用户名: 密码: 验证码:
斜卧青霉β-葡萄糖苷酶的性质和功能研究及基因表达谱分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木质纤维素是地球上储量最为丰富的可再生资源。在矿物燃料资源日趋枯竭、环境日趋恶化的严峻形势下,利用廉价的木质纤维素生产液体燃料和大宗化学品,可以有效地缓解能源和环境危机,促进全球经济的可持续发展。自然界中存在多种高效木质纤维素生物降解系统,利用微生物产生的木质纤维素水解酶来降解木质纤维素是纤维素利用的一种有效途径。丝状真菌在自然生态环境木质纤维素的降解中发挥着非常重要的作用,对其木质纤维素酶酶系组成、催化机理和调控机制的研究具有重要的理论意义与应用价值。
     斜卧青霉114-2能分泌完全的纤维素酶酶系,与里氏木霉相比具有较高的p-葡萄糖苷酶及半纤维素酶活性,这对于木质纤维素材料的水解是非常有利的。但是较高的p-葡萄糖苷酶活力使得纤维素底物迅速水解为葡萄糖,不利于诱导物(纤维二糖)的积累。因此从纤维素酶的合成调控的角度考虑,胞外过多的p-葡萄糖苷酶的存在对纤维素酶的诱导是不利的。由此可见,β-葡萄糖苷酶作为木质纤维素降解酶系的重要组分,对于其它酶组分的合成有一定的调控作用。
     目前,对斜卧青霉基因组的测序工作已经完成,对其纤维素酶合成调控的研究也已取得一定的进展。但是由于其纤维素酶酶系复杂,涉及的调控层次和调控途径众多,传统的针对单基因的研究方法很难揭示木质纤维素酶合成调控的整体网络。而转录组学研究可以揭示不同菌株在不同培养条件下全基因组范围的基因转录差异,有助于发现与木质纤维素酶合成调控相关的新基因,完善对合成调控网络的认识,找到工程改造的新靶点。本论文的主要研究结果如下:
     1.胞外主要p-葡萄糖苷酶BGL1的性质及其在木质纤维素酶合成调控中的功能研究
     在斜卧青霉114-2胞外粗酶液中分离纯化到一个p-葡萄糖苷酶,质谱鉴定其为胞外主要的β-葡萄糖苷酶BGL1,具有很高的比活力、温度和pH稳定性及较高的底物亲和力。对里氏木霉QM9414胞外粗酶的糖化能力具有很强的促进作用,与商业酶制剂的效果相当。
     在斜卧青霉114-2中对BGL1进行了敲除,发现BGL1缺失后突变株在葡萄糖、麦麸及纤维二糖平板上的生长和表型都未受到影响。同时,在产酶条件下其胞外蛋白的分泌能力及CBH、EG和木聚糖酶活力也没有发生明显变化。与胞外酶活力的结果一致,在纤维素条件下突变株中主要的木质纤维素酶基因的转录水平与野生菌株相比也没有发生明显的变化。对野生株和突变株在纤维素条件下胞外的纤维寡糖浓度进行测定,发现突变株胞外的纤维寡糖大量积累。但是纤维寡糖的积累却没有诱导木质纤维素酶基因的表达上调。同时当以纤维寡糖为唯一碳源进行培养时,也不能诱导突变株木质纤维素酶基因的表达上调。我们推测,斜卧青霉不能直接感受胞外的寡糖诱导信号来诱导木质纤维素酶基因的表达,纤维寡糖只有进入胞内才能行使诱导作用。通过测定纤维素诱导条件下胞内的纤维寡糖浓度,发现突变株胞内纤维二糖的浓度与野生株相似,与木质纤维素酶基因表达的趋势是一致的。而在胞外添加纤维二糖时,突变株胞内纤维二糖的浓度较野生株有所提高,同时木质纤维素酶基因的表达上调。这说明胞内纤维二糖的浓度是影响木质纤维素酶基因表达水平的关键。而BGL1的缺失之所以没有造成胞内纤维二糖的积累,推测是因为胞内β-葡萄糖苷酶的存在。2.胞内主要β-葡萄糖苷酶BGL2的性质及其在木质纤维素酶合成调控中的功能
     研究将斜卧青霉基因组中6个推测的胞内p-葡萄糖苷酶分别在野生菌株114-2中进行了基因敲除,发现在麦麸、葡萄糖和纤维二糖平板上各突变株的表型与野生菌株相比均没有明显变化。只有在表达量最高的BGL2缺失后,突变株在产酶培养基中的胞外蛋白产量和木质纤维素酶活力才表现出大幅度提高。SDS-PAGE结果显示,其胞外蛋白浓度的升高并不是整体分泌量增加引起的,而是木质纤维素酶比例的特异性提高造成的。胞外酶液EG和木聚糖酶比活力的相应提高也证实也这一结果。与蛋白水平变化一致,敲除株中的木质纤维素酶基凶egl、cbhl和xyn10的表达水平在纤维素条件下均明显上调。同时发现其胞内纤维二糖浓度较野生株有所升高。这些结果显示,是由于BGL2的缺失使得敲除株丧失大部分胞内p-葡萄糖苷酶活力,致使胞内纤维二糖积累,从而诱导了木质纤维素酶基因的高水平表达。将BGL2在大肠杆菌中异源表达,对重组酶的酶学性质进行分析。结果发现,BGL2对纤维二糖、龙胆二糖、槐糖和纤维寡糖都有很强的水解活性。这就证实了野生菌株中BGL2的存在会迅速水解胞内的纤维寡糖,不利于诱导物的积累,从而限制木质纤维素酶基因的表达水平。
     3.p-葡萄糖苷酶双敲除株中木质纤维素酶诱导机制的研究
     构建了BGL1和BGL2双缺失菌株△bgllΔbgl2,发现其在麦麸、葡萄糖和纤维二糖平板上的生长及形态没有发生明显变化,胞外木质纤维素酶活力相对于野生菌株均明显提高,但是低于△bgl2的酶活力水平。与蛋白水平变化一致,在纤维素条件下敲除株中主要的木质纤维素酶基因的转录水平较野生株明显提高,但是也低于Δbg12中的表达水平。测定纤维素条件下的胞内纤维二糖浓度,显示其浓度变化趋势与木质纤维素酶基因的转录水平一致。我们猜测ΔbgllΔbgl2不能在胞内积累更多的纤维二糖的原因可能是,斜卧青霉在β-葡萄糖苷酶活性缺失时,会激发其它的代谢途径来利用纤维二糖。用潜在诱导物槐糖和龙胆二糖作为唯一碳源进行诱导,发现纤维素酶基因的表达水平并没有发生明显上调。这说明槐糖和龙胆二糖不是斜卧青霉纤维素酶基因的诱导物,而且在斜卧青霉中由纤维二糖介导的诱导作用并不依赖于通过转糖基作用牛成槐糖或龙胆二糖的过程。4.斜卧青霉野生菌株114-2及突变株JU-A10-T的差异表达谱分析
     利用数字化表达谱分析技术对斜卧青霉不同菌株在不同条件下的转录组进行了研究。分别比较了野生菌株114-2及突变株JU-A10-T在不同条件下及在相同条件下114-2与JU-A10-T之间的表达差异基因,分析了与木质纤维素酶基因共转录的差异表达基因,筛选到一系列可能与木质纤维素酶基因表达上调有关的候选基因,但其功能还有待验证。研究发现,JU-A10-T中次级代谢相关、淀粉酶及蛋白酶等基因的转录水平相对于野生菌株114-2均明显降低。这可能通过缓解蛋白质合成负担、减少不必要的能量消耗等机制部分导致了JU-A10-T中纤维素酶基因表达水平的提高。
Lignocellulosic biomass is the largest reserves of renewable resource on the earth. With the intensification of fossil fuels shortage and environment pollution, effective use of these low-cost resource to produce biofuel and biochemical is an efficient way to relieve the energy crisis, protect environment and maintain sustainable economic development. There are many lignocellulose degradation systems in nature, in which conversion by enzyme systems from microorganism was one of the most efficient pathways. Fungi play an important role in the environmental lignocellulose degradation. The researches on the composition of their lignocellulolytic enzyme system and the regulation of enzyme expression are very important for improvement of cellulase production and enzyme system composition.
     The filamentous fungus Penicillium decumbens114-2can produce a balanced extracellular lignocellulolytic enzyme system with more β-glucosidase, which is very efficient for lignocellulose degradation. However, the plenty of β-glucosidases can hydrolyze the oligosaccharides to glucose immediately, which restricts the accumulation of inducers and the induction of cellulase genes. It shows that, as an important component of lignocellulolytic enzyme system, β-glucosidase can also participate in the regulation of cellulase gene expression by regulating the concentration of inducer.
     There have been several researches about the regulation mechanisms for lignocellulolytic enzymes production in P. decumbens. However, traditional methods studying on single-gene is hard to unravel the holistic regulation mechanisms for lignocellulolytic enzymes production due to the complexity of cellulase enzyme system and multifarious of regulatory levels and pathways. Transcriptomics, which can reveal the genome-wide differences in gene transcription of different strains under different culture conditions, is very useful in perfecting the holistic network of regulation mechanisms for lignocellulolytic enzymes production.
     The main results of the thesis are as follows:
     1. Characterization of the major extracellular β-glucosidase BGL1and its role in regulation of lignocellulolytic enzymes
     A β-glucosidase was purified from extracellular enzymes of P. decumbens114-2, which was identified the major extracellular β-glucosidase BGL1by MS/MS. The properties of BGL1, including its pH and temperature optima, the high affinity to substrates and high specific activity, make it has great potential to be utilized as supplementation in conversion of corncob residue and other lignocellulosic biomass into simple sugars. And it showed similar ability in boosting enzymatic degradation of substrate with the P-glucosidase from commercial enzymes NS-50010.
     After deletion of bgll, the phenotypes, including colony radial, growth rate, conidia formation or conidia color, were not affected in Abgll. When incubated in CW (cellulose+wheat bran) medium, the production of extracellular proteins (except for BGL1) was almost the same as the wild type strain. In accordance with this, expression levels of the major extracellular lignocellulolytic enzyme genes egl, cbhl and xyn10were similar with the parent strain on1%MCC in24h, although the extracellular oligosaccharides were accumulated during the incubation. Meanwhile, addition of oligosaccharides in the medium could not induce the higher expression of cellulase genes. When the intracellular cellobiose was determined on MCC (microcrystalline cellulose) medium, no more cellobiose was accumulated in Abgll, which might be due to the existence of intracellular β-glucosidase. The expressions of detected genes were all up-regulated after cultivation with0.02%cellobiose for4h, while the intracellular cellobiose concentration was in synchronous with gene repressions. We assumed that the oligosaccharides should be transported into the cell to trigger the induction, and the intracellular cellobiose concentration was important for the induction degree.
     2. Characterization of the major intracellular β-glucosidase BGL1and its role in regulation of lignocellulolytic enzymes
     The six intracellular p-glucosidases were deleted in P. decumbens114-2 respectively. As the major intracellular β-glucosidase, the absence of BGL2improved the extracellular FPA, EG, CBH and xylanase activities dramatically on CW medium compare with the wild type strain. While deletion of other β-glucosidases barely make any difference. SDS-PAGE analysis suggested that the secretion improvement of the extracellular proteins was not general and only some of proteins increased dramatically in Abgl2, which were probably lignocellulolytic enzymes. Meanwhile the calculated specific EG and xylanase activities of Abgl2broth also confirmed the conclusion. As a constitutive enzyme, the production of extracellular β-glucosidase was not promoted synchronously with those of cellulose-induced enzymes. In accordance with the enzymes production, the transcription levels of egl, cbhl, xynlOA were improved dramatically on0.02%cellobiose and1%MCC in Abgl2. When the intracellular cellodextrins of P. decumbens114-2and Abgl2were analyzed, greater amounts of cellobiose was determined in the cytoplasm of Abgl2than that of114-2. To explore the mechanism of the improved production of lignocellulolytic enzymes by deficiency of BGL2, bgl2was expressed in E. coli BL21(DE3) and the characters of purified rBGL2were analyzed. rBGL2showed efficient hydrolytic activities toward cellodextrins with degree of polymerization from2to4. Besides cellodextrins with the glycosidic bond type of β-1,4, rBGL2could also hydrolyze sophorose (β-1,2bond) and gentiobiose (β-1,6bond). The results strongly supported that the improved induction of lignocellulolytic enzymes expression in Abgl2by cellobiose and cellulose might be mediated by the intracellular accumulation of cellobiose.
     3. Preliminary study of the cellulase induction mechanism of P. decumbens in double deletion strain of P-glucosidase genes
     The mutant lacking both bglland bgl2was constructed. The mutant AbgllΔbgl2lost nearly all of the extra-β-glucosidase and most of intracellular β-glucosidase activities. However, AbgllΔbgl2could survive on the medium with cellobiose as the sole carbon source normally. The production of extracellular lignocellulolytic enzymes was not further enhanced compared with that of Abgl2as expected when incubated in CW medium. Transcriptional analysis of egl, cbhl and xyn10also revealed that simultaneously deletion of bgll and bgl2did not cause the further improvement of lignocellulolytic genes expression when incubated either on cellobiose or MCC. In accord with this, there was less cellobiose determined in the cytoplasm of AbgllΔbgl2compared with that of Abgl2, which probably be the reason resulting in the less efficient expression of lignocellulolytic genes. The results suggested that there seemed to be some other pathways activated to utilize cellobiose in the absence of main β-glucosidases, which caused the less accumulation of intracellular cellobiose and lower production of lignocellulolytic enzymes in AbgllAbgl2. The transcription levels of egl and cbhl were analyzed when induced by two potential inducers sophorose and gentiobiose in mutant AbgllAbgl2and no inductive effect was observed. The results suggested that despite acting as cellulase inducers in some other fungi, the two disaccharides did not participate in the induction of cellulase expression in P. decumbens. In other words, the induction mediated by cellobiose and cellulose was unrelated to the formation, if any, of sophorose or gentiobiose from cellobiose in P. decumbens.
     4. Transcriptional analysis of P. decumbens wild type strain114-2and mutant JU-A10-T
     Transcriptome of P. decumbens114-2and JU-A10-T on different carbon sources were analyzed using digital gene expression tag profiling (DGE) technology. The differential expression genes between114-2and JU-A10-T, as well as the differential expression genes on different carbon sources, were analyzed by Gene Ontology functional enrichment. The genes co-regulated with lignocellulolytic enzyme genes were worth studying, which might be related to the up-regulation of lignocellulolytic enzyme genes. The down-regulated genes in JU-A10-T relative to114-2were involved in organics transport, secondary metabolism and synthesizing amylases and proteases, which might contribute to the up-regulation of lignocellulolytic enzyme genes by alleviating burdens of protein synthesis and energy consumption.
引文
Andersen M, Vongsangnak W, Panagiotou G, Salazar M, Lehmann L, Nielsen J.2008. A trispecies Aspergillus microarray:comparative transcriptomics of three Aspergillus species. Proc Natl Acad Sci U A,105(11):4387-92.
    Aro N, Saloheimo A, Ilmen M, Penttila M.2001. ACEⅡ, a novel transcriptional activator involved in regulation of cellulase and xylanase genes of Trichoderma reesei. J BiolChem,276:24309-24314.
    Aro N, Ilmen M, Saloheimo A, Penttila M.2002. ACEI is a repressor of cellulase and xylanase genes in Trichoderma reesei. Appl Environ Microbiol,69:56-65.
    Baek SH, Kim S, Lee K, Lee JK, Hahn JS.2012. Cellulosic ethanol production by combination of cellulase-displaying yeast cells. Enzyme Microb Technol,51(6-7): 366-72.
    Bause E., Legler G.1974. Isolation and amino acid sequence of a hexadecapeptide from the active site of beta-glucosidase A3 from Aspergillus wentii. Hoppe Seylers Z Physiol Chem,355(4):438-42.
    Biely P, Vrsanska M, and Claeyssens M.1991. The EG I from Trichoderma reesei: action on β-1,4-oligomers and polymers derived from D-glucose and D-xylose. Eur J Biochem,200:157-163.
    Bisaria V.S., Mishra S.1989. Regulatory aspects of cellulase biosynthesis and secretion. Crit Rev Biotechnol,9(2):61-103.
    Boase NA, Kelly JM.2004. A role for creD, a carbon catabolite repression gene from Aspergillus nidulans, in ubiquitination. Mol Microbiol,53(3):929-940.
    Borkovich KA, Alex LA, Yarden O, et al.2004. Lessons from the genome sequence of Neurospora crassa:tracing the path from genomic blueprint to multicellular organism. Microbiol Mol Biol Rev,68(1):1-108.
    Bradford MM.1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 72:248-254.
    Brzobohaty B, Moore I, Kristoffersen P, Bako L, Campos N, Schell J, Palme K.1993. Release of active cytokinin by a beta-glucosidase localized to the maize root meristem. Science,262(5136):1051-4.
    Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B.2009. The Carbohydrate-Active EnZymes database (CAZy):an expert resource for Glycogenomics. Nucleic Acids Research,37(Database):D233-D238.
    Carle-Urioste JC, Escobar-Vera J, E1-Gogary S, Henrique-Silva F, Torigoi E, Crivellaro O, Herrera-Estrella A, El-Dorry H.1997. Cellulase induction in Trichoderma reesei by cellulose requires its own basal expression. J Biol Chem, 272(15):10169-74.
    Castellanos F, Schmoll M, Martinez P, Tisch D, Kubicek CP, Herrera-Estrella A, Esquivel-Naranjo EU.2010. Crucial factors of the light perception machinery and their impact on growth and cellulase gene transcription in Trichoderma reesei. Fungal Genet Biol,47(5):468-76.
    Chahal DS.1985. Solid-State Fermentation with Trichoderma reesei for cellulase production. Appl Environ Microbiol,49(1):205-10.
    Chen H, Hayn M, Esterbauer H.1992. Purification and characterization of two extracellular beta-glucosidases from Trichoderma reesei. Biochim Biophys Acta, 1121(1-2):54-60.
    Chen M, Qin Y, Liu Z, Liu K, Wang F, Qu Y.2010. Isolation and characterization of a (3-glucosidase from Penicillium decumbens and improving hydrolysis of corncob residue by using it as cellulase supplementation. Enzyme and Microbial Technology,46(6):444-449.
    Chikamatsu G, Shirai K, Kato M, Kobayashi T, Tsukagoshi N.1999. Structure and expression properties of the endo-beta-1,4-glucanase A gene from the filamentous fungus Aspergillus nidulans. FEMS Microbiol Lett,175:239-245.
    Chirico WJ, Brown RD.1987. Purification and characterization of a beta-glucosidase from Trichoderma reesei. Eur J Biochem,165:333-341.
    Claeyssens M, van Tilbeurgh H, Kramerling JP, Berg J, Vrsanska M, and Biely P. 1990. Studies on the cellulolytic system of the filamentous fungus Trichoderma reesei QM9414:substrate specificity and transfer activity of EG I. Biochem J, 270:251-256.
    Colabardini AC, Humanes AC, Gouvea PF, Savoldi M, Goldman MH, Kress MR, Bayram O, Oliveira JV, Gomes MD, Braus GH et al.2011. Molecular characterization of the Aspergillus nidulans fbxA encoding an F-box protein involved in xylanase induction. Fungal Genet Biol,49(2):130-140.
    Coradetti ST, Craig JP, Xiong Y, Shock T, Tian C, Glass NL.2012. Conserved and essential transcription factors for cellulase gene expression in ascomycete fungi. Proc Natl Acad Sci USA,109(19):7397-402.
    Cubero B, Scazzocchio C.1994. Two different, adjacent and divergent zinc finger binding sites are necessary for CREA-mediated carbon catabolite repression in the proline gene cluster of Aspergillus nidulans. EMBOJ,13(2):407-415.
    Cziferszky A, Mach RL, Kubicek CP.2002. Phosphorylation positively regulates DNA binding of the carbon catabolite repressor Crel of Hypocrea jecorina (Trichoderma reesei). J Biol Chem,277(17):14688-14694.
    Czjzek M, Cicek M, Zamboni V, Bevan DR, Henrissat B, Esen A.2000. The mechanism of substrate (aglycone) specificity in β-glucosidases is revealed by crystal structures of mutant maize β-glucosidase-DIMBOA,-DIMBOAGlc, and dhurrin complexes. Proc Natl Acad Sci USA,97:13555-13560.
    Dashtban M, Qin W.2012. Overexpression of an exotic thermotolerant beta-glucosidase in Trichoderma reesei and its significant increase in cellulolytic activity and saccharification of barley straw. Microb Cell Fact,11,63.
    de Souza WR, de Gouvea PF, Savoldi M, Malavazi I, de Souza Bernardes LA, Goldman MH, de Vries RP, de Castro Oliveira JV, Goldman GH.2011. Transcriptome analysis of Aspergillus niger grown on sugarcane bagasse. Biotechnol Biofuels,4,40.
    ie Vit MJ, Waddle JA, Johnston M.1997. Regulated nuclear translocation of the Migl glucose repressor. Mol Biol Cell,8:1603-1618.
    Decker C, Visser J, Schreier P.2000. β-Glucosidases from five black Aspergillus species:study of their physico-chemical and biocatalytic properties. Journal of Agricultural and Food Chemistry,48(10):4929-4936.
    den Haan R, Rose SH, Lynd LR, van Zyl WH.2007. Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae. Metab Eng,9(1): 87-94.
    du Plessis L, Rose SH, van Zyl WH.2010. Exploring improved endoglucanase expression in Saccharomyces cerevisiae strains. Appl Microbiol Biotechnol,86(5): 1503-11.
    Dunlap JC, Loros JJ. How fungi keep time:circadian system in Neurospora and other fungi. Curr Opin Microbiol 2006.9:579-587.
    Fekete E, Seiboth B, Kubicek CP, Szentirmai A, Karaffa L.2008. Lack of aldose 1-epimerase in Hypocrea jecorina (anamorph Trichoderma reesei):A key to cellulase gene expression on lactose. Proceedings of the National Academy of Sciences,105(20):7141-7146.
    Foreman PK, Brown D, Dankmeyer L, Dean R, Diener S, Dunn-Coleman NS, Goedegebuur F, Houfek TD, England GJ, Kelley AS, Meerman HJ, Mitchell T, Mitchinson C, Olivares HA, Teunissen PJ, Yao J, Ward M.2003. Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei. J Biol Chem,278(34):31988-97.
    Fujita Y, Takahashi S, Ueda M, Tanaka A, Okada H, Morikawa Y, Kawaguchi T, Arai M, Fukuda H, Kondo A.2002. Direct and efficient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes. Appl Environ Microbiol,68(10):5136-41.
    Fujita Y, Ito J, Ueda M, Fukuda H, Kondo A.2004. Synergistic saccharification and direct fermentation to ethanol of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Appl Environ Microbiol,70:1207-1212.
    Galagan JE, Calvo SE, Borkovich KA, Selker EU, Birren, B, et al.2003. The genome sequence of the filamentous fungus Neurospora crassa. Nature,422(6934): 859-68.
    Galazka JM, Tian C, Beeson WT, Martinez B, Glass NL, Cate JHD.2010. Cellodextrin Transport in Yeast for Improved Biofuel Production. Science, 330(6000):84-86.
    Gielkens MM, Dekkers E, Visser J, de Graaff LH.1999. Two cellobiohydrolase-encoding genes from Aspergillus niger require D-xylose and the xylanolytic transcriptional activator XlnR for their expression. Appl Environ Microbiol,65:4340-4345.
    Goyal A, Ghosh B, Eveleigh D.1991. Characteristics of fungal cellulases. Bioresour Technol,36:37-50.
    Gritzali M, Brown R.1979. The cellulase system of Trichoderma:relationships between purified extracellular enzymes from induced or cellulose-grown cells. Adv Chem Ser,181:237-260.
    Gunata Z, Vallier M.1999. Production of a highly glucose-tolerant extracellular β-glucosidase by three Aspergillus strains. Biotechnol Lett,21:219-223.
    Gusakov A.2011. Alternatives to Trichoderma reesei in biofuel production. Trends Biotechnol,29(9):419-25.
    Gyalai-Korpos M, Nagy G, Mareczky Z, Schuster A, Reczey K, Schmoll M.2010. Relevance of the light signaling machinery for cellulase expression in Trichoderma reesei (Hypocrea jecorina). BMC Res Notes,3,330.
    Harnpicharnchai P, Champreda V, Sornlake W, Eurwilaichitr L.2009. A thermotolerant β-glucosidase isolated from an endophytic fungi, Periconia sp., with a possible use for biomass conversion to sugars. Protein Expression and Purification,67(2):61-69.
    Hartl L, Kubicek CP, Seiboth B.2007. Induction of the gal pathway and cellulase genes involves no transcriptional inducer function of the galactokinase in Hypocrea jecorina. J Biol Chem,282:18654-18659.
    He H, Qin Y, Chen G, Li N, Liang Z.2013. Two-step purification of a novel β-glucosidase with high transglycosylation activity and another hypothetical β-glucosidase in Aspergillus oryzae HML366 and enzymatic characterization. Applied Biochemistry and Biotechnology,169(3):870-884.
    Henrissat B.1991. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J,280 (Pt 2):309-16.
    Henrissat B, Callebaut I, Fabrega S, Lehn P, Mornon JP, Davies G.1995. Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases. Proc Natl Acad Sci, USA,92:7090-7094.
    Henrissat B, Bairoch A.1996. Updating the sequence-based classification of glycosyl hydrolases. Biochem J,316:695-696.
    Henrissat B, Davies G.1997. Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol,7(5):637-44.
    Hong J, Tamaki H, Kumagai H.2006. Cloning and functional expression of thermostable p-glucosidase gene from Thermoascus aurantiacus. Applied Microbiology and Biotechnology,73(6):1331-1339.
    Hrmova M, Varghese JN, De Gori R, Smith BJ, Driguez H, Fincher GB.2001. Catalytic mechanisms and reaction intermediates along the hydrolytic pathway of a plant beta-D-glucan glucohydrolase. Structure,9(11):1005-16.
    Hynes MJ.2003. The Neurospora crassa genome opens up the world of filamentous fungi. Genome Biol,4(6):217.
    Idnurm A, Heitman J.2005. Light controls growth and development via a conserved pathway in the fungal kingdom. PLoS Biol,3:e95.
    Ilmen M, Onnela ML, Klemsdal S, Keranen S, Penttila M.1996a. Functional analysis of the cellobiohydrolase Ⅰ promoter of the filamentous fungus Trichoderma reesei. Mol Gen Genet,253:303-314.
    Ilmen M, Thrane C, Penttila M.1996b. The glucose repressor gene crel of Trichoderma:isolation and expression of a full-length and a truncated mutant form. Mol Gen Genet,251:451-460.
    Iyayi CB, Bruchmann E-E, Kubicek CP.1989. Induction of cellulase formation in Trichoderma reesei by cellobiono-1,5-lactone. Arch Microbiol,151:326-330.
    Juhasz T, Egyhazi A, Reczey K.2005. beta-Glucosidase production by Trichoderma reesei. Appl Biochem Biotechnol,121-124:243-54.
    Kantham L, Jagannathan V.1985. beta-Glucosidase of Penicillium funiculosum. II. Properties and mycelial binding. Biotechnol Bioeng,27(6):786-91.
    Karaffa L, Fekete E, Gamauf C, Szentirmai A, Kubicek CP, Seiboth B.2006. D-Galactose induces cellulase gene expression in Hypocrea jecorina at low growth rates. Microbiology,152:1507-1514.
    Karaffa L, Coulier L, Fekete E, Overkamp KM, Druzhinina IS, Mikus M, Seiboth B, Novak L, Punt PJ, Kubicek CP.2013. The intracellular galactoglycome in Trichoderma reesei during growth on lactose. Appl Microbiol Biotechnol, 10.1007/s00253-012-4667-y.
    Kitpreechavanich V, Hayashi M, Nagai S.1986. Purification and characterization of extracellular beta-xylosidase and beta-glucosidase from Aspergillus fumigates. Agric Biol Chem,50:1703-1711.
    Korotkova OG, Semenova MV, Morozova VV, Zorov IN, Sokolova LM, Bubnova TM, Okunev ON, Sinitsyn AP.2009. Isolation and properties of fungal beta-glucosidases. Biochemistry,74:569-577.
    Kotaka A, Bando H, Kaya M, Kato-Murai M, Kuroda K, Sahara H, Hata Y, Kondo A, Ueda M.2008. Direct ethanol production from barley beta-glucan by sake yeast displaying Aspergillus oryzae beta-glucosidase and endoglucanase. J Biosci Bioeng,105(6):622-7.
    Krappmann S, Bayram O, Braus GH.2005. Deletion and allelic exchange of the Aspergillus fumigatus veA locus via a novel recyclable marker module. Eukaryot Cell,4 (7):1298-1307.
    Krogh KB, Harris PV, Olsen CL, Johansen KS, Hojer-Pedersen J, Borjesson J, Olsson, L.2010. Characterization and kinetic analysis of a thermostable GH3 beta-glucosidase from Penicillium brasilianum. Appl Microbiol Biotechnol,86(1): 143-54.
    Kubicek CP, Messner R, Gruber F, Mandels M, Kubicek-Pranz EM.1993. Triggering of cellulase biosynthesis in Trichoderma reesei:involvement of a constitutive, sophorose-inducible, glucoseinhibited β-diglucoside permease. J Biol Chem, 268:19364-19368.
    Kubodera T, Yamashita N, Nishimura A.2000. Pyrithiamine resistance gene (ptrA) of Aspergillus oryzae:cloning, characterization and application as a dominant selectable marker for transformation. Biosci Biotechnol Biochem,64(7): 1416-1421.
    Kunitake E, Tani S, Sumitani J, Kawaguchi T.2013. A novel transcriptional regulator, ClbR, controls the cellobiose-and cellulose-responsive induction of cellulase and xylanase genes regulated by two distinct signaling pathways in Aspergillus aculeatus. Appl Microbiol Biotechnol,97(5):2017-28.
    Kuntothom T, Luang S, Harvey AJ, Fincher GB, Opassiri R, Hrmova M, Ketudat Cairns JR.2009. Rice family GH1 glycosyl hydrolases with β-D-glucosidase and P-D-mannosidase activities. Arch Biochem Biophys,491:84-95.
    Kurasawa T, Yachi M, Suto M, Kamagata Y, Takao S, Tomita F.1992. Induction of cellulase by gentiobiose and its sulfur-containing analog in Penicillium purpurogenum. Appl Environ Microbiol,58(1):106-10.
    Langston J, Sheehy N, Xu F.2006. Substrate specificity of Aspergillus oryzae family 3 beta-glucosidase. Biochim Biophys Acta,1764(5):972-8.
    Li L, Wright SJ, Krystofova S, Park G, Borkovich KA.2007. Heterotrimeric G protein signaling in filamentous fungi. Annu Rev Microbiol,61:423-452.
    Lieberman RL, Wustman BA, Huertas P, Powe AC. Jr Pine CW, Khanna R, Schlossmacher MG, Ringe D, Petsko GA.2007. Structure of acid β-glucosidase with pharmacological chaperone provides insight into Gaucher disease. Nat Chem Biol,3:101-107.
    Lineweaver H, Burk D.1934.The determination of enzyme dissociation constants. J Am Chem Soc,56:658-666.
    Liu G, Wei X, Qin Y, Qu Y.2010. Characterization of the endoglucanase and glucomannanase activities of a glycoside hydrolase family 45 protein from Penicillium decumbens 114-2. J Gen Appl Microbiol,56(3):223-229.
    Liu YG, Whittier RF.1995. Thermal asymmetric interlaced PCR:automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics,25:674-81.
    Lockington RA, Kelly JM.2001. Carbon catabolite repression in Aspergillus nidulans involves deubiquitination. Mol Microbiol,40(6):1311-1321.
    Lockington RA, Kelly JM.2002. The WD40-repeat protein CreC interacts with and stabilizes the deubiquitinating enzyme CreB in vivo in Aspergillus nidulans. Mol Microbiol,43(5):1173-1182.
    Loewenberg JR, Chapman CM.1977. Sophorose metabolism and cellulase induction in Trichoderma. Arch Microbiol,113:61-64.
    Ly HD, Withers SG.1999. Mutagenesis of glycosidases. Annu Rev Biochem,68: 487-522.
    Ma L, Zhang J, Zou G, Wang C, Zhou Z.2011. Improvement of cellulase activity in Trichoderma reesei by heterologous expression of a beta-glucosidase gene from Penicillium decumbens. Enzyme Microb Technol,49(4):366-71.
    Mandels M, Reese ET.1960. Induction of cellulase in fungi by cellobiose. J Bacteriol, 79:816-26.
    Mandels M, Parrish FW, Reese ET.1962. Sophorose as an inducer of cellulases in Trichoderma reesei. J Bacteriol,83:400-408.
    Mach-Aigner AR, Grosstessner-Hain K, Pocas-Fonseca MJ, Mechtler K, Mach RL, 2010. From an electrophoretic mobility shift assay to isolated transcription factors: a fast genomic-proteomic approach. BMC Genomics,11:644.
    Mach-Aigner AR, Gudynaite-Savitch L, Mach RL.2011. L-arabitol is the actual inducer of xylanase expression in Hypocrea jecorina (Trichoderma reesei). Appl Environ Microbiol,77(17):5988-5994.
    Mackenzie LF, Wang Q, Warren RAJ, Withers SG.1998. Glycosynthases:mutant glycosidases for oligosaccharide synthesis. J Am Chem Soc,120:5583-5584.
    Marana SR.2006. Molecular basis of substrate specificity in family 1 glycoside hydrolases.IUBMB Life,58(2):63-73.
    Margolles-Clark E, Ⅱmen M, Penttila M.1997. Expression patterns of ten hemicellulase genes of the filamentous fungus Trichoderma reesei on various carbon sources. J Biotechnol,57:167-179.
    Merivuori H, Siegler KM, Sands JA, Montenecourt BS.1985. Regulation of cellulase biosynthesis and secretion in fungi. Biochem Soc Trans,13(2):411-4.
    Michael WM, Dreyfuss G.1996. Distinct domains in ribosomal protein L5 mediate 5 S rRN A binding and nucleolar localization. J Biol Chem,271 (19):11571-4.
    Miller GL.1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem,31:426-8.
    Morikawa Y, Ohashi T, Mantani O, Okada H.1995. Cellulase induction by lactose in Trichoderma reesei PC-3-7. Appl Microbiol Biotechnol,44:106-111.
    Murai T, Ueda M, Atomi H, Shibasaki Y, Kamasawa N, Osumi M, Kawaguchi T, Arai M, Tanaka A.1997. Genetic immobilization of cellulase on the cell surface of Saccharomyces cerevisiae. Appl Microbiol Biotechnol,48(4):499-503.
    Murai T, Ueda M, Kawaguchi T, Arai M, Tanaka A.1998. Assimilation of cellooligosaccharides by a cell surface-engineered yeast expressing beta-glucosidase and carboxymethylcellulase from Aspergillus aculeatus. Appl Environ Microbiol,64(12):4857-61.
    Murray P, Aro N, Collins C, Grassick A, Penttila M, Saloheimo M, Tuohy M.2004. Expression in Trichoderma reesei and characterisation of a thermostable family 3 beta-glucosidase from the moderately thermophilic fungus Talaromyces emersonii. Protein Expr Purif,38(2):248-57.
    Nakayashiki H, Hanada S, Nguyen BQ, Kadotani N, Tosa Y, Mayama S.2005. RNA silencing as a tool for exploring gene function in ascomycete fungi. Fungal Genet Biol,42(4):275-83.
    Nakazawa H, Kawai T, Ida N, Shida Y, Kobayashi Y, Okada H, Tani S, Sumitani J, Kawaguchi T, Morikawa Y, Ogasawara W.2012. Construction of a recombinant Trichoderma reesei strain expressing Aspergillus aculeatus beta-glucosidase 1 for efficient biomass conversion. Biotechnol Bioeng,109(1):92-9.
    Nielsen J, Delmas S, Pullan ST, Gaddipati S, Kokolski M, Malla S, Blythe MJ, Ibbett R, Campbell M, Liddell S, Aboobaker A, Tucker GA, Archer DB.2012. Uncovering the genome-wide transcriptional responses of the filamentous fungus Aspergillus niger to lignocellulose using RNA Sequencing. PLoS Genetics,8(8): e1002875.
    Nitta M, Furukawa T, Shida Y, Mori K, Kuhara S, Morikawa Y, Ogasawara W.2012. A new Zn(II)(2)Cys(6)-type transcription factor Bg1R regulates beta-glucosidase expression in Trichoderma reesei. Fungal Genet Biol,49(5):388-97.
    Qi M, Jun H-S, Forsbert CW.2008. Ce19D, an atypical 1,4-b-Dglucan glucohydrolase from Fibrobacter succinogenes:characteristics, catalytic residues, and synergistic interactions with other cellulases. J Bacteriol,109:1976-1984.
    Ohgrena K, Burab R, Lesnickic G, Saddlerb J, Zacchia G.2007. A comparison between simultaneous saccharification and fermentation and separate hydrolysis and fermentation using steam-pretreated corn stover. Process Biochemistry, 42:834-839.
    Ohnishi M, Okada G, Yazaki T.1998. Characterization of the subsite structure of the beta-glucosidase from Aspergillus niger, an aspect of the mechanism of carbohydrate recognition. Carbohydr Res,308(1-2):201-5.
    Opassiri R, Pomthong B, Akiyama T, Nakphaichit M, Onkoksoong T, Ketudat Cairns M, Ketudat Cairns JR.2007. A stress-induced rice (Oryza sativa L.) beta-glucosidase represents a new subfamily of glycosyl hydrolase family 5 containing a fascin-like domain. Biochem J,408(2):241-9.
    Orkman WE, Day DF.1982. Purification and properties of beta-glucosidase from Aspergillus terreus. Appl Environ Microbiol,44(6):1289-1295.
    Phillips CM, Beeson WT, Cate JH, Marietta MA.2011. Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa. ACS Chemical Biology,6(12):1399-1406.
    Portnoy T, Margeot A, Linke R, Atanasova L, Fekete E, Sandor E, Hard L, Karaffa L, Druzhinina IS, Seiboth B, Le Crom S, Kubicek CP.2011. The CRE1 carbon catabolite repressor of the fungus Trichoderma reesei:a master regulator of carbon assimilation. BMC Genomics,12:269.
    Pozzo T, Pasten JL, Karlsson EN, Logan DT.2010. Structural and functional analyses of beta-glucosidase 3B from Thermotoga neapolitana:a thermostable three-domain representative of glycoside hydrolase 3. J Mol Biol,397(3): 724-39.
    Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Jr., Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T.2006. The path forward for biofuels and biomaterials. Science,311(5760):484-9.
    Riou C, Salmon JM, Vallier MJ, Gunata Z, Barre P.1998. Purification, characterization, and substrate specificity of a novel highly glucose-tolerant beta-glucosidase from Aspergillus oryzae. Appl Environ Microbiol,64(10): 3607-14.
    Ruijter GJG, Visser J.1996. Determination of intermediary metabolites in Aspergillus niger. JMicrobiol Methods,25 (3):295-302.
    Rye CS, Withers SG.2000. Glycosidase mechanisms. Curr Opin Chem Biol,4(5): 573-80.
    Saloheimo A, Aro N, llmen M, Penttila M.2000. Isolation of the acel gene encoding a Cys(2)-His(2) transcription factor involved in regulation of activity of the cellulase promoter cbhl of Trichoderma reesei. J Bio Chem,275:5817-5825.
    Saloheimo M, Kuja-Panula J, Ylosmaki E, Ward M, Penttila M.2002. Enzymatic properties and intracellular localization of the novel Trichoderma reesei beta-glucosidase BGLⅡ (cell A). Appl Environ Microbiol,68(9):4546-53.
    Sanyal A, Kundu RK, Dube DS.1988. Extracellular cellulolytic enzyme system of Aspergillus japonicus:2. Purification and characterization of an inducible extracellular beta-glucosidase. Enzyme Microb Technol,10:91-99.
    Sanz-Aparicio J, Hermoso JA, Martinez-Ripoll M, Lequerica JL, Polaina J.1998. Crystal structure of beta-glucosidase A from Bacillus polymyxa:insights into the catalytic activity in family 1 glycosyl hydrolases. J Mol Biol,275:491-502.
    Schmoll M, Zeilinger S, Mach RL, Kubicek CP.2004. Cloning of genes expressed early during cellulase induction in Hypocrea jecorina by a rapid subtraction hybridization approach. Fungal Genet Biol,41 (9):877-87.
    Schmoll M, Franchi L, Kubicek CP.2005a. Envoy, a PAS/LOV domain protein of Hypocrea jecorina (Anamorph Trichoderma reesei), modulates cellulase gene transcription in response to light. Eukaryot Cell,4(12):1998-2007.
    Schmoll M, Kubicek CP.2005b. oocl, a unique gene expressed only during growth of Hypocrea jecorina (anamorph:Trichoderma reesei) on cellulose. Curr Genet, 48(2):126-33.
    Schmoll M, Schuster A, Silva Rdo N, Kubicek CP.2009. The G-alpha protein GNA3 of Hypocrea jecorina (Anamorph Trichoderma reesei) regulates cellulase gene expression in the presence of light. Eukaryot Cell,8(3):410-420.
    Schmoll M, Tian C, Sun J, Tisch D, Glass NL.2012. Unravelling the molecular basis for light modulated cellulase gene expression-the role of photoreceptors in Neurospora crassa. BMC Genomics,13:127.
    Seiboth B, Hofmann G, Kubicek CP.2002. Lactose metabolism and cellulase production in Hypocreajecorina:The ga17 gene, encoding galactose-1-phosphate uridylyltransferase, is essential for growth on galactose but not for cellulase induction. Mol Genet Genomics,267:124-132.
    Seiboth B, et al.2004. The galactokinase of Hypocrea jecorina is essential for cellulase induction by lactose but dispensable for growth on D-galactose. Mol Microbiol,51:1015-1025.
    Seiboth B, Gamauf C, Pail M, Hartl L, Kubicek CP.2007. The D-xylose reductase of Hypocrea jecorina is the major aldose reductase in pentose and D-galactose catabolism and necessary for β-galactosidase and cellulase induction by lactose. Mol Microbiol,66:890-900.
    Sheehan J, Himmel M.1999. Enzymes, energy, and the environment:A strategic perspective on the U.S. Department of Energy's Research and Development Activities for Bioethanol. Biotechnol Prog,15(5):817-827.
    Shen Y, Zhang Y, Ma T, Bao X, Du F, Zhuang G, Qu Y.2008. Simultaneous saccharification and fermentation of acid-pretreated corncobs with a recombinant Saccharomyces cerevisiae expressing beta-glucosidase. Bioresour Technol,99(11): 5099-103.
    Singhania RR, Patel AK, Sukumaran RK, Larroche C, Pandey A.2013. Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Bioresource Technology,127:500-7.
    Srivastava SK, Gopalkrishnan KS, Ramachandran KB.1984. Kinetic characterization of a crude beta-D-glucosidase from Aspergillus wentii Pt 2804. Enzyme Microb Technol,6:508-512.
    Steinberg D, Mandels GR.1979. Induction of cellulolytic enzymes in Trichoderma reesei by sophorose. J Bacteriol,139:761-769.
    Sternberg D, Mandels GR.1980. Regulation of the cellulolytic system in Trichoderma reesei by sophorose:induction of cellulase and repression of beta-glucosidase. J Bacteriol,144:1197-1199.
    Strauss J, Horvath HK, Abdallah BM, Kindermann J, Mach RL, Kubicek CP.1999. The function of CreA, the carbon catabolite repressor of Aspergillus nidulans, is regulated at the transcriptional and post-transcriptional level. Mol Microbiol, 32(1):169-178.
    Stricker AR, Grosstessner-Hain K, Wurleitner E, Mach RL.2006. Xyrl (xylanase regulator 1) regulates both the hydrolytic enzyme system and D-xylose metabolism in Hypocrea jecorina. Eukaryot Cell,5(12):2128-2137.
    Sturn A, Quackenbush J, Trajanoski Z.2002. Genesis:Cluster analysis of microarray data. Bioinformatics,18(1):207-8.
    Sun J, Glass NL.2011. Identification of the CRE-1 cellulolytic regulon in Neurospora crassa. PLoS ONE,6(9):e25654.
    Sun J, Tian C, Diamond S, Glass NL.2012. Deciphering transcriptional regulatory mechanisms associated with hemicellulose degradation in Neurospora crassa. Eukaryot Cell,11(4):482-93.
    Sun X, Liu Z, Qu Y, Li X.2007. The effects of wheat bran composition on the production of biomass-hydrolyzing enzymes by Penicillium decumbens. Appl Biochem Biotechnol,146(1-3):119-128.
    Sun X, Liu Z, Zheng K, Song X, Qu Y.2008. The composition of basal and induced cellulase systems in Penicillium decumbens under induction or repression conditions. Enzyme and Microbial Technology,42(7):560-567.
    Suzuki H, et al.2010. Cellotriose and cellotetraose as inducers of the genes encoding cellobiohydrolases in the basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol,76:6164-6170.
    Szakmary K, Wotawa A, Kubicek CP.1991. Origin of oxidized cellulose degradation products and mechanism of their promotion of cellobiohydrolase I biosynthesis. J Gen Microbiol,137:2873-2878.
    Szengyel Z, Zacchi G, Varga A, Re'czey K.2000. Cellulase production of Trichoderma reesei Rut C30 using steam-pretreated spruce. Appl Biochem Biotechnol,84(86):679-688.
    Tian C, Beeson WT, lavarone AT, Sun J, Marietta MA, Cate JH, Glass NL.2009. Systems analysis of plant cell wall degradation by the model filamentous fungus Neurospora crassa. Proc Natl Acad Sci USA,106(52):22157-62.
    Tisch D, Kubicek CP, Schmoll M.2011a. The phosducin-like protein PhLP1 impacts regulation of glycoside hydrolases and light response in Trichoderma reesei. BMC Genomics,12:613.
    Tisch D, Kubicek CP, Schmoll M.2011b. New insights into the mechanism of light modulated signaling by heterotrimeric G-proteins:ENVOY acts on gnal and gna3 and adjusts cAMP levels in Trichoderma reesei (Hypocrea jecorina). Fungal Genet Biol,48(6):631-640.
    Tsukada T, Igarashi K, Yoshida M, Samejima M.2006. Molecular cloning and characterization of two intracellular beta-glucosidases belonging to glycoside hydrolase family 1 from the basidiomycete Phanerochaete chrysosporium. Appl Microbiol Biotechnol 73(4):807-14.
    Vaheri MP, Leisola M, and Kaupinnen V.1979. Transglycosylation products of the cellulase system of Trichoderma reesei. Biotechnol Lett,1:41-46.
    van Peij NN, Visser J, and de Graaff LH.1998a. Isolationand analysis of xlnR, encoding a transcriptional activator coordinating xylanolytic expression in Aspergillus niger. Mol Microbiol,27:131-142.
    van Peij NN, Gielkens MM, de Vries RP, Visser J, and de Graaff LH.1998b. The transcriptional activator XlnR regulates both xylanolytic and endoglucanase gene expression in Aspergillus niger. Appl Environ Microbiol,64:3615-3619.
    Vautard-Mey G, Cotton P, Fevre M.1999. Expression and compartmentation of the glucose repressor CRE1 from the phytopathogenic fungus Sclerotinia sclerotiorum. Eur J Biochem,266:252-259.
    Villena M A, Iranzo JFU, Gundllapalli SB, Otero RRC, Perez IB.2006. Characterization of an exocellular P-glucosidase from Debaryomyces pseudopolymorphus. Enzyme Microb Tech,39:229-234.
    Wang Q, Graham RW, Trimbur D, Warren RAJ, Withers SG.1994. Changing enzymic reaction mechanisms by mutagenesis:conversion of a retaining glucosidase to an inverting enzyme. J Am Chem Soc,116:11594-11595.
    Wang Q, Qian C, Zhang XZ, Liu N, Yan X, Zhou Z.2012. Characterization of a novel thermostable beta-glucosidase from a metagenomic library of termite gut. Enzyme Microb Technol,51(6-7):319-24.
    Wang Q, Trimbur D, Graham R, Warren RA, Withers SG.1995. Identification of the acid/base catalyst in Agrobacterium faecalis beta-glucosidase by kinetic analysis of mutants. Biochemistry,34(44):14554-62.
    Wang S, He J, Cui Z, Li S.2007. Self-formed adaptor PCR:a simple and efficient method for chromosome walking. Appl Environ Microbiol, 73:5048-51.
    Wei X, Qin Y, Qu Y.2010. Molecular cloning and characterization of two major endoglucanases from Penicillium decumbens. J Microbiol Biotechnol,20(2): 265-270.
    Wei X, Zheng K, Chen M, Liu G, Li J, Lei Y, Qin Y, Qu Y.2011. Transcription analysis of lignocellulolytic enzymes of Penicillium decumbens 114-2 and its catabolite-repression-resistant mutant. C R Biol,334(11):806-811.
    Xiao Z, Zhang X, Gregg DJ, Saddler JN.2004. Effects of sugar inhibition on cellulases and beta-glucosidase during enzymatic hydrolysis of softwood substrates. Appl Biochem Biotechnol,113-116:1115-26.
    Yamada R, Taniguchi N, Tanaka T, Ogino C, Fukuda H, Kondo A.2010. Cocktail delta-integration:a novel method to construct cellulolytic enzyme expression ratio-optimized yeast strains. Microb Cell Fact,9:32.
    Yang S, Jiang Z, Yan Q, Zhu H.2008. Characterization of a thermostable extracellular beta-glucosidase with activities of exoglucanase and transglycosylation from Paecilomyces thermophila. JAgric Food Chem,56(2):602-8.
    Yang S, Wang L, Yan Q, Jiang Z, Li L.2009. Hydrolysis of soybean isoflavone glycosides by a thermostable (3-glucosidase from Paecilomyces thermophila. Food Chem,115:1247-1252.
    Yu JH, Hamari Z, Han KH, Seo JA, Reyes-Dominguez Y, Scazzocchio C.2004. Double-joint PCR:a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet Biol,41(11):973-981.
    Zhang J, Zhang Y, Zhong Y, Qu Y, Wang T.2012. Ras GTPases modulate morphogenesis, sporulation and cellulase gene expression in the cellulolytic fungus Trichoderma reesei. PLoS ONE,7(11):e48786.
    Zhang YH, Lynd LR.2003. Cellodextrin preparation by mixed-acid hydrolysis and chromatographic separation. Anal Biochem,322 (2):225-232.
    Zhou Q, Xu J, Kou Y, Lv X, Zhang X, Zhao G, Zhang W, Chen G, Liu W.2012. Differential involvement of beta-glucosidases from Hypocrea jecorina in rapid induction of cellulase genes by cellulose and cellobiose. Eukaryot Cell,11(11): 1371-81.
    Znameroski EA, Coradetti ST, Roche CM, Tsai JC, lavarone AT, Cate JH, Glass NL. 2012. Induction of lignocellulose-degrading enzymes in Neurospora crassa by cellodextrins. Proc Natl Acad Sci U S A,109(16):6012-7.
    艾云灿,孟繁梅,高培基,Kubicek CP.2000.纤维二糖诱导阻遏真菌合成纤维素酶的特异基础.中山大学学报(自然科学版),39(3):73-77.
    郭尧君.1999.蛋白质电泳实验技术.北京,科学出版社.
    刘国栋.2012.木质纤维素降解真菌斜卧青霉的比较基因组学与功能基因组学研究.Vol博士学位论文.山东大学,济南.
    刘自勇.2008.斜卧青霉外切酶CBH I基因的研究.Vol硕士学位论文.山东大学,济南.
    曲音波,高培基,王祖农.1984.青霉的纤维素酶抗降解物阻遏突变株的选育.真 菌学报,3(4):238-243.
    田朝光,马延和.2010.真菌降解木质纤维素的功能基因组学研究进展.生物工程学报,26(10):1333-1339.
    韦小敏.2011.斜卧青霉胞外蛋白质组学分析与纤维素酶合成调控机制研究.Vol博士学位论文.山东大学,济南.
    张梁,石贵阳,章克昌.2006.酿酒酵母GPD1中整合表达纤维二糖酶基因用于纤维素酒精发酵的研究.西北农林科技大学学报(自然科学版),34(10):164-170.
    郑凯.2009.斜卧青霉基因表达谱的差异分析研究.Vol博士学位论文.山东大学,济南.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700