用户名: 密码: 验证码:
若干典型高分子体系的离子特异性效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在本论文中,我们研究不同高分子体系中的离子特异性效应,包括中性高分子聚(N-异丙基丙烯酰胺)(PNIPAM)、阴离子聚电解质聚苯乙烯磺酸钠(PSSNa)以及两性聚电解质(PSBMA)体系,主要研究内容如下:
     (1)我们通过浊度法与差示扫描量热法系统研究了PNIPAM在水-甲醇混合溶剂中reentrant行为的离子特异性效应。研究结果表明SCN-与ClO4-离子能够抑制reentrant行为,而其它离子则能突显这一行为。当离子逐步从chaotrope过渡到kosmotrope, PNIPAM的最低相转变温度逐渐降低,并且其所对应的甲醇体积分数逐渐增加。阴离子特异性效应是由于阴离子影响水-甲醇络合物结构造成的。阳离子特异性效应则是其与PNIPAM链的相互作用强弱不同导致的。随着甲醇含量增加,离子特异性效应被逐渐放大。DSC结果表明不同盐溶液中PNIPAM发生相转变时的焓变基本相同,说明离子特异性效应可能为熵效应所主导。
     (2)我们利用耗散测量型石英晶体微天平(QCM-D)研究了PSSNa刷在水-甲醇混合溶剂中构象行为的离子特异性效应。随着甲醇体积分数从0%增加到100%, PSSNa刷逐步塌缩,表明溶剂质量随着甲醇的加入逐渐变差。在不同的甲醇含量下,随着NaCl浓度的增加,PSSNa刷在塌缩过程中形成松散结构,并随着塌缩的继续,松散结构最终又变得较为致密均一。当加入CsCl时,除去上述的构象变化过程,PSSNa刷在高盐浓度时会呈现再溶胀的过程,且这一转变随甲醇含量增加而不断改变。当加入MgCl2时,这一塌缩再溶胀的过程随甲醇含量的增加变得更加明显。
     (3)我们利用QCM-D与表面等离子体共振仪(SPR)研究了PSBMA刷构象行为的离子特异性效应。研究结果表明阴离子能够减弱链内/间吸引相互作用,使接枝链水化程度随离子强度的增加而增加。在低离子强度区,从kosmotrope到chaotrope,阴离子减弱链内/间偶极-偶极相互作用能力逐渐增强,然而在高离子强度区,阴离子序列发生反转。同时,PSBMA刷在chaotrope型阴离子存在下,在水化过程呈现不均匀的结构。SPR结果中没有观察到明显的离子特异性效应,这是因为SPR信号变化对链的水化不敏感导致的。此外,chaotrope型阴离子能促使PSBMA刷更有效地阻抗蛋白质吸附。同样,chaotrope型阴离子能够更加有效地使蛋白质分子从PSBMA刷表面解吸附。
In this thesis, we will present the investigations on the specific ion effect in different polymer systems including netural PNIPAM system, negtively charged PSSNa system, and ziwtterionic PSBMA system. The main results are as follows:
     (1) We have systematically investigated the ion specific reentrant behavior of PNIPAM in water-methanol mixtures. Turbidity measurements demonstrate that SCN-and ClO4-depress the reentrant transition, whereas other anions enhance the transition. As the anion changes from chaotropic to kosmotropic, the minimum critical phase transition temperature (Tmin) decreases and the corresponding volume fraction of methanol (XM) shifts to a larger value. Our results demonstrate that anion specificity is due to the anionic structure making/breaking effect on water/methanol complexes. Cations are found to have a lesser but still significant effect on the reentrant transition and as Tmin decreases the corresponding XM also shifts to larger values as with the anions. Our studies show that cation specificity is induced by specific interactions between cations and PNIPAM chains. Furthermore, both anion and cation specificities are amplified as XM is increased due to the formation of additional water/methanol complexes. Calorimetry measurements demonstrate that the ion specificity is dominated by changes in entropy.
     (2) We have studied the salt effects on the conformational behavior of PSSNa brushes in the water-methanol mixtures using a quartz crystal microbalance with dissipation (QCM-D). As the methanol fraction increases, PSSNa brushes become more collapsed, indicating that the addition of methanol leads to a poorer solvent for PSSNa chains. When NaCl is introduced, as the salt concentration increases, the extended PSSNa brushes first shrink into an inhomogeneous structure, followed by the formation of a denser and homogeneous polymer layer with the further increase of salt concentration. When CsCl is introduced, besides abovermentioned conformational change, the PSSNa chains will be recharged again at high salt concentrations accompanied by the stretching of grafted chians. PSSNa brushes in the presence of MgCl2exhibit a similar conformational change to that in the presence of CsCl, but the reentrant behavior of conformational change becomes more obvious with the methanol fraction.
     (3) By use of QCM-D and surface plasmon resonance (SPR), we have systematically investigated the conformational behavior of poly(sulfobetaine methacrylate)(PSBMA) brushes as a function of ionic strength in the presence of different ions. The frequency change demonstrates that the effectiveness of anions to weaken the inter-/intrachain association and to enhance the hydration of the grafted chains increases from kosmotrope to chaotrope in the low ionic strength regime, but the ordering of anions is almost reversed at the high ionic strengths. The dissipation change indicates that some heterogeneous structures are formed inside the brushes in the presence of chaotropic anions with the increase of ionic strength. In SPR studies, the change of resonance unit (ARU) with ionic strength is determined by the balance between the increase of thickness and the decrease of refractive index of the brushes. ΔRU is insensitive to the coupled water molecules inside the brushes so that no anion specificity is observed in the SPR measurements. For the control of protein adsorption/desorption, our studies show that the brushes can more effectively resist the protein adsorption in the presence of a more chaotropic anion and a more chaotropic anion can also more effectively induce the protein desorption from the surface of the brushes.
引文
1. Hofmeister, F. Arch. Exp. Pathol. Pharmakol 1888,24,247-260.
    2. Kunz, W., Specific Ion Effects. World Scientific Publishing Co. Pte. Ltd:Singapore,2010.
    3. Zhang, Y. J.; Cremer, P. S. Proc. Natl. Acad. Sci.2009,106,15249-15253.
    4. Salis, A.; Bhattacharyya, M. S.; Monduzzi, M.J. Phys. Chem. B 2010,114,7996-8001.
    5. Chen, X.; Flores, S. C.; Lim, S. M.; Zhang, Y. J.; Yang, T. L.; Kherb, J.; Cremer, P. S. Langmuir 2010,26,16447-16454.
    6. Schelero, N.; Hedicke, G.; Linse, P.; Klitzing, R. V. J. Phys. Chem. B 2010,114,15523-15529.
    7. Hou, Y.; Yu, C. Q.; Liu, G. M.; Ngai, T.; Zhang, G. Z.J. Phys. Chem. B 2010,114,3799-3803.
    8. Xu, Y.; Li, L. Polymer 2005,46,7410-7417.
    9. Vlachy, N.; Jagoda-Cwiklik, B.; Vacha, R.; Touraud, D.; Jungwirth, P.; Kunz, W. Sci Adv. Colloid Interface Sci.2009,146,42-47.
    10. Hou, Y.; Liu, G. M.; Wu, Y.; Zhang, G. Z. Phys. Chem. Chem. Phys.2011,13,2880-2886.
    11. dos Santos, A. P.; Diehl, A.; Levin, Y. Langmuir 2010,26,10778-10783.
    12. Heath, M. D.; Henderson, B.; Perkin, S. Langmuir 2010,26,5304-5308.
    13. Ninham, B. W.; Lo Nostro, P., Molecular Forces and Self Assembly in Colloid, Nano Sciences and Biology. Cambridge University Press:London,2010.
    14. Poiseuille, J. L. Ann. Chim. Phys.1847,21,76-110.
    15. Jones, G.; Dole, M. Journal of the American Chemical Society 1929,51,2950-2964.
    16. Falkenhagen, H.; Dole, M. Physikalische Zeitschrift 1929,30,611-622.
    17. Marcus, Y. Chem. Rev.2009,109,1346-1370.
    18. Jenkins, H. D. B.; Marcus, Y. Chem. Rev.1995,95,2695-2724.
    19. Yang, Z.; Liu, X. J.; Chen, C.; Halling, P. J. Biochimica Et Biophysica Acta-Proteins and Proteomics 2010,1804,821-828.
    20. Gurney, R. W., Ionic Processes in Solution. McGrawHill:New York,1953.
    21. Collins, K. D. Methods 2004,34,300-311.
    22. Robinson, R. A.; Stokes, R. H., Electrolyte Solutions. Butterworths:London,1959.
    23. Wu, Y. C.; Hamer, W. J. Journal of Physical and Chemical Reference Data 1980,9,513-518.
    24. Salis, A.; Pinna, M. C.; Bilanicova, D.; Monduzzi, M.; Lo Nostro, P.; Ninham, B. W. Journal of Physical Chemistry B 2006,110,2949-2956.
    25. Voinescu, A. E.; Bauduin, P.; Pinna, M. C; Touraud, D.; Ninham, B. W.; Kunz, W. Journal of Physical Chemistry B 2006,110,8870-8876.
    26. Parsons, D. F.; Ninham, B. W. Langmuir 2010,26,6430-6436.
    27. Parsons, D. F.; Ninham, B. W. Langmuir 2010,26,1816-1823.
    28. Cox, W. M.; Wolfenden, J. H. Journal of the Chemical Society 1933,118-119.
    29. Frank, H. S.; Evans, M. W. Journal of Chemical Physics 1945,13,507-532.
    30. Frank, H. S.; Wen, W. Y. Discussions of the Faraday Society 1957,133-140.
    31. Batchelor, J. D.; Olteanu, A.; Tripathy, A.; Pielak, G. J. Journal of the American Chemical Society 2004,126,1958-1961.
    32. Lo Nostro, P.; Ninham, B. W. Chemical Reviews 2012,112,2286-2322.
    33. Zavitsas, A. A. Journal of Physical Chemistry B 2001,105,7805-7817.
    34. Lyklema, J. Advances in Colloid and Interface Science 2003,100,1-12.
    35. Ramanath.Ps; Friedman, H. L. J. Chem. Phys.1971,54,1086-&.
    36. Vlachy, N.; Drechsler, M.; Touraud, D.; Kunz, W. Comptes Rendus Chimie 2009,12,30-37.
    37. Lund, M.; Vrbka, L.; Jungwirth, P. J. Am. Chem. Soc.2008,130,11582-+.
    38. Lund, M.; Jungwirth, P.; Woodward, C. E. Phys. Rev. Lett.2008,100.
    39. Lund, M.; Vacha, R.; Jungwirth, P. Langmuir 2008,24,3387-3391.
    40. Parsons, D. F.; Bostrom, M; Lo Nostro, P.; Ninham, B. W. Phys. Chem. Chem. Phys.2011, 13,12352-12367.
    41. Ninham, B. W.; Yaminsky, V. Langmuir 1997,13,2097-2108.
    42. Bostrom, M.; Williams, D. R. M.; Ninham, B. W. Phys. Rev. Lett.2001,87.
    43. Bostrom, M.; Williams, D. R. M.; Ninham, B. W. Biophys. J.2003,85,686-694.
    44. Bostrom, M.; Williams, D. R. M.; Ninham, B. W. J. Phys. Chem. B 2002,106,7908-7912.
    45. Bostrom, M; Lonetti, B.; Fratini, E.; Baglioni, P.; Ninham, B. W. J. Phys. Chem. B 2006,110, 7563-7566.
    46. Brown, E. C.; Mucha, M.; Jungwirth, P.; Tobias, D. J. J. Phys. Chem. B 2005,109, 7934-7940.
    47. Jungwirth, P.; Tobias, D. J. Chem. Rev.2006,106,1259-1281.
    48. Jungwirth, P.; Tobias, D. J. J. Phys. Chem. B 2002,106,6361-6373.
    49. Ghosal, S.; Hemminger, J. C.; Bluhm, H.; Mun, B. S.; Hebenstreit, E. L. D.; Ketteler, G.; Ogletree, D. F.; Requejo, F. G.; Salmeron, M. Science 2005,307,563-566.
    50. Bilanicova, D.; Salis, A.; Ninham, B. W.; Monduzzi, M. J. Phys. Chem. B 2008,112,12066-12072.
    51. Hallberg, F.; Furo, I.; Stilbs, P. J. Am. Chem. Soc.2009,131,13900-13901.
    52. Henry, C. L.; Craig, V. S. J. Langmuir 2008,24,7979-7985.
    53. Omta, A. W.; Kropman, M. F.; Woutersen, S.; Bakker, H. J. Science 2003,301,347-349.
    54. O'Brien, J. T.; Prell, J. S.; Bush, M. F.; Williams, E. R. J. Am. Chem. Soc.2010,132, 8248-8249.
    55. Tielrooij, K. J.; Garcia-Araez, N.; Bonn, M.; Bakker, H. J. Science 2010,328,1006-1009.
    56. Gurau, M. C.; Lim, S. M.; Castellana, E. T.; Albertorio, F.; Kataoka, S.; Cremer, P. S. J. Am. Chem. Soc.2004,126,10522-10523.
    57. Manciu, M.; Ruckenstein, E. Langmuir 2005,21,11312-11319.
    58. Vrbka, L.; Jungwirth, P.; Bauduin, P.; Touraud, D.; Kunz, W. J. Phys. Chem. B 2006,110, 7036-7043.
    59. Du, H. B.; Wickramasinghe, R.; Qian, X. H. J. Phys. Chem.B 2010,114,16594-16604.
    60. Heyda, J.; Vincent, J. C.; Tobias, D. J.; Dzubiella, J.; Jungwirth, P. Journal of Physical Chemistry B 2010,114,1213-1220.
    61. Zhang, Y. J.; Furyk, S.; Bergbreiter, D. E.; Cremer, P. S. J. Am. Chem. Soc.2005,127, 14505-14510.
    62. Cowie, J. M. G.; Mohsin, M. A.; Mcewen, I. J. Polymer 1987,28,1569-1572.
    63. Schild, H. G.; Muthukumar, M.; Tirrell, D. A. Macromolecules 1991,24,948-952.
    64. Winnik, F. M.; Ringsdorf, H.; Venzmer, J. Macromolecules 1990,23,2415-2416.
    65. Wolf, B. A.; Willms, M. M. Makromolekulare Chemie-Macromolecular Chemistry and Physics 1978,179,2265-2277.
    66. Katayama, S.; Hirokawa, Y.; Tanaka, T. Macromolecules 1984,17,2641-2643.
    67. Amiya, T.; Hirokawa, Y.; Hirose, Y.; Li, Y.; Tanaka, T. J. Chem. Phys.1987,86,2375-2379.
    68. Zhang, G. Z.; Wu, C. J. Am. Chem. Soc.2001,123,1376-1380.
    69. Vause, C. A.; Walker, J. A. J. Phys. A-math. Gen.1986,19, L167-L174.
    70. Tanaka, F.; Koga, T.; Kojima, H.; Xue, N.; Winnik, F. M. Macromolecules 2011,44,2978-2989.
    71. Lopez-Leon, T.; Bastos-Gonzalez, D.; Ortega-Vinuesa, J. L.; Elaissari, A. Chemphyschem 2010,11,188-194.
    72. He, Y.; Hower, J.; Chen, S. F.; Bernards, M. T.; Chang, Y.; Jiang, S. Y. Langmuir 2008,24, 10358-10364.
    73. Ma, C. F.; Hou, Y.; Liu, S.; Zhang, G. Z. Langmuir 2009,25,9467-9472.
    74. Nakabayashi, N.; Williams, D. F. Biomaterials 2003,24,2431-2435.
    75. Zhang, Z.; Chen, S. F.; Jiang, S. Y. Biomacromolecules 2006,7,3311-3315.
    76. Zhang, Z.; Chao, T.; Chen, S. F.; Jiang, S. Y. Langmuir 2006,22,10072-10077.
    77. Chang, Y.; Chen, S. F.; Zhang, Z.; Jiang, S. Y. Langmuir 2006,22,2222-2226.
    78. Cheng, N.; Brown, A. A.; Azzaroni, O.; Huck, W. T. S. Macromolecules 2008,41,6317-6321.
    79. Azzaroni, O.; Brown, A. A.; Huck, W. T. Angew. Chem. Int. Ed.2006,45,1770-1774.
    80. Shao, Q.; He, Y.; Jiang, S. Y. J. Phys. Chem. B 2011,115,8358-8363.
    81. He, Y.; Shao, Q.; Chen, S. F.; Jiang, S. Y. J. Phys. Chem. C 2011,115,15525-15531.
    1. Bottom, V. E., Introduction to Quartz Crystal Unit Design. Van Nostrand Reinhold Co.:New York,1982.
    2. Sauerbrey, G. Z. Phys.1959,155,206-222.
    3. Erdem, U. Journal of Physics E-Scientific Instruments 1984,17,1100-1101.
    4. Nomura, T.; Okuhara, M. Analytica Chimica Acta 1982,142,281-284.
    5. Nomura, T.; Okuhara, M.; Murata, K.; Hattori, O. Bunseki Kagaku 1981,30,417-418.
    6. Kanazawa, K. K.; Gordon, J. G. Analytical Chemistry 1985,57,1770-1771.
    7. Kanazawa, K. K.; Gordon, J. G. Analytica Chimica Acta 1985,175,99-105.
    8. Rodahl, M.; Kasemo, B. Sensors and Actuators B-Chemical 1996,37,111-116.
    9. Rodahl, M.; Kasemo, B. Review of Scientific Instruments 1996,67,3238-3241.
    10. Rodahl, M.; Hook, F.; Krozer, A.; Brzezinski, P.; Kasemo, B. Review of Scientific Instruments 1995,66,3924-3930.
    11. Rodahl, M.; Kasemo, B. Sensors and Actuators a-Physical 1996,54,448-456.
    12. Voinova, M. V.; Rodahl, M.; Jonson, M.; Kasemo, B. Physica Scripta 1999,59,391-396.
    13. Wood, R. W. Philosophical Magazine 1902,3,396-410.
    14. Fano, U. Journal of the Optical Society of America 1941,31,213-222.
    15. Drude, P. Annalen Der Physik 1902,7,687-692.
    16. Drude, P. Annalen Der Physik 1900,1,566-613.
    17. Ritchie, R. H. Physical Review 1957,106,874-881.
    18. Powell, C. J.; Swan, J. B. Physical Review 1959,115,869-875.
    19. Powell, C. J.; Swan, J. B. Physical Review 1959,116,81-83.
    20. Otto, A. Zeitschrift Fur Physik 1968,216,398-&.
    21. Otto, A. Bulletin of the American Physical Society 1968,13,983-&.
    22. Otto, A. Physica Status Solidi 1968,26, K99-&.
    23. Kroger, E.; Kretschmann, E. Zeitschrift Fur Physik 1970,237,1-&.
    24. Kretschmann, E. Zeitschrift Fur Physik 1971,241,313-&.
    25. Kretschm.E; Raether, H. Zeitschrift Fur Naturforschung Part a-Astrophysik Physik Und Physikalische Chemie 1968, A 23,2135-&.
    26. Liedberg, B.; Nylander, C.; Lundstrom, I. Sensors and Actuators 1983,4,299-304.
    27. Nylander, C.; Liedberg, B.; Lind, T. Sensors and Actuators 1982,3,79-88.
    28. Knoll, W. Annual Review of Physical Chemistry 1998,49,569-638.
    29.波恩,M.;沃尔夫,E.,光学原理科学出版社:1978.
    30. Pockrand, I. Surface Science 1978,72,577-588.
    31. Xiao, C. D.; Sui, S. F. Sensors and Actuators B-Chemical 2000,66,174-177.
    1. Zhang, Y. J.; Cremer, P. S. Proc. Natl. Acad. Sci.2009,106,15249-15253.
    2. Salis, A.; Bhattacharyya, M. S.; Monduzzi, M. J. Phys. Chem. B 2010,114,7996-8001.
    3. Chen, X.; Flores, S. C.; Lim, S. M.; Zhang, Y. J.; Yang, T. L.; Kherb, J.; Cremer, P. S. Langmuir 2010,26,16447-16454.
    4. Schelero, N.; Hedicke, G.; Linse, P.; Klitzing, R. V. J. Phys. Chem. B 2010,114,15523-15529.
    5. Hou, Y.; Yu, C. Q.; Liu, G. M.; Ngai, T.; Zhang, G. Z. J. Phys. Chem. B 2010,114,3799-3803.
    6. Xu, Y.; Li, L. Polymer 2005,46,7410-7417.
    7. Vlachy, N.; Jagoda-Cwiklik, B.; Vacha, R.; Touraud, D.; Jungwirth, P.; Kunz, W. Sci Adv. Colloid Interface Sci.2009,146,42-47.
    8. dos Santos, A. P.; Diehl, A.; Levin, Y. Langmuir 2010,26,10778-10783.
    9. Heath, M. D.; Henderson, B.; Perkin, S. Langmuir 2010,26,5304-5308.
    10. Kunz, W. Curr. Opin. Colloid Interface Sci.2010,15,34-39.
    11. Gurney, R. W., Ionic Processes in Solution. McGrawHill:New York,1953.
    12. Marcus, Y., Ion Solvation. Wiley:Chichester, UK,1985.
    13. Collins, K. D.; Washabaugh, M. W. Q. Rev. Biophys.1985,18,323-422.
    14. Omta, A. W.; Kropman, M. F.; Woutersen, S.; Bakker, H. J. Science 2003,301,347-349.
    15. O'Brien, J. T.; Prell, J. S.; Bush, M. F.; Williams, E. R. J. Am. Chem. Soc.2010,132, 8248-8249.
    16. Tielrooij, K. J.; Garcia-Araez, N.; Bonn, M.; Bakker, H. J. Science 2010,328,1006-1009.
    17. Paschek, D.; Ludwig, R. Angew. Chem. Int. Ed.2011,50,352-353.
    18. Jenkins, H. D. B.; Marcus, Y. Chem. Rev.1995,95,2695-2724.
    19. Marcus, Y. Chem. Rev.2009,109,1346-1370.
    20. Ninham, B. W.; Lo Nostro, P., Molecular Forces and Self Assembly in Colloid, Nano Sciences and Biology. Cambridge University Press:London,2010.
    21. Mason, W. A.; Shutt, W. J. Proc. Roy. Soc. Lond. Math. Phys. Sci.1940,175,234-253.
    22. Ibuki, K.; Nakahara, M. J. Chem. Phys.1987,86,5734-5738.
    23. Chagnes, A.; Carre, B.; Willmann, P.; Lemordant, D. J. Power Sources 2002,109,203-213.
    24. Day, T. J. F.; Patey, G. N. J. Chem. Phys.1999,110,10937-10944.
    25. Hao, J. K.; Cheng, H.; Butler, P.; Zhang, L.; Han, C. C. J. Chem. Phys.2010,132,154902.
    26. Kunz, W.; Lo Nostro, P.; Ninham, B. W. Curr. Opin. Colloid Interface Sci.2004,9,1-18.
    27. Yang, Y. Y.; Zeng, F.; Tong, Z.; Liu, X. X.; Wu, S. Z. J. Polym. Sci. B-Polym. Phys.2001,39, 901-907.
    28. Freitag, R.; Garret-Flaudy, F. Langmuir 2002,18,3434-3440.
    29. Zhang, Y. J.; Furyk, S.; Bergbreiter, D. E.; Cremer, P. S. J. Am. Chem. Soc.2005,127, 14505-14510.
    30. Zhang, Y. J.; Furyk, S.; Sagle, L. B.; Cho, Y.; Bergbreiter, D. E.; Cremer, P. S. J. Phys. Chem. C 2007,111,8916-8924.
    31. Burba, C. M.; Carter, S. M.; Meyer, K. J.; Rice, C. V. J. Phys. Chem. B 2008,112, 10399-10404.
    32. Du, H. B.; Wickramasinghe, R.; Qian, X. H. J. Phys. Chem.B 2010,114,16594-16604.
    33. Heyda, J.; Vincent, J. C.; Tobias, D. J.; Dzubiella, J.; Jungwirth, P. Journal of Physical Chemistry B 2010,114,1213-1220.
    34. Winnik, F. M.; Ringsdorf, H.; Venzmer, J. Macromolecules 1990,23,2415-2416.
    35. Schild, H. G.; Muthukumar, M.; Tirrell, D. A. Macromolecules 1991,24,948-952.
    36. Perrier, S.; Barner-Kowollik, G.; Quinn, J. F.; Vana, P.; Davis, T. P. Macromolecules 2002,35, 8300-8306.
    37. Tanaka, F.; Koga, T.; Kojima, H.; Xue, N.; Winnik, F. M. Macromolecules 2011,44, 2978-2989.
    38. Collins, K. D. Methods 2004,34,300-311.
    39. Tanaka, F.; Koga, T.; Winnik, F. M. Phys. Rev. Lett.2008,101,028302.
    40. Soper, A. K.; Finney, J. L. Phys. Rev. Lett.1993,71,4346-4349.
    41. Alam, M. K.; Callis, J. B. Anal. Chem.1994,66,2293-2301.
    42. Guillaume, Y. C.; Guinchard, C. Anal. Chem.1998,70,608-615.
    43. Wakisaka, A.; Abdoul-Carime, H.; Yamamoto, Y.; Kiyozumi, Y. J. Chem. Soc. Faraday Trans.1998,94,369-374.
    44. Kirschner, K. N.; Woods, R. J.J. Phys. Chem. A 2001,105,4150-4155.
    45. Dixit, S.; Crain, J.; Poon, W. C. K.; Finney, J. L.; Soper, A. K. Nature 2002,416,829-832.
    46. Guo, J. H.; Luo, Y.; Augustsson, A.; Kashtanov, S.; Rubensson, J. E.; Shuh, D. K.; Agren, H.; Nordgren, J. Phys. Rev. Lett.2003,91,157401.
    47. Kiselev, M.; Ivlev, D. J. Mol. Liq.2004,110,193-199.
    48. Zhang, G. Z.; Wu, C. J. Am. Chem. Soc.2001,123,1376-1380.
    49. Zhang, G. Z.; Wu, C. Phys. Rev. Lett.2001,86,822-825.
    50. Hidaka, F.; Yoshimura, Y.; Kanno, H. J. Solut. Chem.2003,32,239-251.
    51. Sacco, A.; De Cillis, F. M.; Holz, M. J. Chem. Soc. Faraday Trans.1998,94,2089-2092.
    52. Lopez-Leon, T.; Bastos-Gonzalez, D.; Ortega-Vinuesa, J. L.; Elaissari, A. Chemphyschem 2010,11,188-194.
    53. Dougan, L.; Hargreaves, R.; Bates, S. P.; Finney, J. L.; Reat, V.; Soper, A. K.; Crain, J. J. Chem. Phys.2005,122,174514.
    54. Nieto-Draghi, C.; Hargreaves, R.; Bates, S. P. J. Phys-condens. Mater.2005,17, S3265-S3272.
    55. Corsaro, C.; Spooren, J.; Branca, C.; Leone, N.; Broccio, M.; Kim, C.; Chen, S. H.; Stanley, H. E.; Mallamace, F. J. Phys. Chem.B 2008,112,10449-10454.
    56. Feakins, D.; Freemantle, D. J.; Lawrence, K. G. Chem. Commun.1968,970-971.
    57. Feakins, D.; Freemantle, D. J.; Lawrence, K. G. J. Chem. Soc. Faraday Trans.11974,70, 795-806.
    58. Stairs, R. A., Viscosity of Dilute Solutions of Alkali Halides in Methanol-Water Mixtures. In Thermodynamic Behavior of Electrolytes in Mixed Solvents-Ii, Furter, W. F., Ed. American Chemical Society:Washington, DC,1979; Vol.177, pp 167-176.
    59. Shechter, I.; Ramon, O.; Portnaya, I.; Paz, Y.; Livney, Y. D. Macromolecules 2010,43, 480-487.
    60. Heskins, M.; Guillet, J. E. J. Macromol. Sci. Part A-Pure Appl. Chem.1968,2,1441-1455
    61. Beck, T. L.J. Phys. Chem. B 2011,115,9776-9781.
    1. Ruhe, J.; Ballauff, M.; Biesalski, M.; Dziezok, P.; Grohn, F.; Johannsmann, D.; Houbenov, N.; Hugenberg, N.; Konradi, R.; Minko, S.; Motornov, M.; Netz, R. R.; Schmidt, M.; Seidel, C.; Stamm, M.; Stephan, T.; Usov, D.; Zhang, H.Adv. Polym. Sci.2004,165,79-150.
    2. Sun, T.; Wang, G.; Feng, L.; Liu, B.; Ma, Y.; Jiang, L.; Zhu, D. Angew Chem Int Ed Engl 2004, 43,357-360.
    3. Zhang, X. H.; Hong, L.; Liu, Z. L.; Lee, J. Y. Colloid Polym. Sci.2008,286,1351-1360.
    4. Ross, R. S.; Pincus, P. Macromolecules 1992,25,2177-2183.
    5. Wittemann, A.; Ballauff, M. Phys. Chem. Chem. Phys.2006,8,5269-5275.
    6. Rivas, B. L.; Moreno-Villoslada, I. J. Phys. Chem. B 1998,102,6994-6999.
    7. Biesalski, M.; Johannsmann, D.; Ruhe, J. Macromol. Symp.1999,145,113-124.
    8. Pincus, P. Macromolecules 1991,24,2912-2919.
    9. Zhulina, E. B.; Birshtein, T. M.; Priamitsyn, V. A.; Klushin, L. I. Macromolecules 1995,28, 8612-8620.
    10. Lyatskaya, Y. V.; Leermakers, F. A. M.; Fleer, G. J.; Zhulina, E. B.; Birshtein, T. M. Macromolecules 1995,28,3562-3569.
    11. Zhulina, E. B.; Birshtein, T. M.; Borisov, O. V. Macromolecules 1995,28,1491-1499.
    12. Liu, G. M.; Zou, S. R.; Zhang, G. Z. JPhys Chem B 2008,112,4167-4171.
    13. McAloney, R. A.; Sinyor, M.; Dudnik, V.; Goh, M. C. Langmuir 2001,17,6655-6663.
    14. Lo Nostro, P.; Ninham, B. W. Chem Rev 2012,112,2286-2322.
    15. Ballauff, M.; Borisov, O. Curr. Opin. Colloid Interface Sci.2006,11,316-323.
    16. Sanders, L. K.; Guaqueta, C.; Angelini, T. E.; Lee, J. W.; Slimmer, S. C.; Luijten, E.; Wong, G. C. L. Phys. Rev. Lett.2005,95.
    17. Zhang, F.; Skoda, M. W. A.; Jacobs, R. M. J.; Zorn, S.; Martin, R. A.; Martin, C. M.; Clark, G. F.; Weggler, S.; Hildebrandt, A.; Kohlbacher, O.; Schreiber, F. Phys. Rev. Lett.2008,101.
    18. Hou, Y.; Liu, G. M.; Wu, Y.; Zhang, G. Z. Phys. Chem. Chem. Phys.2011,13,2880-2886.
    19. Mason, W. A.; Shutt, W. J. Proc. Roy. Soc. Lond. Math. Phys. Sci.1940,175,234-253.
    20. Ibuki, K.; Nakahara, M. J. Chem. Phys.1987,86,5734-5738.
    21. Chagnes, A.; Carre, B.; Willmann, P.; Lemordant, D. J. Power Sources 2002,109,203-213.
    22. Biesalski, M.; Johannsmann, D.; Ruhe, J. J. Chem. Phys.2004,120,8807-8814.
    23. Farhan, T.; Azzaroni, O.; Huck, W. T. S. Soft Matter 2005,1,66-68.
    24. Chen, F. G.; Liu, G. M.; Zhang, G. Z. J. Polym. Sci. A-Polym. Chem.2012,50,831-835.
    25. Eisele, N. B.; Andersson, F. I.; Frey, S.; Richter, R. P. Biomacromolecules 2012,13, 2322-2332.
    26. Truzzolillo, D.; Bordi, F.; Cametti, C; Sennato, S. Phys. Rev. E 2009, 79.
    27. Ma, J. C; Dougherty, D. A. Chem. Rev. 1997, 97, 1303-1324.
    28. Lu, Q.; Oh, D. X.; Lee, Y.; Jho, Y.; Hwang, D. S.; Zeng, H. Angew Chem Int Ed Engl 2013, 52, 3944-3948.
    29. Gibb, C. L. D.; Gibb, B. C. J. Am. Chem. Soc. 2011,133, 7344-7347.
    30. Han, M.; Xing, X. J. Stat. Phys. 2013, 1-19.
    1. Chang, Y.; Chen, S. F.; Zhang, Z.; Jiang, S. Y. Langmuir 2006,22,2222-2226.
    2. Iwasaki, Y.; Ishihara, K. Anal. Bioanal. Chem.2005,381,534-546.
    3. Zhang, Z.; Chao, T.; Chen, S. F.; Jiang, S. Y. Langmuir 2006,22,10072-10077.
    4. Chen, S. F.; Li, L. Y.; Zhao, C.; Zheng, J. Polymer 2010,51,5283-5293.
    5. Kitano, H.; Mori, T.; Takeuchi, Y.; Tada, S.; Gemmei-Ide, M.; Yokoyama, Y.; Tanaka, M. Macromol. Biosci.2005,5,314-321.
    6. Lowe, A. B.; McCormick, C. L. Chem. Rev.2002,102,4177-4189.
    7. Kikuchi, M.; Terayama, Y.; Ishikawa, T.; Hoshino, T.; Kobayashi, M.; Ogawa, H.; Masunaga, H.; Koike, J.; Horigome, M.; Ishihara, K.; Takahara, A. Polym. J.2012,44,121-130.
    8. Georgiev, G. S.; Karnenska, E. B.; Vassileva, E. D.; Kamenova, I. P.; Georgieva, V. T.; Iliev, S. B.; Ivanov, I. A. Biomacromolecules 2006,7,1329-1334.
    9. Cheng, N.; Brown, A. A.; Azzaroni, O.; Huck, W. T. S. Macromolecules 2008,41,6317-6321.
    10. Zhao, Y. H.; Wee, K. H.; Bai, R. B. ACS Appl. Mater. Interfaces 2010,2,203-211.
    11. Niu, A. Z.; Liaw, D. J.; Sang, H. C.; Wu, C. Macromolecules 2000,33,3492-3494.
    12. Pei, Y.; Travas-Sejdic, J.; Williams, D. E. Langmuir 2012.
    13. Kathmann, E. E. L.; White, L. A.; McCormick, C. L. Macromolecules 1997,30,5297-5304.
    14. Chakrabarty, T.; Kumar, M.; Shahi, V. K. Ind. Eng. Chem. Res.2012,51,3015-3022.
    15. Azzaroni, O.; Brown, A. A.; Huck, W. T. Angew. Chem. Int. Ed.2006,45,1770-1774.
    16. Chang, Y.; Chen, W. Y.; Yandi, W.; Shih, Y. J.; Chu, W. L.; Liu, Y. L.; Chu, C. W.; Ruaan, R. C.; Higuchi, A. Biomacromolecules 2009,10,2092-2100.
    17. Ali, S. A.; Rasheed, A. Polymer 1999,40,6849-6857.
    18. Mary, P.; Bendejacq, D. D.; Labeau, M. P.; Dupuis, P. J. Phys. Chem. B 2007,111, 7767-7777.
    19. Kudaibergenov, S.; Jaeger, W.; Laschewsky, A. Adv. Polym. Sci.2006,201,157-224.
    20. Lee, W. F.; Tsai, C. C. Polymer 1995,36,357-364.
    21. Berlinova, I. V.; Dimitrov, I. V.; Kalinova, R. G.; Vladimirov, N. G. Polymer 2000,41, 831-837.
    22. Viklund, C.; Irgum, K. Macromolecules 2000,33,2539-2544.
    23. Sonnenschein, L.; Seubert, A. J. Chromatogr. A 2011,1218,1185-1194.
    24. Chang, Y.; Shu, S. H.; Shih, Y. J.; Chu, C. W.; Ruaan, R. C.; Chen, W. Y. Langmuir 2010,26, 3522-3530.
    25. Shao, Q.; He, Y.; Jiang, S. Y. J. Phys. Chem. B 2011,115,8358-8363.
    26. He, Y.; Shao, Q.; Chen, S. F.; Jiang, S. Y.J. Phys. Chem. C 2011,115,15525-15531.
    27. Chen, F. G.; Liu, G. M.; Zhang, G. Z.J. Polym. Sci. A-Polym. Chem.2012,50,831-835.
    28. Eisele, N. B.; Andersson, F. I.; Frey, S.; Richter, R. P. Biomacromolecules 2012,13, 2322-2332.
    29. Hou, Y.; Liu, G. M.; Wu, Y.; Zhang, G. Z. Phys. Chem. Chem. Phys.2011,13,2880-2886.
    30. Collins, K. D. Methods 2004,34,300-311.
    31. Vlachy, N.; Jagoda-Cwiklik, B.; Vacha, R.; Touraud, D.; Jungwirth, P.; Kunz, W. Sci Adv. Colloid Interface Sci.2009,146,42-47.
    32. Kunz, W. Curr. Opin. Colloid Interface Sci.2010,15,34-39.
    33. Ninham, B. W.; Lo Nostro, P., Molecular Forces and Self Assembly in Colloid, Nano Sciences and Biology. Cambridge University Press:London,2010.
    34. Kunz, W.; Belloni, L.; Bernard, O.; Ninham, B. W. J. Phys. Chem. B 2004,108,2398-2404.
    35. Parsons, D. F.; Ninham, B. W. Langmuir 2010,26,1816-1823.
    36. Parsons, D. F.; Ninham, B. W. Langmuir 2010,26,6430-6436.
    37. Rodahl, M.; Hook, F.; Krozer, A.; Brzezinski, P.; Kasemo, B. Rev. Sci. Instrum.1995,66, 3924-3930.
    38. Wang, X. W.; Liu, G. M.; Zhang, G. Z. Langmuir 2011,27,9895-9901.
    39. Song, W. L.; Mano, J. F. Soft Matter 2013,9,2985-2999.
    40. Jung, L. S.; Campbell, C. T.; Chinowsky, T. M.; Mar, M. N.; Yee, S. S. Langmuir 1998,14, 5636-5648.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700