用户名: 密码: 验证码:
湖北大冶灵乡铁矿床接触带构造及其成矿控矿意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湖北大冶灵乡铁矿是鄂东南地区典型的矽卡岩型矿床,矿体受接触带构造控制明显。同时,灵乡铁矿是一个资源保有量严重不足的危机矿山。本文以区域成矿学、矿田构造学、矿产勘查学等理论为指导,在野外地质调查、实验室研究和前人研究的基础上,采用现代计算机技术,对灵乡铁矿构造控矿,尤其是接触带构造控矿规律进行较为系统的研究。
     灵乡铁矿在区域上位于鄂东南矿集区内。大地构造位处由NW向襄樊-广济断裂、NNE向团风-温泉断裂和EW向长阳-阳新断裂所围限的三角形成矿区的北缘,是扬子地块和与华北地块的过渡地带。矿区印支期南北向挤压形成东西向褶皱,奠定了成矿前控矿构造基础;燕山期形成北东向叠加复合构造,控制矿区矽卡岩和铁矿体的空间分布。矿区北部褶皱和断裂构造组成的格状分布直接导致了区内矿床的格状分布,自西向东可分为西、中、东三个矿带。
     本文根据接触带的复杂程度,将灵乡矿区接触带构造分为三种:简单接触带、复杂接触带、过渡型接触带。本文所指的接触带复杂程度包括两方面的因素:构造的复杂程度、地层岩性的复杂程度。简单接触带主要分布于矿区南部的南缘接触带。复杂接触带主要分布于矿区北部西矿带的脑窖矿段、广山矿段。过渡型接触带主要见于矿区北部中矿带的狮子山北矿段和小包山矿段、东矿带的刘家畈矿段和铁子山矿段。本文选取广山接触带、狮子山北接触带、刘家畈接触带、铁子山接触带作为主要研究地段,广山矿体、小包山矿体、狮子山北矿体、刘家畈矿体作为受接触带控制的典型矿体进行分析阐述。研究结果表明,简单接触带构造形态简单,构造应力较弱,岩浆侵位对围岩地层的挤压、破坏程度较小,岩浆岩与碳酸盐岩地层接触单一,封闭性差,不利于矿液的停聚,不利于成矿反应的进行,成矿控矿意义不大。复杂接触带构造形态复杂,为褶皱断裂构造的交汇部位,在这样的地段,三叠系碳酸盐岩发生强烈破碎,岩体与碳酸盐岩接触表面积增大,有利于矿液的停聚并发生强烈的接触交代作用,从而形成矽卡岩和厚大的铁矿体。
     基于三维建模软件GeoMine3D,本文初步实现了矿床观测和数据的三维可视化,展示了接触带构造和矿体的空间形态、分布特征和相互关系。研究结果表明:广山矿段接触带形态复杂,大理岩呈残留体赋存在闪长岩与矿体之间,特别是在矿体中部,呈夹层状产出,另有大理岩见于矿体的底部。有些地段大理岩残留较少,一些剖面甚至不可见大理岩,只见到矽卡岩与铁矿体。矿体产于断裂与背斜复合部,矿体为闪长岩所包裹,原为岩体中的大理岩捕虏体;狮子山北矿段接触带是介于简单接触带与复杂接触带之间的过渡型接触带。在狮子山北矿段,大理岩与闪长岩之间的接触带表面积比较大,有利于交代作用的进行。但是,由于构造活动相对较弱,和广山矿段相比,该矿段大理岩破碎程度不高,保留了很多大理岩残留体,而矿体主要产出于大理岩与闪长岩接触带的边部,规模较小;刘家畈矿段接触带较为复杂,大理岩底面为闪长岩体,顶面为白垩系。刘家畈矿段接触带表面凸凹不平,接触带的凸起部位一般不是成矿的有利部位,在接触带由陡向缓转变的凹兜状部位,是成矿赋矿的最有利部位。铁矿体的形态、产状与闪长岩体接触带基本一致,空间分布与闪长岩体接触带密切相关。
     接触带构造的形态越复杂,其成矿控矿意义也就越大。接触带形态的复杂程度主要与构造类型的复杂程度有关。多组断裂的交汇部位、断裂构造与褶皱构造的复合部位往往形成复杂类型的接触带构造。另外,地层的岩性及岩性组合是控制接触带构造类型的另一重要因素。在碎屑岩和碳酸盐岩互层的部位,岩石的力学性质不一,岩石的矿物组成及化学性质不同。在构造应力的作用下,它们易于发生差异变形,这也是影响接触带构造复杂程度的重要原因。
     在北缘接触带,灵乡岩体与白垩系地层直接接触,局部地区有三叠系大冶群碳酸盐岩地层和蒲圻群粉砂质页岩产出,为岩体北缘接触带成矿提供了岩浆岩和地层条件。北缘接触带受到断裂构造和褶皱构造的不同程度的改造,在接触带和矿体赋存的空间有张扭性断裂构造叠加改造的痕迹。广山、脑窖矿段接触带为圈闭-接触带构造、褶皱-接触带构造、断裂-接触带构造的复合接触带构造,大理岩支离破碎。广山背斜深部可能有大理岩残留体的存在,该部位是寻找深部隐伏矿体的有利地段。综合地质、地球物理、钻探工程资料,本研究认为广山矿段至脑窖矿段之间的地下深部有良好的找矿前景。
Lingxiang iron deposit, located in Daye, Hubei province, is a typical skarn type ore deposit, and a nearly exhausted mine. Ore bodies are mainly controlled by contact zone structure. Guided by the theories of essentials of metallogeny、structural geology in ore field、mineral exploration is, based on previously published data, the author carried on field investigation and studies in the laboratory. This study focuses on the relationship between the structure, especially, the contact zone structure, and the mineralization.
     Regionally, Lingxiang iron deposit lies in the triangle area of southeast Hubei province, controlled by the northwest Xiangfan-Guangji fault、the north-north-east Tuanfeng-Wenquan fault、the transmeridional Changyang-Yangxin fault. The triangle ore concentration area is the transition zone of Yangtze plate and North China Craton. In the Indosinian period, the EW direction folds formed by the north-south compression, previous to the mineralization, laid the foundation for the ore controlling structure; in the Yanshanian period, the north-north-east direct structure fromed, which, together with the Indosinian structure, is one of the most important factors controlling thetion of the skarn and the iron ore bodies. The ore deposits in this diggings are distributed with the shape of grid, which is a direct result of the distribution of the structures. From the west to the east, the diggings could be divided to three ore belts:the west ore belt, and the middle ore belt, the east ore belt.
     According to the complexity of the contact zone, the contact zone is divided into simple contact zone、complex contact zone、transitional contact zone. The complexity of the contact zone mainly includes the complexity of structure and the assemblage of rock and stratum. Simple contact zone mostly distributes in southern margin of the ore district. Complex contact zone mostly distributes in Naojiao ore block、Guangshan ore block. Transitional contact zone mainly distributes in Shizishanbei ore block、Xiaobaoshan ore block、Liujiafan ore block、Tiezishan ore block. I select Liujiafan contact zone、Tiezishan contact zone、Guangshan contact zone、Shizishanbei contact zone as the main object of this study, Guangshan ore body、Xiaobaoshan ore body、Liujiafan ore body、Shizishanbei ore body as the typical ore bodies. The research shows that simple contact zone is not favorable for mineralization. The marble is out of broken and the shape of contact zone of diorite and carbonate is simple in the southern contact zone, for the construction activity is weak, so this kind of contact zone is not conducive for ore-forming fluid to aggregate and not conducive for the evolution of the ore-forming reactions. In contrast, the complex contact zone is the intersection of folds and faults where the Triassic carbonate rocks get consumingly fragmentated, and the contact area of diorite and carbonate rocks increases. Thus, it is propitious for the ore-forming fliud to aggregate and the mineral to be precipitated, and thick skarn rock、iron ore deposit forms.
     In this study, GeoMine3D software is used to establish the 3D visualization model of the contact zone and ore bodies. The results show that the contact zone structure of Guangshan ore block is complex. The marble resides between diorite and ore bodies, especially in the middle part and the bottom of ore bodies. Generally there is a small quantity of marble left, and in some sections, there is no marble left, only skarn and ore deposit left. The ore bodies lie in the intersection part of fault and anticline, and are enwrapped by diorite. The diorite locates in the underside of marble, and Cretaceous strata located on the top of marble. The contact zone of Shizishanbei ore block is transitional contact zone. Its complexity is between simple contact zone and complex contact zone. In Shizishanbei ore block, the the contact area of diorite and carbonate rocks is comparatively large, so it is favorable for metasomatism. However, compared with Guangshan ore block, the marble is not completely broken in Shizishanbei ore block, for the construction activity is weaker, and more marble resides. The ore bodies mainly distributes around the edge of the contact zone, and the size of the ore bodies is comparatively small. The contact zone structure of Liujiafan ore block is comparatively complicated. The exterior of Liujiafan contact zone is uneven. The convex part of contact zone is not favorable of mineralization, and the concave part of contact zone where the inclination of contact zone changes from gradient to less gradient, is more favorable of mineralization. The shape and attitude of iron ore are consistent with the contact zone structure, and the distribution of ore bodied have close correlation with the contact zone.
     The more complex the contact zone structure is, the greater significance it is. The complexity of the shape of contact zone is mainly related to the complexity of folds and faults. The complex contact zone is usually formed as the result of the composite structure of folds and faults. In addition, the lithology of stratum and the assemblage of rock and stratum is an important factor affecting the structural complexity of the contact zone. As the influence of the tectonic stress, the carbonate rocks and clastic rocks have discrepancy in deformation at the conterminous position, because the mechanical properties, the mineral composition and chemical properties of clastic rocks and carbonate rocks are different.
     In the northern margin of the ore district, Lingxiang diorite contacts with Cretaceous strata directly. Triassic Daye group carbonate rocks and Puqi group shale exist occasionally. These supply the condition of magmatic rock and strata for the mineralization. The northern margin of the contact zone is rebuilt by faults and folds to a certian extent. The contact zone of Guangshan and Naojiao ore block is a kind of complex contact zone, combined by the trap-contact zone structure、fold-contact zone structure、fault-contact zone structure. And the marble is fragmented, so the residual marble may exist in the deep part of the anticline, where is profitable for prospecting. Combined with the geological、geophysical and drilling datas, the essay draw the conclusion that there is a good prospecting in the deep part of the area between Guangshan and Naojiao ore block.
引文
[1]赵一鸣.中国铁矿资源现状、保证程度和对策.地质论评,2004,50(4):396.
    [2]王永基.中国铁矿深部找矿的进展.武汉:深部找矿理论及关键技术学术研讨会,2008.
    [3]骆地伟.程潮铁矿接触带构造研究与深部找矿.武汉:中国地质大学研究生院,2008.
    [4]赵一鸣,林文蔚,毕承思等.中国矽卡岩矿床.北京:地质出版社,1990.
    [5]张轶男.长江中下游及其邻区重要含金(铜)矽卡岩矿床地质地球化学特征.北京:中国地质科学院研究生部,1999.
    [6]翟裕生.矽卡岩矿床研究的若干问题.地质科技情报,1983,1:46-54.
    [7]赵一鸣,林文蔚,毕承思等.中国矽卡岩矿床基本地质特征.中国地质科学院院报,1986,14:59-87.
    [8]姚鹏.西藏冈底斯南缘火山-岩浆弧演化与不同类型矽卡岩矿床的研究.成都:成都理工大学,2006.
    [9]黄华盛.矽卡岩矿床的研究现状.地学前缘,1994,1(3-4):105-111.
    [10]Ray G E, Webster I C L, Ettlinger A D. The distribution of skarns in British Columbia and the chemistry and ages of their related plutonic rocks. Economic Geology,1995,90: 920-937.
    [11]董树义.山东沂南金矿床成因与成矿规律和成矿预测.北京:中国地质大学,2008.
    [12]季翱.大冶铁矿地质地球化学特征及成矿预测研究.武汉:中国地质大学研究生院,2008.
    [13]闵厚禄.程潮铁矿矿床成矿规律及找矿前景评价研究.武汉:中国地质大学研究生院,2008.
    [14]魏君奇,陈开旭,魏福玉.滇西羊拉地区构造-岩浆-成矿作用分析.华南地质与矿产,2000,1:59-62.
    [15]曹圣华,李德威,余忠珍等.西藏冈底斯尼雄超大型富铁矿的成矿地质特征.大地构造与成矿学,2007,31(3):328-334.
    [16]Chen Y J, Chen H Y, Zaw K, et al.. Geodynamic settings and tectonic model of skarn gold deposits in China:An overview. Ore Geology Reviews,2007,31:139-169.
    [17]Mao J W, Wang Y T, Bernd L, et al.. Molybdenite Re-Os and albite 40Ar/39Ar dating of Cu-Au-Mo and magnetite porphyry systems in the Yangtze River valley and metallogenic implications. Ore Geology Reviews 2006,29:307-324.
    [18]辛洪波,曲晓明.藏西措勤县日阿与斑(玢)岩有关的铜矿床的矿床地质特征与成矿时代.矿床地质,2006,25(4):447-482.
    [19]王少怀,裴荣富.冈底斯中段南缘成矿远景预测及找矿方向.矿床地质,2007,26(3):346-352.
    [20]Xie Gui qing, Mao Jing wen, LiRL, et al.. Geochemistry and Nd-Sr isotopic studies of Late Mesozoic granitoids in the southeastern Hubei Province, Middle-Lower Yangtze River belt, Eastern China:Petrogenesis and tectonic setting, Lithos,2008.
    [21]翟裕生,邓军,汤中立等.古陆边缘成矿系统.北京:地质出版社,2002.
    [22]高阳,张寿庭.云南个旧老厂锡矿矿田构造垂直分带研究.大地构造现成矿学,2007,31(3):335-34.
    [23]吴明光.铜陵地区矽卡岩型铜矿的构造控制.华南地质与矿产,2003,1:46-48.
    [24]韩润生.隐伏矿定位预测的矿田(床)构造地球化学方法.地质通报,2005,24:978-984.
    [25]Han R S, Hu Y Z, Xu C D. Tectono-geochemistry and prognosis of No.8 concealed orebody in the qilinchang Zn-Pb-(Ag-Ge) deposit, Huize district,Yunnan, China. Goldschmidt Conference Abstracts,2006.
    [26]朱余银.保山核桃坪铅锌矿床构造地球化学特征及隐伏矿预测.昆明:昆明理工大学,2006.
    [27]Naito K, Fukahori Y, Peiming H, et al.. Oxygen and carbon isotope zonations of Kamioka Pb-Zn skarn deposits, central Prospecting. Journal of Geochemical Exploration,1995,54: 199-211.
    [28]韩润生,刘丛强,马德云等.陕西铜厂地区断裂构造地球化学及定位成矿预测.地质地球化学,2001,29(3):158-163.
    [29]郑子恒,罗根全.利用岩体边部构造形态预测矽卡岩型矿床盲小矿体.有色金属(矿山部分),1996,6:26-29.
    [30]吕庆田,侯增谦,史大年等.铜陵狮子山金属矿地震反射结果及对区域找矿的意义.矿床地质,2004,23(3):390-398.
    [31]蔡发田,关成军,付庆等.辽宁花坤金-银多金属矿地质特征及找矿标志.矿产与地质,2007,21(1):39-43.
    [32]Wu L. Topological relations embodied in a generalized tri-prism (GTP) model for a 3D geoscience modeling system. Computers & Geosciences,2004,30:405-418.
    [33]陈建平,吕鹏,吴文等.基于三维可视化技术的隐伏矿体预测.地学前缘,2007,14(5):54-62.
    [34]Dieter F. Three-dimensinoal geographic information systems-status and prospects. Interna-
    tional Archives of Photogrammetry and Remote Sensing,1996,8(3):243-260.
    [35]吴立新,张瑞新,戚宜欣,等.三维地学模拟与虚拟矿山系统.测绘学报,2002,31(1): 28-33.
    [36]Yong X, Min S, Ainai M. On the reconstruction of three-dimensional complex geological objects using Delaunay triangulation. Future Generation Computer Systems.2004,20: 1227-1234.
    [37]吴健生,朱谷昌,曾新平等.三维GIS技术在固体矿产勘探和开发中的研究与应用.地质与勘探,2004,40(1):68-72.
    [38]张宝一,尚建嘎,吴鸿敏.三维地质建模及可视化技术在固体矿产储量估算中的应用.地质与勘探,2007,43(2):76-81.
    [39]Mark A M, Timothy J R, Peter G B. Three-dimensional inversion modelling of a Neoproterozoic basin in the southern Prince Charles Mountains, East Antarctica. Tectonophysi-cs,2008,456:180-193.
    [40]Veslud C, Cuney M, Lorilleux G et al,.3D modeling of uranium-bearing solution-collapse breccias in Proterozoic sandstones (Athabasca Basin, Canada)-Metallogenic interpretations. Co-mputers & Geosciences,2009,35:92-107.
    [41]Hiissner H, Roessler J, Betzler C. Testing 3D computer simulation of carbonate platform growth with REPRO:the Miocene Llucmajor carbonate platform (Mallorca). Palaeogeography, Palaeoclimatology, Palaeoecology,2001,175:239-247.
    [42]骆地伟,周宗桂.程潮铁矿矿体空间展布模型可视化研究.有色金属(矿山部分),2008,60(1):25-28.
    [43]Galera C, Bennis C, Moretti I, et al,. Construction of coherent 3D geological blocks. Computers & Geosciences,2003,29:971-984.
    [44]常印佛,刘湘培,吴言昌.长江中下游铁铜成矿带.北京:地质出版社.1991.
    [45]Li J W, Deng Xiaodong, Zhou Meifu et al.. Laser ablation ICP-MS titanite U-Th-Pb dating of hydrothermal ore deposits:A case study of the Tonglushan Cu-Fe-Au skarn deposit. Chemical. Geology,2009. In press.
    [46]舒全安,陈培良,程建荣.鄂东铁铜矿产地质.北京:冶金工业出版社,1992.
    [47]姚书振等.湖北大冶灵乡矿田铁矿床地质特征及成矿规律研究.武汉:武汉地质学院出版社,1983.
    [48]张国胜.鄂东南地区构造特征及其控岩控矿规律.湖北地矿,1998,12(2):16-23.
    [49]戚学祥,杜树三.长江中下游燕山期火山岩地质特征及其与找矿的关系.火山地质与矿产,2000,21(1):48-55.
    [50]谢桂青,毛景文,李瑞玲等.鄂东南地区矽卡岩铁矿床的地质特征和矿床模式讨论.矿床地质(增刊),2006,25:147-150.
    [51]赵新福,李建威,马昌前.鄂东南铁铜矿集区铜山口铜(铝)矿床40Ar/39Ar年代学及对区域成矿作用的指示.地质学报,2006,80(6):849-862.
    [52]高广立.灵乡矿田三叠系特征及其在成矿中的作用.地质科技情报,1983,(Z1):79-87.
    [53]杨明银,薛迪康,葛宗侠.鄂东南花岗岩谱系单位与成矿.湖北地质,1995,9(1):48-57.
    [54]王靖才.灵乡侵入体铁矿田硫同位素组成双源混染分带特征及其研究意义.中南冶金地质,1989,2,34-37.
    [55]苏欣栋,刘陶梅.同位素地质在鄂东南铜铁矿床地质研究中的应用.地质与勘探,1994,30(1):27-32.
    [56]赵新福.鄂东南矿集区晚中生代侵入岩类成因及其对区域成矿作用的指示.武汉:中国地质大学研究生院,2006:60-68.
    [57]姚书振.湖北灵乡矿浆-热液过渡型铁矿床的地质特征及某些成因问题的初步探讨.地质科技情报,1983,1:70-78.
    [58]翟裕生,姚书振,林新多等.长江中下游地区铁铜(金)成矿规律.北京:地质出版社,1992.
    [59]章增风.鄂东南地区岩体接触构造体系类型及其控矿模式研究.地球科学——中国地质大学学报,1992,17(4):381-390.
    [60]郭大招,林小莹,董建国.灵乡小包山矿床花斑状矿石特征及其形成机理分析.资源与环境工程,2004,18(4):17-21.
    [61]夏金龙,胡明安,徐伯骏等.湖北程潮铁矿成矿物质来源的地球化学制约.现代地质,2009,23(2):285-291.
    [62]毛景文,邵拥军,谢桂青等.长江中下游成矿带铜陵矿集区铜多金属矿床模型.矿床地质,2008,24(2):109-119.
    [63]翟裕生,姚书振,林新多等.长江中下游地区铁铜(金)成矿规律.北京:地质出版社,1992.
    [64]谢桂青,毛景文,李瑞玲.长江中下游鄂东南地区大寺组火山岩SHRIMP定年及其意义.科学通报,51(19):2283-2291.
    [65]毛建仁,苏郁香,陈三元.长江中下游中酸性侵入岩与成矿.北京:地质出版社,1990.
    [66]朱训,张文岳,陈洲其等.中国矿床发现史.北京:地质出版社,1996.
    [67]黎彤,倪守斌.地球和地壳的化学元素丰度.北京:地质出版社,1990.
    [68]翟裕生,林新多.矿田构造学.北京:地质出版社,1993.
    [69]易顺华,李珍.侵入接触构造的地质力学研究.地质力学学报,1997,3(2):61-65.
    [70]路凤香,桑隆康.岩石学.北京:地质出版社,2003.
    [71]袁见齐,朱上庆,翟裕生.矿床学.北京:地质出版社,1985.
    [72]中南冶勘资源环境工程有限公司.武钢矿业公司灵乡铁矿探矿权区铁矿资源预查报告.武汉:中南冶勘资源环境工程有限公司,2008.
    [73]原冶金工业部长沙黑色冶金矿山设计研究院.武钢灵乡铁矿狮子山北矿段修改储量说明书.长沙:长沙黑色冶金矿山设计研究院,1985.
    [74]原冶金工业部中南冶金地质勘探公司603队.湖北大冶县刘家畈铁矿中间地质勘探报告.黄石:原冶金工业部中南冶金地质勘探公司603队,1973.
    [75]武汉钢铁集团矿业有限责任公司灵乡铁矿.武钢灵乡铁矿广山矿体生产勘探总结报告.黄石:武汉钢铁集团矿业有限责任公司灵乡铁矿,1984.
    [76]中国冶金地质总局中南地质勘查院.湖北省大冶市灵乡矿区小包山、狮子山北铁矿2004年度资源储量检测地质报告.武汉:中国冶金地质总局中南地质勘查院,2005.
    [77]翟裕生,吕古贤.构造动力体制转换与成矿作用.地球学报.2002,23(2):97-102.
    [78]郭学全.热液矿床成矿作用的沉淀地球化学障——以鄂东南铜铁金矿床为例.地质与勘探,1993,29(2):44-49.
    [79]吴树森,章燕豪.界面化学.上海:华东化工学院出版社,1989.
    [80]胡明安,徐伯骏,曹新志.地质界面对桂中凹陷区铅锌矿床的控制意义.地球科学——中国地质大学学报,2005,30(3):353-358.
    [81]孙启祯.边缘成矿概论.北京:地质出版社,2001.
    [82]贾跃明.流体成矿系统与成矿作用研究.地学前缘,1996,3(3-4):253-258.
    [83]翟裕生,邓军,丁式江.关于成矿参数临界转换的探讨.矿床地质,2001,20(4):301-306.
    [84]Cheng H F, HuYA, Luo J. Geochemical processes controlling fate and transport of arsenic in acid mine drainage (AMD) and natural systems. Journal of Hazardous Materials.2009, 165:13-26.
    [85]欧阳恒.个旧花岗岩凹陷带岩矿地球化学研究.长沙:中南大学研究生院,2007.
    [86]张建东.个旧锡矿花岗岩接触-凹陷带空间展布特征、控矿机理及空间信息成矿预测研究.长沙:中南大学研究生院,2007.
    [87]张文淮,张志坚,伍刚.成矿流体及成矿机制.地学前缘,1996,3(3-4):245-252.
    [88]翟裕生.论成矿系统.地学前缘,1999,6(1):13-27.
    [89]翟裕生.论成矿系统.地学前缘,1999,6(1):13-26.
    [90]徐耀通.丰山矿田接触带构造地球化学障及其成矿作用研究.河北地质学院学报,1993,16(1):26-36.
    [91]黄承周.侵入接触构造的控矿作用及其成矿机理探讨.江苏地质,1988,4:28-31.
    [92]翟裕生,姚书振,崔彬等.成矿系列研究.武汉:中国地质大学出版社,1996.
    [93]中南冶勘资源环境工程有限公司物化探分公司.湖北省大冶市灵乡岩体西南缘铁矿资源勘查物探工作报告.武汉:中南冶勘资源环境工程有限公司物化探分公司,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700