Juwana H, Parker JE, Jones JD. cDNA-AFLP display for the isolation of Peronospora-Parasitica genesexpressed during infection in Arabid (?) rsis thaliana. Molecular Plant Microbe Interactions. 2000,13(8): 895-900
    236. Vazquez MD, Poschenrieder C, Barcelo J, Baker AJM, Hatton P, Cope GH. Compartmentation of zinc in roots and leaves of the zinc hyperaccumulator Thlaspi caerulescens J & C Presl. Bot Acta 1994, (107): 243-50.
    237. Weber M, Harada E, Vess C, Roepenack-Lahaye E, Clemens S. Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors. Plant Journal. 2004, 37:269-281
    238. Wendy E. Dutrant and Owen Rowland. cDNA-AFLP Reveals a Striking Overlap in Race-Specific Resistance and Wound Response Gene Expression Profiles. The Plant Cell, 2000,12:963-977
    239. Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV 1990 DNA polymorphisms amplified by arbitay primers are useful as genetic markers. Nucleic Acids Res., 18: 6531-6535.
    240. Williams LE, Nelson SJ, Hall IL. Characterization of solute/proton cotransport in plasma membrane vesicles from Ricinus cotyledons, and a comparison with other tissues. Planta. 1992, 186:541-550
    241. Wyse RE, Komor E. 1984. Mechanism of amino acid uptake by sugarcane suspension cells. Plant Physiology. 1984,76:865-870
    242. Xiaoe Yang, Ying Feng, Zhenli He, Peter J. Stoffella. Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. Journal of Trace Elements in Medicine and Biology, 2005,18:339-353
    243. Xiong YH, Yang XE, Ye ZQ, He ZL. Characteristics of cadmium uptake and accumulation by two contrasting ecotypes of Sedum alfredii Hance. J. Environ. Sci. Health A., 2004. 39(11): 2925-2940.
    244. Xiong YH, Yang XE, Ye ZQ, He ZL. Characteristics of cadmium uptake and accumulation by two contrasting ecotypes of Sedum alfredii Hance. J Environ Sci Health. 2004,39:2925-40.
    245. Yang X.E., Li T.Q., Long X.X., Xiong Y.H., He Z.L. and Stoffella P.J. Dynamics of zinc uptake and accumulation in the hyperaccumulating and non-hyperaccumulating ecotypes of Sedum alfredii Hance. Plant and Soil, 2006b, (284): 109-119
    246. Yang X.E., Li T.Q., Yang J.C., He Z.L., Lu L.L. and Meng F.H., Zinc Compartmentation in Root, Transport Into Xylem, and Absorption Into Leaf Cells in The Hyperaccumulating Species of Sedum Alfredii Hance. Planta, 2006a, (224): 185-195.
    247. Yang XE, Feng Y, Li TQ, He ZL Molecular mechanism of heavy metal hyperaccumulation and phytoremediation.. J. Trace Ele. Med. Biol., 2005a, 18(4): 339-353.
    248. Yang XE, Li TQ, Yang JC, He ZL, Lu LL, Meng FH. Zinc compartmentation in root, transport into xylem, and absorption into leaf cells in the hyperaccumulating species of Sedum alfredii Hance. Planta, 2005b, 224:185-195.
    249. Yang XE, Long XX, Ni WZ, et al. Sedum alfredii H: a new Zn hyperaccumulating plant first found in China [J]. China Sci Bull, 2002, 47(19): 1634-7.
    250. Yang XE, Long XX, Ni WZ. Zinc tolerance and hyperaccumulation in a new ecotype of Sedum alfredii H. Acta Phytoecol .Sin., 200, (125): 670-677.
    251. Yang XE, Long XX, Ni WZ. Sedum alfredii H.—a new ecotype of Zn-hyperaccumulator plant species native to China. Chinese Sci. Bull., 2002, (47): 1003-1006.
    252. Yang XE, Long XX, Ye HB, He ZL, Calvert DV, Stoffella PJ. Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species {Sedum alfredii H). Plant Soil, 2004,259:181-189.
    253. Yao-Guang Liu And Robert F. Whittier. Thermal Asymmetric Interlaced PCR: Automatable Amplification and Sequencing of Insert End Fragments from PI and YAC Clones for Chromosome Walking.Genomics,1995,25:674-681
    254.Yruela l,Pueyo JJ,Alonso PJ,Picorel R.Photoinhibition of photosystem Ⅱ from higher plants.Effect of copper inhibition.Journal of Biology Chemistry.1996,271:27408-27415
    255.Zhu YL,Pilon-Smits EAH,Tarun AS,Weber SU.Jouanin L and Terry N.Cadmium tolerance and accumulation in Indian mustard is enhanced by over expressing γ-glutamylcysteine synthetase,Plant Physiology.1999,121:1169-1177
    256.陈学峰、熊建华、张义平、华扬、李阳生、朱英国.水稻杂种与亲本间差异表达cDNA片段S600的分离克隆.武汉植物学研究,2005,Vol(23)1:91-95
    257.陈英华、严重玲、李裕红、胡俊、梁洁、薛博.盐胁迫下红海榄脯氨酸与活性氧代谢特征研究.厦门大学学报(自然科学版),2004,vol(43)3:402-405
    258.丁海东、齐乃敏、朱为民、万延慧.镉、锌胁迫对番茄幼苗生长及其脯氨酸与谷胱甘肽含量的影响.中国农业生态学报,2006,vol(14)2:
    259.董发才、苗琛、荆艳彩、安国勇、杨惠娟、宋纯鹏.小麦根系过氧化氢积累与耐盐性的关系.武汉植物学研究,2002,vol(20)4:293-298
    260.付凤玲、李晚忱.用cDNA-AFLP技术构建基因组转录图谱.分子植物育种,2003,vol(1)4:523-529
    261.郭军、屈冬玉、王晓武、金黎平、谢开云.马铃薯晚疫病菌小种特异无毒基因候选表达序列的cDNA-AFLP鉴定.园艺学报,2005,vol(32)1:42-48
    262.郭丽琼、林俊芳、杨丽卿、刘瑞瑞.单酶切cDNA-AFLP改良法分离草菇冷诱导基因.菌物学报,2004,Vol(23)2:241-247
    263.韩斌、彭建营.cDNA-AFLP技术及其在植物基因表达研究中的应用.西北植物学报,2006Vol(26)8:175.-1758
    264.侯磊、肖月华、李先碧、王文锋、罗小英、裴炎.棉花洞A雄性不育系花药发育的mRNA差别显示.遗传学报,2002,vol(29)4:359-363
    265.贾志蓉、李丹、吕应堂.拟南芥AtDAD1超量表达植株对H2O2抗性的研究.武汉植物学研究,2004,vol(22)5:373-379
    266.姜立杰、张开春、张晓明.cDNA-AFLP技术及其在基因表达研究中的应用.中国生物工程杂志,2003,Vol(23)12:82-86
    267.姜自锋、林乃铨、徐梅.RAPD技术及其应用中的一些问题.福建农林大学学报(自然科学版). 2002,vol(31)3:356-340
    268.康国章、孙谷畴、王正询.水杨酸在植物抗环境胁迫中的作用.广西植物,2004,vol(24)2:178-183
    269.李冰、周人纲.钙-钙调素信号系统参与热激信号转导的研究.西北植物学报,2004,vol(24)7:1322-1328
    270.李红、聂泽民.甜菜碱的研究进展.湖南农业科学,2005,2:33-34
    271.李凌、宋文芹、毛英伟、李秀兰、陈瑞阳、孙德岭.用cDNA-AFLP银染技术研究与花椰菜花色相关的基因.南开大学学报(自然科学版),2000,Vol(33)4:33-36
    272.李孟军、郭秀林、关军锋、崔四平、马春红、李广敏.渗透胁迫下外源ABA对小麦幼苗根和叶中ABA及CaM含量的影响.植物生理学通讯,2002,vol(38)1:20-21
    273.刘传平、郑爱珍、田娜、沈振国.外源GSH对青菜和大白菜镉毒害的缓解作用.南京农业大学学报,2004,vol(27)4:26--30
    274.刘美青、江荣风、赵方杰.Zn对Zn超积累植物遏蓝菜(Thlaspi caerulescens L.)超氧化物歧化酶(SOD)活性的影响.农业环境科学学报,2006,25(增刊):465-470
    275.刘迎彩、闫洪楚、董建梅、周志钦.不同RAPD类型的小金海棠的耐盐性研究.西南农业大学学报,2003,vol(25)1:18-20
    276.娄平、王晓武、Guusje.Bonnema、方智远.利用cDNA-AFLP技术鉴定甘蓝显性核不育基因相关表达序列.园艺学报,2003,Vol(30)6:668-672
    277.卢钢、曹家树.cDNA-AFLP技术在植物表达分析上的应用.植物学通报,2002,Vol(19)1:103-108
    278.马建华、郑海雷、张春光、李筱泉、林鹏.盐度对秋茄和桐花树幼苗蛋白质、H2O2及脂质过氧化作用的影响.厦门大学学报(自然科学版),2002,vol(41)3:354358
    279.秘彩莉、张学勇、温小杰、刘旭.利用cDNA-AFLP技术获得小麦耐盐性相关基因TaVHA-C.中国农业科学,2006,vol(39)9:1736-1742
    280.彭志红、彭克勤、胡家金、萧浪涛.渗透胁迫下植物脯氨酸积累的研究进展.中国农学通报,2002,vol(18):80-83
    281.齐永青、肖凯、李雁鸣.作物在渗透胁迫下脯氨酸积累的研究进展.河北农业大学学报,2003,vol(26)z1:24-27
    282.史胜青、张守攻、李春秀、汪阳东、齐力旺.运用cDNA-AFLP技术初步鉴定两种方法合成的cDNA的指纹图谱.分子植物育种,2006,vol(4)1:79-82
    293.孙琴、王晓蓉、丁士明.超积累植物吸收重金属的根际效应研究进展.生态学杂志,2005,vol(24)1:30-36
    284.孙瑞莲、周启星、王新.镉超积累植物龙葵叶片中镉的积累与有机酸含量的关系.环境科学,2006,vol(27)4:765-769
    285.孙瑞莲、周启星.高等植物重金属耐性与超积累特性及其分子机理研究.植物生态学报,2005,vol(29)3:497-507
    286.孙涌栋、张兴国、杜小兵、苏承刚、毕喜红。黄瓜扩张蛋白基因CsEXP10的克隆与表达。植物生理与分子生物学学报,2006,vol(32)3:12-16
    287.田曾元、戴景瑞.利用cDNA-AFLP技术分析玉米灌浆期功能叶基因差异表达与杂种优势.科学通报,2002,Vol(47)18:1412-1416
    288.田曾元、戴景瑞.玉米杂种与亲本穗分化期功能叶基因差异表达与杂种优势.遗传学报,2003,Vol(30)2:154-162
    289.王锋.cDNA-AFLP技术原理及其在研究植物基因差异表达中的应用.生物学通报,2005,Vol(40)7:59-60
    290.王凤德、蔺娜、刘家尧.甜菜碱醛脱氢酶在抗逆境植物种质资源鉴定中的作用.国土与自然资源研究,2006,vol2:80-81
    291.王永勤、曹家树、符庆功、余小林、叶纨芝、向珣.利用cDNA-AFLP技术分析白菜核雄性不育两用系的表达差异.中国农业科学,2003,Vol(36)5:557-560
    292.王振英.盐胁迫下耐盐与盐敏感水稻的RAPD和POD同工酶检测.应用与环境生物学报,2000,vol(6)2:106-111
    293.魏树和、周启星、王新、张凯松、郭观林.一种新发现的镉超积累植物龙葵(Solanum nigrum L).科学通报,2004,vol(49)12:2568-2573
    294.文传浩、段昌群、常学秀、王宏镔、王焕校.重金属污染下曼陀罗种群分化的RAPD分析.生态学报,2001,vol(21)8:1239-1245
    295.吴才君、曹家树、董德坤.芸薹种蔬菜杂交种及其亲本莲座期基因差异表达与杂种优势的关系.中国农业科学,2004,Vol(37)1:1654-1659
    296.吴建勇、沈俊儒、刘平武、杨光圣.应用cDNA-AFLP研究甘蓝型油菜显性细胞核雄性不育差异表达基因.中国农业科学,vol(39)9:1921-1926
    297.吴敏生、高志环、戴景瑞.利用cDNA—AFLP技术研究玉米基因的差异表达.作物学报,2001,Vol(27)3:339-342
    298.肖月华、罗明、韦宇拓、侯磊、裴炎.棉花纤维起始期基因表达的cDNA-AFLP分析.农业生物技术学报,2003,Vol(11)1:20-24
    299.谢荣、何志水、刘芳华、邹华松、朱家璧、俞冠翘.应用cDNA-AFLP技术鉴定紫花苜蓿(Medicago sativa)根瘤发育相关基因.科学通报,2006 Vol(51)15:1974-1801
    300.许祥明、叶和春、李国凤.脯氨酸代谢与植物抗渗透胁迫的研究进展.植物学通报,2000,vol(17)6:536-542
    301.薛生国、陈英旭、林琦、徐圣友、王远鹏.中国首次发现的锰超积累植物-商陆.生态学报,2003,vol(23)5:935-937
    302.薛生国、陈英旭、骆永明、Roger D Reeves、林琦.商陆(Phytolacca acinosa Roxb.)的锰耐性和超积累.土壤学报,2004,vol(41)6:889-895
    303.杨居荣,黄翌。植物对重金属的耐性机理。生态学杂志。1994,vol(15)6:20-26
    304.杨玲、郑炳松、毛传澡、易可可、张卫萍、吴运荣、吴平、陶勤南.利用cDNA-AFLP技术分析旱作促进水稻种子根伸长过程中的基因表达.植物生理与分子生物学学报,2003,vol(29)1:65-70
    305.杨强、林琦、王兆炜、王远鹏.重金属污染土壤H2O2预处理的植物修复技术研究.浙江大学学报(农业与生命科学版),2005,vol(31)3:315-320
    306.杨肖娥、龙新宪、倪吾钟、倪士峰.古老铅锌矿山生态型东南景天对锌耐性及超积累特性的研究.植物生态学报,2001,vol(25)6:665-672
    307.杨肖娥、龙新宪、倪吾钟.超积累植物吸收重金属的生理及分子机制.植物营养与肥料学报,2002,vol(8)1:815
    308.张波、张怀刚.甜菜碱提高植物抗盐性的作用机理及其遗传工程研究进展.西北植物学报,2005,vol(25)9:1888-1893
    309.张君诚、孟玉环、宋育红、刘思衡、庄伟建.植物Ca~(2+)-CAM信号系统及其调控研究进展.重庆师范大学学报(自然科学版),2005,vol(22)4:49-52
    310.张立新、李生秀.甜菜碱与植物抗旱/盐性研究进展.西北植物学报,2004,vol(24)9:1765-1771
    311.张满效、陈拓、肖雯、周吉俊、贾恢先.不同盐碱环境中宁夏枸杞叶生理特征和RAPD分析.中国沙漠,2005,vol(25)3:3913-96
    312.张骁、董发才、宋纯鹏、高俊凤.植物细胞的氧化猝发和H2O2的信号转导.植物生理学通讯,2000,vol(36)4:376-383
    313.赵勇、翁跃进、杨春丽.盐处理下植物组织中甜菜碱和脯氨酸的HPLC-ESI-MS分析.分析测 试学报,2004,vol(23)6:83-86
    314.周小朋、韩雅莉、何薇薇.RAPD技术在疣荔枝螺性畸变机理方面研究中的应用.海洋环境科学,2004,vol(23)4:31-34
    315.朱艳霞,魏幼璋,叶正钱,杨肖娥。有机酸在超积累植物重金属解毒机制中的作用。西北农林科技大学学报(自然科学版)。2006,vol(34)7:121-126

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700