用户名: 密码: 验证码:
西藏甲玛铜多金属矿床成因矿物学与找矿矿物学初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
西藏甲玛铜多金属矿床位于冈底斯-火山岩浆弧东段,是冈底斯成矿带的重要组成部分。甲玛矿床为最具代表性的产于后碰撞伸展环境中的超大型斑岩-矽卡岩-浅成低温热液铜多金属矿床。矿床主要出露下白垩统林布宗组沙板岩和上侏罗统多底沟组灰岩,矿化发生于岩体与上侏罗统多底沟组接触带附近,以及和岩浆热液导通的多底沟组和林布宗组界线的层间破碎带。矿床中酸性斑岩的类型主要有花岗斑岩、花岗闪长斑岩、二长花岗斑岩、(石英)闪长玢岩。
     本文通过对甲玛铜多金属矿床矿物学特征的精细解剖,厘定了岩浆演化过程,查明了岩浆的温压变化,提出了岩浆混合作用的地球动力学背景,建立了岩浆混合模式;发现了斑岩岩浆-热液过渡阶段的证据,约束了初始出溶流体的性质及出溶时的物理化学条件;详细识别了热液演化过程中的地质记录,再塑了成矿流体演化过程;讨论了成矿物质来源、金属分离作用以及成矿物质沉淀的机制。
     研究表明,阴极发光是研究石英显微结构的有效技术方法。根据石英在阴极射线下所显示的生长结构差异,矿区斑岩体划分出3个世代,6种类型的石英斑晶。石英斑晶指示了两种主要的“不平衡”反应结构:石英斑晶重熔表面和石英钾长石外壳。石英斑晶显微生长结构表明原始岩浆经历过两次铁镁质岩浆混合作用。根据石英斑晶中Ti含量变化,得出在两次溶蚀前后,石英结晶温度分别增加了约110℃和80℃。此外斜长石斑晶反环带及其Ba、Sr、Fe等元素的浓度梯度、具镶边的眼球状石英斑晶、钾长石巨晶环斑结构、黑云母筛状结构等都有效的证明了铁镁质岩浆与长英质岩浆混合作用的存在。根据这些研究结果,初步构建了矿区岩浆混合作用模型并推测了岩浆混合过程。16Ma左右,岩石圈地幔拆沉,软流圈物质上涌导致正常下地壳部分熔融,产生含Mo的钾质岩浆。原始岩浆房内形成第I世代自形的高温石英晶体核。软流圈上涌,诱发含大量地幔组分的新生镁铁质下地壳部分熔融,产生含Cu、富水、高fO_2的埃达克质岩浆熔体,并与含Mo的长英质岩浆发生了第一次岩浆混合作用。在此过程中,早期石英核部溶蚀,形成高Ti的溶蚀表面。这些高fO_2的混合岩浆在浅部地壳发育大型岩浆房,并排泄出含Cu、Mo岩浆流体。在岩浆房中,石英晶体形成了均匀的生长环带和第II世代的石英斑晶核。地幔减薄和岩石圈拆沉直接引起地壳强烈伸展,形成垂直碰撞带的正断层系统和裂谷,使岩浆房内部压力急剧减小,岩浆快速侵位。由于岩浆房的突然腾空,诱发地幔物质上涌,造成了第二次基性岩浆的混入,造成第I世代和第II世代的石英斑晶边缘溶蚀。正是由于两次基性岩浆的加入,为成矿提供了大量的Cu、S。它们是形成甲玛超大型铜多金属矿床不可或缺的因素。
     矿床斑岩体矿物显微结构保存了许多岩浆-热液过渡阶段的信息,指示了成矿岩浆曾分离出大量岩浆流体。这些信息包括:石英斑晶具有强烈的溶蚀结构,蠕虫状石英斑晶中溶蚀湾切断石英第一阶段的生长环带;显微空腔将豆荚状或糖状结构石英与破布状黑云母(较少磷灰石,磁铁矿),长石等相连接;斑岩中伴生萤石的存在,黑云母和角闪石中的高含量F,与矿化有关的岩浆含水约8wt.%,含氟1 wt.%。;斑岩体中流体包裹体与富挥发份熔融包裹体共存。岩浆挥发份作为主要的流体相被挤出岩浆并以气泡的形式聚集在岩浆房外壳顶部,并使已固结的矿物发生自交代。随着易挥发组分的增多,使气体压力大于束缚压力,导致岩浆外壳和邻近围岩突然破裂。岩浆流体沿着围岩裂隙流出并以热液的形式交代围岩。同时,由于减压造成岩浆热液的二次沸腾,使成矿元素沉淀。
     通过对甲玛岩体样品中脉体特征,石英显微结构以及微量元素含量的研究,划分出3种大类,5个期次的岩浆-热液流体。其中JMi无矿石英脉为岩浆-热液过渡阶段形成的P脉。金属硫化物主要沉淀于JMii和JMiv阶段。成矿流体生命周期长达5.2Ma,开始于岩浆房中的岩浆-热液流体的出溶,一直演化至成矿作用结束。含矿流体具有多期多阶段性,贯穿于整个岩浆-热液成矿系统。流体温度范围跨度极大,从823℃到130℃,即从斑岩型高温岩浆流体演化为浅成低温热液型流体。脉体石英中Al,Fe,K含量的变化指示了流体pH值的变化以及与钾化有关的蚀变特征。
     综上所述,甲玛矿床成矿流体中的金属元素和S来源于岩浆混合作用的幔源铁镁质岩浆;金属元素的分离得益于岩浆-热液过渡阶段富F流体的出溶。这一过程反复发生于岩浆房内部,并形成大量含矿流体。含矿流体中金属元素沉淀得益于岩浆流体的二次沸腾和酸性流体的中和作用。
Jiama polymetallic copper deposit locates in east of Gangdese volcano - magmatic arc,which is an important component of the Gangdise metallogenic belt. Jiama deposit is the most presentative super-mall porphyry-skarn-epithermal polymetallic copper deposit, which is relating to post-collision.The stratums of deposit are mainly Limbuzong group of the lower Cretaceous and duodigou group of the upper Jurassic. The Ore body is located between the two stratums as like-layered. The main types of medium-acid porphyry in Jiama deposit are granite porphyry, granodiorite porphyry, monzogranite porphyry and (quartz) diorite porphyry.
     Through the intensive search for the minerals of Jiama polymetallic copper deposit, This paper has identified the magmatic evolution and the P-T alteration of magmatic, and proved the earth dynamics of the magma mixing, established.the process of magma mixing.We also have found the evidences of magmatic to hydrothermal transition, controlled over the physics and chemistry conditions of the exsolution fluid. Forthemove, we have dentified the geological records of hydrothermal evolutionary modification, established the evolutionary modification of ore-forming fluid. At last, we have discussed the processes of the origin, transport and precipitation of ore-forming matter.
     The results show that,Cathodoluminescence is an effective technical method on studying microstructure of quartz. According to the difference of growth patterns in quartz CL, there are three generations and six types of quartz phenocrysts which form the Jiama Porphyry Copper Deposit in Tibet . The microscropic structure of quartz phenocrysts indicate that primary magma have gone through two times of magma mixing events. After two resorption,the recrystallization temperature of quartz phenocrysts were raised by 110℃and 80℃respectively, according to the content changing of Ti in zoned quartz. In addition, element concentration steps in feldspar phenocrysts ( Ba, Sr, Fe), plagioclase-mantled K-feldspars etc. indicate mixing of silicic magma with a more mafic magma for several magmatic phases of the porphyry in the Jiama Cu-polymetalic deposits. Based on the result, the process of magma mixing has been established. At 16Ma, as a result of asthenosphere up swelling and lithosphere dismantling and subsiding, lower crust remelted and formed potassic magma containing Mo, forming primary magmatic chamber in where the first generation quartz crystals. During the post-collisional crustal extension period , shallow emplacement and fluid exsolution of the newly-born adakitic magma , resulting from the lower crust and rich in metals , water and high fO_2 , and mixed with primary magma which contain Mo , formed the shallow crustal magma chamber. Owing to the first mixing with mafic magma, resorption surfaces appeared around the core of quartz phenocrysts. And then, the quartz has experienced stable growth conditions, forming a steady growth zone with low CL contrasts. Gangdise orogen belts was in a extensional condition. At these condition, amount of normal faults have be made. The pressure of magma reservoir has reduced rapidiy, magmatic reemplacemented. Owning to the suddenly empty of magma chamber, the second magma mixing occurred.
     Information about the magmatic to hydrothermal transition is preserved in porphyry of Jiama copper-polymetallic ore deposit. Include: 1) quartz phenocrysts with strong resorption textures such as vermicular zones of igneous groundmass cutting primary quartz cathodoluminescence banding. 2) Pods of saccharoidal quartz are connected by graphic quartz–alkali feldspar intergrowths and ragged biotite. 3) Fluorite as an accessory mineral in igneous rocks, high F in hydroxyl sites in igneous biotite and amphibole. 4) Fluid inclusions and silicate melt inclusions are present in the porphyry of Jiama. We present detailed petrographic observations of primary igneous features, combined with silicate-melt and fluid inclusion studies, and found physical models of exsolution. Metallic elements are preferentially partitioned into the associated magmatic volatile phase.As the volatile concentration increase, the vapor pressure leads to sudden failure of the carapace and adjacent wallrock– this occurs once the vapor pressure is greater than the confining pressure. Magmatic fluids escape as cracking of the wallrock continues; these fluids then hydrothermally alter the rock they pass through. At the same time, caused by the rapid decreased in pressure, hypersaline fluid was boiling again, and it have caused Cu-Mo sulfides to deposit from the fluid.
     The combination of scanning electron microscope–cathodoluminescence (CL), and LA-ICP-MS microanalysis of Al, Ti, K and Fe in vein quartz has yielded results permitting a greater understanding of the complex mineralisation of the JiaMa porphyry-style deposits, These data demonstrate the relationship between quartz precipitation, dissolution and ore deposition as the mineralising fluid chemistry changed through time. Five major quartz generations are identified. Using the Ti-in-quartz geothermometer and fluid inclusion analysis, crystallisation temperatures for JMi to JMv is between 823°C and 130°C. The CL and trace element signatures of the JMi to JMv stages of the porphyries show similar features to those observed in porphyry-style deposits from other regions. This suggests that a common sequence of quartz crystallisation occurs during the formation of early veins in many porphyry copper systems.
引文
[1]唐菊兴,王登红,汪雄武等.西藏甲玛铜多金属矿矿床地质特征和及其矿床模型[J].地球学报, 2010,31(4):1-12.
    [2]侯增谦,曲晓明,黄卫等.冈底斯斑岩铜矿成矿带有望成为西藏第二条“玉龙”铜矿带[J].中国地质,2001,25(6):27-30.
    [3]侯增谦,高永丰,孟样金,曲晓明等.西藏冈底斯中新世斑岩铜矿带:埃达克质斑岩成因与构造控制[J].岩石学报,2004,20:239-248.
    [4]侯增谦,莫宣学,杨志明等.青藏高原碰撞造山带成矿作用:构造背景、时空分布和主要类型[J].中国地质, 2006a,33:348-359.
    [5]曲晓明,侯增谦,国连杰,徐文艺.2004.冈底斯铜矿带埃达克质含矿斑岩的源区组成与地壳混染:Nd、sr、Pb、O同位素约束.地质学报,78:814-821.
    [6]莫宣学,赵志丹,邓晋福等.印度一亚洲大陆主碰撞过程与火山作用响应[J].地学前缘, 2003,10:135-148.
    [7]李光明,芮宗瑶,王高明等.西藏冈底斯成矿带甲马和知不拉铜多金属矿床的Re-Os同位素年龄及其意义[J].矿床地质,2005,24(5):482-487.
    [8]潘桂棠,王立全,朱弟成.青藏高原区域地质调查中几个重大科学问题的思考[J].地质通报,2004,23:12-19.
    [9]曲晓明,江军华,辛洪波等.西藏冈底斯造山带几乎同时形成的两套埃达克岩为什么一套含矿一套不含矿? [J].矿床地质,2010,29(3):382-390.
    [10]丙宗瑶,侯增谦,李光明等.冈底斯斑岩铜矿成矿模式[J].地质论评,2006,52:459-66.
    [11]丙宗瑶,曲晓明,侯增谦等.冈底斯斑岩铜矿成矿时代及青藏高原隆升[J].矿床地质,2003,21:217-225.
    [12]杨志明,侯增谦,夏代祥等.西藏驱龙铜矿西部斑岩与成矿关系的厘定:对矿床未来勘探方向的重要启示[J].矿床地质,2008,27:28-36.
    [13]杨志明,谢玉玲,李光明等.西藏冈底斯斑岩铜矿带驱龙铜矿成矿流体特征及其演化[J].地质与勘探,2005a,41:21-26.
    [14]秦志鹏.西藏甲玛铜多金属矿床似埃达克岩的成岩成矿作用(硕士论文)[D].成都:成都理工大学,2010.
    [15]张德会,张文淮,许国建.岩浆热液出溶和演化对斑岩成矿系统金属成矿的制约[J].地学前缘, 2001,8(3):194-200.
    [16] Andersson UB, Eklund O. Cellular plagioclase intergrowths as a result of crystal-magma mixing in the Proterozoic and rapakivi batholith, SW Finland[J]. Contributions to Mineralogy and Petrology, 1994, 117: 124– 136.
    [17] Ginibre C, Wfrner, G, Kronz, A. Minor- and trace-elementzoning in plagioclase; implications for magma chamber processes at Parinacota volcano northern Chile [J]. Contributions toMineralogy and Petrology, 2001.143: 300– 315.
    [18] Müller A. Cathodoluminescence and characterization of defect structures in quartz with applications to the study of granitic rocks [D]. G?ttingen: Georg-August-Universit?t zu G?ttingen. 2000.
    [19] Müller A, Kronz A, Briefer K. Trace elements and growth patterns in quartz: a fingerprint of the evolution of the sub volcanic Poodles granite system [J]. Bull Czech Geological Survey, 2002, 77(2):135–145.
    [20] Müller A., RenéM., Behr, H.J. Trace elements and cathodoluminescence of igneous quartz in topaz granites from the Hub Stock [J]. Mineralogy and Petrology. 2003, 79: 167-191.
    [21] Müller A, Breiter K, Seltmann R. Quartz and feldspar zoning in the Eastern Erzgebirge pluton (Germany, Czech Republic): evidence of multiple magma mixing [J]. Lithos, 2005, 80:201-227.
    [22] Müller A, Thomas R., Wiedenbeck M. Water content of granitic melts from Cornwall and Erzgebirge: A Raman spectroscopy study of melt inclusions [J]. European Journal of Mineralogy, 2006, 18: 429-440.
    [23] Müller A, Behr H J, Kerkhof AM. The evolution of late-Hercynian granites and royalties documented by quartz– a review [J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2009, 100: 35-49.
    [24]郑文宝,陈毓川,宋鑫等.西藏甲玛铜多金属矿元素分布规律及地质意义[J].矿床地质, 2011,28(2):35-46.
    [25] Smith JV, Stenstrom R C. Electron-excited luminescenceas a petrologic tool[J].Geology, 1965, 73: 627-635.
    [26] ZinkernagelU. Cathodoluminescence of quartz and itsapplication to sandstone petrology[J].Contributions to Sedimentology, 1978, 8: 1-69.
    [27] Hagni R D. Cathodoluminescence microscopy applied to mineral exploration and beneficiation [J].Applied mineralogy, 1984, 2: 41-66.
    [28] Hagni R D. Industrial applications of cathodolumin-escence microscopy [ J].Process Mineralogy, 1987(Ⅳ): 37-52.
    [29] Walker. Mineralogical applications of luminescencetechnique [J].Chemical Bonding and Spectroscopy in MineralChemistry, 1985, 5(3): 103-140.
    [30] Remond G, Cesbron F, Chapoulie R. Cathodolumin-escence applied to the micro characterization ofmineral materials: A present status in expermi entation and interpretation[J].ScanningMicros,1992,6(1):23-69.
    [31] PagelM, Barbin V, Blanc P, OhnenstetterD. Cath-odoluminescence in Geosciences [M]. New York: Springer, 2000: 514.
    [32] Boggs S J R, Krinsley D. Application of cathodolu-minescence mi aging to study of sedmientary rocks[M].London:CambridgeUniversity,2006:165.
    [33] Wark DA, Hildreth W, Spear FS, Cherniak DJ,Watson EB. Pre-eruption recharge of the Bishop Magma system [J].Geology, 2007(35): 235-238.
    [34] W iebe R A, Wark D A, Hawkins D P. Insights from quartz cathodolumine scence zoning into crystallization of the Vinalhaven granite, coastal Maine [ J].Contributions to Mineralogy and Petrology, 2007(154): 439-453.Mineralogy andPetrology,2002,143:510-524.
    [35] Rusk B, Reed M, Dilles J, Kent A. Intensity of quartz cathodoluminescence and trace element content of quartz from the porphyry copper deposit in Butte [J].AmericanMineralogist, 2006, 91: 1300-1312.
    [36] Schneider JDas. Lumineszenzaktive Strukturinventar von Quartz h nokristen in rhyolithen [J].G ttingerArbeiten zurGeology andPaleontology,1993,60:1-81.
    [37] L emos R S, KearsleyA T, Pembroke JW, WattGR, Wright P. Complex quartz growth histories in granite revealed by scanning cathodoluminescence techniques[J].Geology, 1997, 134(4): 549-552.
    [38] Watt G R, Wright P, Galloway S, McLean C.Cathodoluminescence and trace element zoning in quartz phenocrysts and xenocrysts [ J ].Geochim Cosmochim, 1997, 61: 4337-4348.
    [39] Bruhn.F, Bruckschen.P, Meije.J, Stephan.A, Richter.DK, Veizer J. Cathodoluminescence investigations and trace-element analysis of quartz by micro-PIXE: implications for digenetic and provenance studies in sandstone [J]. Canadian Mineralogist, 1996, 34: 1223-1232.
    [40] Roger Taylor, Ore Textures [M]. Townsville, Australia: 2009.
    [41] Ginibre C, Wfrner, G, Kronz, A. Minor- and trace-elementzoning in plagioclase; implications for magma chamber processes at Parinacota volcano northern Chile [J]. Contributions to Mineralogy and Petrology, 2001,143: 300– 315.
    [42] Hayden L A, Watson E B, Wark DA. Rutile saturation and TiO2 diffusion in hydrous siliceous melts[J]. EOS(Transactions, American Geophysical Union), Fall meeting supplement, abs. 2005,86: 256-285.
    [43] Hibbard M J..The magma mixing origin for mantled feldspars[J].Contributions to Mineralogy and Petrology, 1981, 76: 158-170.
    [44] Wark DA, Watson EB. TitaniQ: a titanium-in-quartz geothermometer [J]. Contributions to Mineralogy and Petrology, 2006, 152: 743-754.
    [45] Wark DA, Hildreth W, Spear FS, Cherniak DJ, Watson EB. Pre-eruption recharge of the Bishop Magma system [J]. Geology, 2007, (35): 235-238.
    [46] Zhaoshan Chang, L.D. Meinert. The magmatic–hydrothermal transitions—evidence from quartz phenocryst textures and endoskarn abundance in Cu–Zn skarns at the Empire Mine, Idaho, USA [J]. Chemical Geology, 2004, 210: 149– 171.
    [47] Williams, T. J., Candela, P. A. and Piccoli, P. M. The partitioning of copper betweensilicate melts and two-phase aqueous fluids; an experimental investigation at 1 kbar, 800 degrees and 0.5 kbar, 850 degrees [J]. Contributions to Mineralogy and Petrology, (1995) 121: 388-399.
    [48] Kirwin, D. J., Seltmann, R. Unidirectional solidification textures associated with intrusion-related gold deposits[J]. Quadrennial IAGOD Symposium and GEOCONGRESS, 2002, 31:22-26.
    [49] Lickfold,V., Wilson, A., Harris, A. C., Cooke, D. R. The alkalic Au-Cu porphyry deposits of NSW, Australia: Evidence for coexisting melt and hydrothermal fluids in comb quartz layers [J]. Mineral Exploration and Sustainable Development, 2003,8: 315-318.
    [50]唐菊兴,王成辉,屈文俊等.西藏玉龙斑岩铜钼矿辉钼矿铼-锇同位素定年及其成矿学意义[J].岩矿测试, 2009,28(3): 215-218.
    [51]应立娟,唐菊兴,王登红等.西藏甲玛铜多金属矿床矽卡岩中辉钼矿铼-锇同位素定年及其成矿意义[J].岩矿测试,2009,28(3):265-268.
    [52]彭惠娟,汪雄武, Axel Müller,唐菊兴,秦志鹏,侯林,周云.西藏甲玛铜多金属矿区成矿斑岩的岩浆混合作用:石英及长石斑晶新证据[J].矿床地质,2011,30(2),16-35。
    [53]周云.西藏墨竹工卡县甲玛铜多金属矿成矿流体特征及演化[D].成都:成都理工大学,2010.
    [54]张德会,张文淮,许国建.岩浆热液出溶和演化对斑岩成矿系统金属成矿的制约[J].地学前缘, 2001,8(3):194-200.
    [55]侯增谦,潘小菲,杨志明等.初论大陆环境斑岩铜矿[J].现代地质,2007,21:332-351.
    [56]孟祥金,侯增谦,高永丰等.碰撞造山型斑岩铜矿蚀变分带模式—以西藏冈底斯斑岩铜矿带为例.地学前缘,2004,1l(l):201-214.
    [57]陈斌,刘超群,田伟.太行山中生代岩浆作用过程中的壳幔岩浆混合作用:岩石学和地球化学证据[J].地学前缘, 2006,13(2): 141-150.
    [58] Slaby, H.Martin. Mafic and Felsic Magma Interaction in Granites: the Hercynian Karkonosze Pluton[J]. Journal of petrology volume, 2008, 49(2):353-391.
    [59] Neves SP,Vauchez A. Successive mixing and mingling of magmas in a plutonic complex of Northeast Brazil[J].Lithos, 1995, 34 :275-299.
    [60] Pembroke J W and D'Lemos R S. Mixing between granite magmas: evidence from the South-west Granite Complex of Jersey[J].Proceedings of the Ussher Society, 1996, 9: 105-113.
    [61]彭惠娟,汪雄武,秦志鹏,侯林,周云.西藏甲玛铜多金属矿矿床岩浆-热液过渡的矿物学证据[J].成都理工大学学报(自然科学版)2011. (已录用待刊).
    [62]彭惠娟,汪雄武,秦志鹏等.石英显微构造阴极发光特征研究—以西藏甲玛岩体为例[J].矿物岩石地球化学通报, 2010,29(3):45-52.
    [63] Brian G, Rusk, Heather A, Lowers, Mark H, Reed. Trace elements in hydrothermal quartz:Relationships to cathodoluminescent textures and insights into vein formation[J].Geology, 2008, 36(7): 547–550.
    [64]杨志明,西藏驱龙超大型斑岩铜矿床—岩浆作用与矿床成因[D]。北京:中国地质科学院,2008.
    [65] Kirwin, D. J., Seltmann, R. Unidirectional solidification textures associated with intrusion-related gold deposits[J]. Quadrennial IAGOD Symposium and GEOCONGRESS, 2002, 31: 22-26.
    [66] Lickfold,.V., Wilson, A., Harris, A. C., Cooke, D. R. The alkalic Au-Cu porphyry deposits of NSW, Australia: Evidence for coexisting melt and hydrothermal fluids in comb quartz layers [J]. Mineral Exploration and Sustainable Development, 2003,8: 315-318.
    [67] Harris, Anthony.C.,Khmelnitsky. Volatile Phase Separation in Silica Magmas at Bajo de la Alumbrera Porphyry Cu-Au Deposit NW Argentina [J]. Resource Geology ,2004,54(3): 341-356.
    [68] Price, J.D., Hogan, J.P., Charles, G.M., London, D., Morgan VI, G.B. Experimental study of titanite–fluorite equilibria in the A-type Mount Scott Granite; implications for assessing F contents of felsic magma[J]. Geology,1999,27: 951– 954.
    [69] Bailey, J.C. Fluorine in granitic rocks and melts: a review[J]. Chem. Geol, 1977,19: 1– 42.
    [70] Icenhower, J.P., London, D. Partition of fluorine and chlorine between biotite and granitic melt: experimental calibration at 200 MPa H2O[J]. Contrib. Mineral. Petrol, 1997, 127: 17– 29.
    [71] London, D. Estimating abundances of volatile and other mobile components in evolved silicic melts through mineralmelt equilibria [J]. Petrol.1997,38: 1691–1706.
    [72] Price, J.D., Hogan, J.P., Charles, G.M., London, D., Morgan VI, G.B. Experimental study of titanite–fluorite equilibria in the A-type Mount Scott Granite; implications for assessing F contents of felsic magma[J]. Geology,1999,27: 951– 954.
    [73] Gustafson LB, Hunt JP. The porphyry copper deposit at El Salvador, Chile. Econ Geol, 1975, 70:857–912
    [74] Harris A. C., Kamenetsky V. S., White N. C.Silicate-melt inclusions in quartz veins: Linking magmas and porphyry Cu deposits [J]. Science, 2003b, 302: 2109-2111.
    [75] Smith VC, Shane P, Nairn I A..Reactivation of a rhyolitic magma body by new rhyolitic intrusion before the 15.8 ka Rotora eruptive episode: implications for magma storage in the Okataina Volcanic Centre, New Zealand [J]. Journal of the Geological Society of London, 2004,161:757-772.
    [76] Wiebe RA, Wark DA, Hawkins DP. Insights from quartz cathodoluminescence zoning into crystallization of the Vinalhaven granite, coastal Maine [J]. Contributions to Mineralogy andPetrology, 2007, 154: 439-453.
    [77]Didier J, Barbarin B. Enclaves and Granite Petrology[M]: Amsterdam: Elsevier,1991,624-625.
    [78] Tindle.Trace element behavior in microgranular enclaves form grantic rocks[M]: Amsterdam: Elsevier,1991, 313-330.
    [79] Shinohara.H., Kazahaya.K. , Lowenstern. J. B. Volatile transport in a convecting magma column: implications for porphyry Mo mineralization [J]. Geology, 1995, 23, 1091-1094.
    [80] Rusk, Lowers HA, Reed MH. Trace elements in hydrothermal quartz: relationships to cathodoluminescence textures and insights into vein formation. Geology, 2008a, 36:547–550
    [81] Rusk BG, Reed MH, Dilles JH. Fluid inclusion evidence for magmatic–hydrothermal fluid evolution in the porphyry copper– molybdenum deposit at Butte, Montana. Econ Geol ,2008b,103:307–334
    [82] Bodnar RJ. Fluid-inclusion evidence for magmatic source for metals in porphyry copper deposits. In: Thompson JFH (ed) Magmas, fluids, and ore deposits. Mineralogical Association of Canada. Mineralogical Association of Canada, Ottawa, 1995,139–152.
    [83] Heinrich CA. The physical and chemical evolution of lowsalinity magmatic fluids at the porphyry to epithermal transition: a thermodynamic study. Miner Deposita ,2005,39:864–889
    [84] Penniston-Dorland .llumination of vein quartz textures in a porphyry copper ore deposits using scanned cathodoluminescence: Grasberg Igneous Complex, Irian Jaya, Indonesia. Am Mineral , 2001,86:652–666.
    [85] Hemley JJ, Cygan GL, Fein JB, Robinson GR. Hydrothermal ore-forming processes in the light of studies in rock-buffered systems: I. Iron–copper–zinc–lead sulphide solubility relations. Econ Geol, 1992, 87:1–22
    [86] Stephen E, Kesler,Eric J, Essene. Unusually Cu-rich magmas associated with giant porphyry copper deposits: Evidence from Bingham[J]. USA Geology, 2006, 1:42-44.
    [87] Keiko H, Hattori·Jeffrey D,Keith. Contribution of mafic melt to porphyry copper mineralization: evidence from Mount Pinatubo, Philippines,and Bingham Canyon,Utah,USA[J]. Mineralium Deposita, 2001, 36: 799-806.
    [88] Shafiei, Michael Haschke, Jamshid Shahabpour. Recycling of orogenic arc crust triggers porphyry Cu mineralization in Kerman Cenozoic arc rocks, southeastern Iran[J].Miner Deposita, 2009, 44,265–283.
    [89] Webster J.D., Holloway J.R., Hervig R.L. Phase equilibria of a Be, U and F-enriched vitrophyre from Spor Mountain, Utah [J]. Geochim. Cosmochim, 1987,51: 389– 402.
    [90] Pasteris, J. D. Mount Pinatubo volcano and "negative" porphyry copper deposits.Geology[J]. 199,24: 1075-1078.
    [91] Brian G, Rusk, Heather A, Lowers, Mark H, Reed. Trace elements in hydrothermal quartz: Relationships to cathodoluminescent textures and insights into vein formation[J].Geology, 2008, 36(7): 547–550.
    [92]Axel Müller, Richard Herrington, Robin Armstrong Trace elements and cathodoluminescence of quartz in stockwork veins of Mongolian porphyry-style deposits[J]. Miner Deposita, 2010, 45: 707-727.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700