用户名: 密码: 验证码:
β-细辛醚对谷氨酸所致神经元损伤的保护作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
神经系统疾病发病率逐年上升,严重威胁着人们的健康,造成沉重的社会及经济负担,已成为人类迫切需要解决的首要问题。在缺血性中风、癫痫、颅脑损伤、帕金森病、肌萎缩侧索硬化等疾病过程中,谷氨酸能神经通路异常激活并由此而产生的兴奋性毒性,是造成神经元损伤的重要原因。已有大量动物实验研究和逐渐增多的临床实验表明,能够减少突触前谷氨酸释放,或抑制突触后谷氨酸受体的物质,有可能减轻多种原因触发的谷氨酸介导的神经元损伤。尽管目前已经明确和开发了一系列的谷氨酸受体拮抗剂,对多种神经系统疾病有潜在的临床应用价值,但由于其存在的不良反应而限制了其在临床方面的应用。
     中医药的现代研究表明很多中药对中枢神经系统有保护作用,本实验室前期在体实验研究结果表明β-细辛醚可显著抑制由脑缺血——再灌注诱导的神经细胞凋亡。为了更加深入地研究和明确β-细辛醚的作用机制,探讨神经系统疾病中起主要作用的氨基酸兴奋性毒性机制及其治疗药物,本实验拟在体外培养PC12细胞和原代培养乳鼠脑皮层神经元的基础上,探讨β-细辛醚对兴奋性氨基酸——谷氨酸损伤神经元的干预作用,试图通过本研究,能够阐明体外谷氨酸兴奋性损伤的作用机制及为开发抗兴奋性氨基酸毒性新药提供研究基础。
     研究目的:
     1.观察β-细辛醚对生理状态下PC12细胞和大鼠脑皮层神经元形态和细胞活力的影响,初步了解β-细辛醚对神经细胞的干预作用;
     2.观察β-细辛醚对谷氨酸诱导的PC12细胞及乳鼠脑皮层神经元的保护作用,并探讨其作用机理。
     研究方法:
     1.提取并精制β-细辛醚;
     2.将基质A(每100ml培养基中含3mg吐温-80和3mg甘油)、基质B(每100ml培养基中含48mg吐温-80和48mg甘油)及36.014、72.028、144.057、288.114、576.228、1152.456、2304.912μmol/Lβ-细辛醚与PCI2细胞共培养24h,观察对其形态学和细胞活力的影响;
     3.建立PC12细胞谷氨酸损伤模型;
     4.体外培养PC12细胞,β-细辛醚(36.014、72.028、144.057μmol/L)预给药4h,荡洗后加入终浓度为10mmol/L的谷氨酸继续培养16h,MTT法检测细胞活力,倒置相差显微镜观察细胞形态学变化,透射电镜观察细胞超微结构改变,分光光度计检测培养上清中乳酸脱氢酶(LDH)的含量,流式细胞术检测细胞凋亡率、细胞内游离钙离子浓度、线粒体膜电位(MMP)的变化,探讨β-细辛醚对谷氨酸诱导损伤的PC12细胞的干预作用;
     5.体外培养大鼠脑皮层神经元,培养至第10d,光学显微镜和免疫细胞化学染色鉴定神经元;
     6.建立大鼠脑皮层神经元谷氨酸损伤模型;
     7.将36.014、72.028、144.057、288.114、576.228、1152.456、2304.912μmol/Lβ-细辛醚与培养至第12-14d的脑皮层神经元共培养24h,观察对其形态学和细胞活力的影响;
     8.脑皮层神经元培养至第12~14d,β-细辛醚(36.014、72.028、144.057μmol/L)预给药4h,荡洗后加入终浓度为40mmol/L的谷氨酸继续培养16h,MTT法检测细胞活力,应用倒置相差显微镜观察细胞形态学变化,透射电镜观察细胞超微结构改变,分光光度计检测培养上清中LDH的含量,流式细胞仪检测神经元凋亡率、神经元胞内游离钙离子浓度、MMP的变化,探讨β-细辛醚对谷氨酸诱导损伤的脑皮层神经元的干预作用。
     研究结果:
     1.相差显微镜下PC12细胞呈现神经细胞样形态,胞体呈三角形、菱形、梭形,2~4个突触,相互交叉成网状,折光性较强:透射电镜下细胞核呈圆形,单个存在,染色质分布均匀,核膜完整,细胞质富含线粒体、内质网、溶酶体,细胞膜完整,微绒毛丰富;也可见核膜消失,染色质密集,成分叶状,为处于分裂、增殖的PC12细胞;
     2.PC12细胞与基质A组、基质B组及36.014、72.028、144.057、288.114、576.228、1152.456、2304.912μmol/Lβ-细辛醚共培养6h,基质A组、基质B组及36.014~576.228μmol/Lβ-细辛醚组细胞形态未有明显改变,1152.456、2304.912μmol/Lβ-细辛醚组细胞的突起减少,细胞皱缩,折光性下降,部分细胞脱落;共培养24h,基质A组、基质B组及36.014~288.114μmol/Lβ-细辛醚组PC12细胞形态未有明显改变,576.228μmol/Lβ-细辛醚组PC12细胞已有损伤,表现为细胞突起结构消失减少、细胞圆缩聚集,1152.456、2304.912μmol/Lβ-细辛醚组PC12细胞损伤进一步加重;
     3.10mmol/L的谷氨酸与PC12细胞共培养16h,相差显微镜下见细胞不同程度的变圆、皱缩,突触缩短、减少,局部脱落、裂解成碎片;透射电镜未见明显凋亡特征性改变,细胞核完整,染色质减少、溶解消失,出现空隙,细胞质疏松,线粒体肿胀、脱颗粒、嵴断裂,空泡形成,内质网扩张、形成空泡,溶酶体肿胀,细胞膜尚完整,微绒毛消失。10μmol/L尼莫地平及36.014、72.028、144.057μmol/Lβ-细辛醚预给药4h,光镜下尼莫地平组及β-细辛醚组细胞形态无明显改变,透射电镜下可见尼莫地平组少量细胞线粒体略减少,溶酶体缩小,出现空隙,微绒毛减少等改变,也可见与正常培养PC12细胞结构无明显差异的细胞;144.057μmol/Lβ-细辛醚组细胞超微结构无明显改变;
     4.10mmol/L的谷氨酸与PC12细胞共培养16h,细胞活力下降(0.88±0.05),培养液中LDH含量增多((607.24±14.31)U/L),细胞凋亡率增加(10.82%),细胞内游离钙离子浓度升高(189.29±19.72),线粒体膜电位下降((66.88±4.70)%);10μmol/L尼莫地平组及144.057、72.028、36.014μmol/Lβ-细辛醚组的细胞活力、培养液中LDH含量、细胞凋亡率、细胞内钙离子浓度及线粒体膜电位分别为(1.00±0.02、1.00±0.04、0.97±0.04、0.94±0.01)、((272.46±22.02、375.44±15.07、519.08±11.07、550.24±13.62)U╱L)、(4.90±1.14、4.95±1.84、6.83±1.79、8.68±1.37)%、(144.73±14.02、145.73±21.25、158.99±28.12、176.93±18.31)、(88.28±1.55、81.36±6.19、77.14±6.58、70.36±6.90)%;
     5.相差显微镜下培养至10d的脑皮层神经元胞体呈锥形或多角形,突起主干和分支明显延长并增粗,有明显的光晕,折光性增强,富有立体感,形成稠密的网络结构;细胞免疫化学染色结果显示,大部分细胞可见神经元烯醇酶(neuron specific enolase,NSE)免疫阳性颗粒位于核周质及突起中(呈棕黄色),细胞核不染色,为一圆形或椭圆形淡染区,胶质纤维酸性蛋白(glial fibrillary acidic protein,GFAP)染色呈弱阳性;透射电镜可见神经元体积较大,细胞核、细胞质均较大,呈浅灰色着色,染色质分布均匀,核膜双层结构完整,线粒体、溶酶体、内质网等细胞器较丰富;.6.培养至12~14d的脑皮层神经元与36.014、72.028、144.057、288.114、576.228、1152.456、2304.912μmol/Lβ-细辛醚共培养24h,与正常培养的神经元比较,36.014~576.228μmol/Lβ-细辛醚组神经元形态无明显改变;而1152.456μmol/Lβ-细辛醚组神经元胞体相对较大;2304.912μmol/Lβ-细辛醚则对神经元有损伤作用,神经元变圆、皱缩,折光性下降,部分突起收缩;
     7.培养至12~14d的脑皮层神经元与40mmol/L谷氨酸共培养16h后,折光性明显下降,部分细胞变圆、皱缩、脱落,裂解成碎片,透射电镜可见神经元胞核呈圆形,核膜光滑、完整,染色质边聚,线粒体肿胀,部分内质网扩张;10μmol/L尼莫地平及36.014、72.028、144.057μmol/Lβ-细辛醚预给药4h,能不同程度地减轻谷氨酸对脑皮层神经元的损伤,光镜下细胞形态无明显改变,透射电镜下可见144.057μmol/Lβ-细辛醚组其神经元除少量染色质边聚、内质网轻微扩张、线粒体轻度肿胀外,余与正常培养的脑皮层神经元无明显差异;.8.培养至12~14d的脑皮层神经元与40mmol/L谷氨酸共培养16h后,其凋亡细胞增多(21.05±4.81)%,培养液中LDH含量增高(619.40±36.71)U/L,细胞内游离钙离子浓度升高(107.49±21.10),线粒体膜电位轻微下降(91.93±8.54)%,但与正常对照组比较,未有统计学差异(P>0.05);1μmol/L尼莫地平组及144.057、72.028、36.014μmol/Lβ-细辛醚组的细胞活力、培养液中LDH含量、细胞凋亡率、细胞内钙离子浓度、线粒体膜电位分别为(0.66±0.01、0.63±0.01、0.58±0.01、0.56±0.01)、(440.80±27.28、475.00±33.51、561.64±39.36、593.56±41.50)U/L、(6.80±2.48、5.97±0.88、9.01±2.46、9.83±1.92)%、(92.56±21.13、94.64±20.97、84.89±18.82、107.57±24.12)、(99.27±1.89、98.57±2.48、95.48±7.22、95.10±5.16)%。
     研究结论:
     1.本实验体外培养高分化PC12细胞,接种在含5%胎牛血清、5%马血清的高糖DMEM培养基培养,2h后完全贴壁,细胞呈小三角形,12h呈现神经细胞样形态,胞体呈三角形、菱形、梭形,伸出2~4个突起,折光性较强,24h后突起较长,互相交叉,48h后细胞生长呈网状,符合神经细胞的形态结构,可用于实验;
     2.基质A、基质B对正常培养的PC12细胞的形态学及细胞活力无明显影响,576.228、1152.456、2304.912μmol/L的β-细辛醚能抑制体外培养的PC12细胞增殖。关于β-细辛醚对体外培养的PC12细胞增殖的抑制作用是作用于增殖周期中的哪一个环节,并通过何种机制来实现,还需要进一步研究;
     3.谷氨酸对高分化PC12细胞的毒性作用有明显的剂量依赖关系,随着谷氨酸浓度的增加,其毒性作用增强;10mmol/L谷氨酸与PC12细胞共培养16h,可造成PC12细胞凋亡模型;
     4.36.014、72.028、144.057μmol/Lβ-细辛醚预给药4h,均能不同程度地减轻10mmol/L谷氨酸对PC12的损伤作用,抑制LDH漏出,拮抗细胞内钙离子浓度的异常升高,稳定MMP状态,从而发挥其抗神经元凋亡的作用;
     5.本实验建立的新生大鼠脑皮层神经元培养方法,可得到纯度较高的神经元,为揭示神经元、神经网络超微结构及神经元生理、生化和病理等方面的复杂变化和研究神经药理学提供了便利;
     6.一定浓度的β-细辛醚对正常培养的大鼠脑皮层神经元有促生长作用,其神经元胞体较大,突起密集;
     7.谷氨酸对脑皮层神经元的毒性作用有明显的剂量依赖关系,随着谷氨酸浓度的增加,其毒性作用增强;40mmol/L谷氨酸与脑皮层神经元共培养16h,可造成神经元凋亡模型;
     8.36.014、72.028、144.057μmol/Lβ-细辛醚预给药4h,均能不同程度地减轻经40mmol/L谷氨酸诱导损伤的脑皮层神经元其凋亡和坏死,抑制LDH漏出,减少由谷氨酸引起的细胞内钙离子异常增多,但对MMP无明显影响。表明β-细辛醚可能通过抑制谷氨酸受体活性、钙拮抗作用而减轻谷氨酸诱导的神经元的损伤。
Attack rate of nervous system disease upgrades year by year, it threatens the healthy of people severity acutely, to result in heavy burden of society and family, and it becomes the emergent problems to work out a solution for mankind. During the diseases of ischemia brain injured, epilepsy, craniocerebral injury, Parkinson disease and amyotrophic lateral sclerosis, it is the significant cause that neural pathway activation abnormally as well as to bring about excitability toxicity induced by glutamate. Considerable experiments in animal and clinic indicate that it is possible to alleviate neuron injure mediated by glutamate trigger by many cause if glutamate in presynaptic element liberation decrease or glutamic acid receptor in postsynaptic element inhibition. There are a series of glutamic acid receptor antagonist that are confined during clinical application, owing to the existing adverse reactions, even though which show already potential clinical therapeutic effects specifically for many nervous system diseases.
     Modern research of traditional Chinese medicine (TCM) indicate that a good deal of Chinese crude drug have protection on central nervous system. Our prior study in vivo shows thatβ-asarone could inhibit neuron apoptosis induced by cerebral ischemic-reperfusion injury. For more study and research the protection mechanism ofβ-asarone, to approach amino acids excitability toxicity and corresponding therapeutic medicine, we plan to culture PC12 cells and rat cortical neurons in vitro, then to observe the effect ofβ-asarone on PC12 cells and rat cortical neurons induced by excitatory amino acids——glutamate. We try to interpret excitatory impaired mechanism of glutamate in vivo by this study, to provide elementary study for developing new medicine which could anti-excitatory amino acids toxicity.
     Objective:①To observe the effects ofβ-asarone on the morphology and cell viability in PC12 cells and rat cortical neurons, then get the initial message aboutβ-asarone interfere in neurons;②To study the protective effects and mechanism of action aboutβ-asarone on PC12 cells and rat cortical neurons damage induced by glutamate.
     Methods:①Extract volatile oil of Rhizoma Acori Tatarinowii and refiningβ-asarone.②PC12 cells were cultured with basilaris substantia A(there are 3mg Tween-80 and 3mg Glycerine per 100ml medium, which is as same as the composition of 144.057μmol/Lβ-asarone), basilaris substantia B(there are 48mg Tween-80 and 48mg Glycerine per 100ml medium, which is as same as the composition of 2304.912μmol/Lβ-asarone) or 36.014, 72.028, 144.057, 288.114, 576.228, 1152.456, 2304.912μmol/Lβ-asarone for 24h, then to observe morphological changes and cell viability by phase contrast microscope and MTT assay. Established PC12 cells damage model by glutamate.③Established PC12 cells damage model by glutamate.④PC12 cells were cultured with 36.014, 72.028, 144.057μmol/Lβ-asarone for 4h, then cultured with 10mmol/L glutamate for 16h after washing twice, Morphological changes were observed under phase contrast microscope, mitochondrial ultrastructure were observed under transmission electron microscope, cell viability was examined by MTT assay, lactate dehydrogenase(LDH)in culture solution was detected by spectrophotometer, intracellular calcium concentration, apoptosis ratio and mitochondria membrane potential(MMP) were detected by flow cytometry, for assessing the effect onβ-asarone in PC12 cells induced by glutamate.⑤Rat cortical neurocytes were cultured in vitro and stained immunocytochemically with NSE or GFAP antibody respectively on 10th day.⑥Rat cortical neurons were cultured with36.014, 72.028, 144.057, 288.114, 576.228, 1152.45, 2304.912μmol/Lβ-asarone for 24h on 12th to 14th day, then to observe morphological changes and cell viability by phase contrast microscope and MTT assay.⑦Established rat cortical neurons damage model by glutamate.⑧Rat cortical neurons were cultured with36.014, 72.028, 144.057μmol/Lβ-asarone for 4h on 12th to 14th day, then cultured with 40mmol/L glutamate for 16h after washing, morphological changes were observed under phase contrast microscope, mitochondrial ultrastructure were observed under transmission electron microscope, cell viability was examined by MTT assay, LDH in culture solution was detected by spectrophotometer, intracetlular calcium concentration, apoptosis ratio and MMP were detected, by flow cytometry, for assessing the effect onβ-asarone in rat cortical neurons induced by glutamate.
     Result:①PC12 cells present cellula nervosa's morphous by contrast phase microscope (CPM), neurosomes show triangle, rhombus, there are two to four synapses reciprocal chiasma for reticulate, powerful refraction, round, unitary cellular nucleus were observed by transmission electron microscope(TEM), well-distributed chromoplasm, integrity perinuclear membrane, abundant mitochondria, endocytoplasmic reticulum(ER) and cytolysosome in cytoplasm, integrity cellular membrane, plentiful microvilli, and there were some divided and proliferative PC12 cells which present nucleolemma, intensive segmented chromoplasm.②There are no effects on morphous and cell survival in PC12 cells culutured with basilaris substantia A or basilaris substantia B for 24h, Treatment of PC12 cells with concentrations of 36.014, 72.028, 144.057, 288.114, 576.228, 1152.456, 2304.912μmol/Lβ-asarone for 6h, there were no conspicuous change in PC12 cells cultured with 36.014, 72.028, 144.057, 288.114, 576.228μmol/Lβ-asarone, synapse decreasing, shrinkage, lower refraction, slight cells shedding were observed on PC12 cells cultured with 1152.456, 2304.912μmol/Lβ-asarone. PC12 cells cultured withβ-asarone for 24h, there were no conspicuous change in PC12 cells cultured with 36.014, 72.028, 144.057, 288.114μmol/Lβ-asarone, more impaired cells were observed on PC12 cells cultured with 576.228, 1152.456, 2304.912μmol/Lβ-asarone.③Morphological changes, synapse decreasing, shrinkage, lower refraction, slight cells shedding were observed in PC12 cells exposured to 10mmol/L glutamate for 16h, swollen mitochondrium, degranulation, cristate collapse, expanded ER, cavitation, swollen cytolysosome were observed by TEM. there were no conspicuous change in PC12 cells cultured with 10μmol/L imodipine, 36.014, 72.028,144.057μmol/Lβ-asarone respectively for 4h before exposured to 10mmol/L glutamate for 16h, there are a small quantity PC12 cells cultured with Nimodipine show mitochondrium decreased slightly, cytolysosome minification, spacing appearance, microvilli decreased by TEM, and there were no obviously change of mitochondria ultrastructure in PC12 cells cultured with 144.057μmol/Lβ-asarone.④LDH leakage((607.24±14.31)U/L), apoptosis ratio(10.82%) and intracellular calcium concentration (189.29±19.72) increasing, cell survival(0.88±0.05) and MMP(compare to control, (66.88±4.70)%) decreasing in PC12 cells exposured to 10mmol/L glutamate. PC12 cells cultured with 10μmol/L Nimodipine, 36.014, 2.028,44.057μmol/Lβ-asarone respectively for 4h before exposured to 10mmol/L glutamate, their cell survival, LDH leakage, apoptosis ratio, intracellular calcium concentration and MMP respectively are (1.00±0.02, 1.00±0.04, 0.97±0.04, 0.94±0.01), ((272.46±22.02, 375.44±15.07, 519.08±11.07, 550.24±13.62)U/L), (4.90±1.14, 4.95±1.84, 6.83±1.79, 8.68±1.37)%, (144.73±14.02, 145.73±21.25, 158.99±28.12, 176.93±18.31), (88.28±1.55, 81.36±6.19, 77.14±6.58, 70.36±6.90).⑤Perikaryons under CPM present metuliform or polygon, boles and branches of synapses extended and thickening obviously, conspicuous halation, refraction strengthen, to form crowded network. Immunocytochemical test shows that most of the cultured rat cortical neurocytes were positively stained with neuron specific enolase (NSE) antibody, and positively with glial fibrillary acidic protein (GFAP) in a less degree. Cubic capacity of neurons, is larger, cellular nucleus and cytoplasm is bigger comparatively, light gray, well-distributed chromoplasm, integrated double-deck nuclear membrane, abundant mitochondria, cytolysosome and ER were observed by TEM.⑥Rat cortical neurons were cultured with36.014, 72.028, 144.057, 288.114, 576.228, 1152.456, 2304.912μmol/Lβ-asarone for 24h on 12th to 14th day, there were no conspicuous change in neurons cultured with 36.014, 72.028, 144.057, 288.114, 576.228μmol/Lβ-asarone, compare to control, perikaryons of neurons cultured with l152.456μmol/Lβ-asaron are larger, impaired cells were observed on neurons cultured with 2304.912μmol/Lβ-asarone.⑦Neurons on 12th to 14th day exposured to 40mmol/L glutamate for 16h, lower outstanding refraction, parts cell rounding, shrinkage, defluxion, flagment under CPM; Round neclei, smooth completed nuclear membrane, aggregate chromoplasm, swollen cytomicrosome, expanded ER were observed by TEM. There were no conspicuous change under CPM in neurons on 12th to 14th day cultured with 10μmol/L imodipine, 36.014, 72.028, 144.057μmol/Lβ-asarone respectively for 4h before exposured to 40mmol/L glutamate for 16h, no much ultramicrostructure change expect small amounts aggregate chromoplasm, swollen cytomicrosom and expanded ER slightly were observed by TEM in neurons cultured with 144.057μmol/Lβ-asarone for 4h before exposured to 40mmol/L glutamate for 16h.⑧LDH leakage((619.40±36.71)U/L), apoptosis ratio((21.05±4.81)%) and intracellular calcium concentration((107.49±21.10)) increasing, cell survival(0.45±0.01) and MMP((91.93±8.54)%, compare to the control, (P>0.05)) decreasing were observed in cultured rat cortical neurons on 12th to 14th day exposured to 40mmol/L glutamate for 16, rat cortical neurons cultured with 10μmol/L Nimodipine and 36.014, 2.028, 44.057μmol/Lβ-asarone respectively for 4h before exposured to 40mmol/L glutamate, their cell survival, LDH leakage, apoptosis ratio, intracellular calcium concentration and MMP respectively are (0.66±0.01, 0.63±0.01, 0.58±0.01, 0.56±0.01), (440.80±27.28, 475.00±33.51, 561.64±39.36, 593.56±41.50)U/L, (6.80±2.48, 5.97±0.88, 9.01±2.46, 9.83±1.92)%, (92.56±21.13, 94.64±20.97, 84.89±18.82, 107.57±24.12), (99.27±1.89, 98.57±2.48, 95.48±7.22, 95.10±5.16)%。
     Conclusion:①Differentiated PC12 cells were cultured in vitro, the vaccination containing 5% fetal bovine serum, 5% horse serum and 95% high-glucose DMEM medium. Small triangles were observed and adherence completely on 2th hour, then, they show nerve-like cells on 12th hour, cells bodies present roughly triangular, diamond shape, spindle, stretched out 2 to 4 synapsis, strong refraction. synapsis protrude longer, criss-cross on 24th hour, PC12 cells show reticulodromous on 48th hour, and the morphology was consistent with nerve cells.②There are no effects on morphous and cell survival in PC12 cells culutured with basilaris substantia A or basilaris substantia B for 6 hours or 24 hours, 576.228, 1152.456, 2304.912μmol/Lβ-asarone can inhibit the proliferation of PC12 cells.β-asarone inhibit the proliferation of PC12 cells which is a link role in the cell cycle and the mechanism through which to achieve, we still need further study.③The toxic effect of glutamate on PC12 cells shows in a dose-dependent relationship, toxicity enhanced with the concentration of glutamate increasing. PC12 cells were cultured with 10mmol/L glutamate for 16h, apoptosis was observed.④PC12 cells were cultured with 36.014, 72.028, 144.057μmol/Lβ-asarone respectively for 4 hours before induced by 10mmol/L glutamate,β-asarone can reduce the damage of PC12 induced by glutamate by inhibiting LDH leakage, reducing abnormal elevation of intracellular calcium ion concentration and stablizing MMP state, thus playing the role of anti-neuronal apoptosis.⑤High purity rat cortical neurons can be obtained by this cultured method in this study, which facilitates revealing neurons, ultrastructural neural networks, neuronal, biochemical and pathological changes in the complex neural pharmacology research.⑥Rat cerebral cortical neurons cultured withβ-asarone within normal limit are promoted, nerve cell bodies larger, intensive synapsis.⑦The toxic effect of glutamate on cortical neurons shows in a dose-dependent relationship, toxicity enhanced with the concentration of glutamate increasing. Rat cortical neurons were cultured with 40mmol/L glutamate for 16h, neuronal apoptosis was observed.⑧Rat cortical neurons were cultured with 36.014, 72.028, 144.057μmol/Lβ-asarone respectively for 4 hours before induced by 40mmol/L glutamate,β-asarone can reduce the damage of neurons induced by glutamate, inhibit LDH leakage, reduce abnormal elevation of intracellular calcium ion concentration, but no significant effect on MMP, The effect ofβ-asarone on anti-neuronal apoptosis maybe attribute to the inhibition of glutamate receptors activity and anticalcium.
引文
[1] 金维岳.石菖蒲注射液治疗肺性脑病279例次临床观察初步小结[J].中成药研究,1982;(10):22-24
    [2] 刘新民.石菖蒲的研究现状[J].中医药研究,1992;(4):579
    [3] 丁爱民,方永奇.治疗老年性痴呆常用中药的灰色关联分析[J].数理医药学杂志,2000;13(6):501-503
    [4] 吴启端,方永奇,李翎,等.石菖蒲对中枢神经系统兴奋性的有效部位研究[J].医药导报,2002;21(7)399-401
    [5] FANG Yong-qi, LI Ling, WU Qi-duan. et al. Protection of Shenchang-diwan on Cerebral Hemorrhage Injury in Rats[J]. Chinese Archives of Traditional Chinese Medicine, 2004; 22(5): 882-883
    [6] 王淑英,陈奕芝,方若鸣,等.石菖蒲配伍冰片对高脂血症大脑组织内皮素和降钙素基因相关肽的影响[J].实用中医药杂志,2003;19(12):619-620
    [7] 吴启端,方永奇,李翎,等.石菖蒲醒脑开窍的有效部位筛选[J].时珍国医国药,2002;13(5):260-261
    [8] 吴宏斌,方永奇.β-细辛醚在大鼠体内的药代动力学[J].药学学报,2004;39(10):836-838
    [9] 方永奇,李翎,吴启端,等.β-细辛醚和冰片对大鼠缺血再灌注脑损伤的保护作用[J].中国中医药科技,2004;11(6):353-354
    [10] 吴宾,方永奇.石菖蒲益智作用的物质基础及其机理研究[J].中医药学刊,2004;22(9):1635-1638
    [11] 李翎,邹衍衍,吴启端,等.石菖蒲系列提取物对大鼠脑缺血再灌注损伤的影响[J].中医药学刊,2003;21(2):212-213
    [12] 方永奇,李翎,邹衍衍,等.石菖蒲对缺血再灌注脑损伤大鼠脑电图和脑水肿的影响[J].中国中医急症,2003;12(1):55-56
    [13] 方永奇,匡忠生,谢宇辉,等.石菖蒲组分对缺血再灌注脑损伤大鼠神经细胞凋亡的影响fJ].现代中西医结合杂志,2002;11(17):1647-1649
    [14] 方永奇,李翎,吴启端.β-细辛醚对小鼠脑组织基因表达谱的影响[[J].中药材,2003;26(9):650—652
    [15] 方永奇,魏刚,柯雪红.GC-MS分析石菖蒲挥发油透大鼠血脑屏障的成分研究[J].中药新药与临床药理,2002;13(3):181-182,200
    [16] Lipton SA, Rosenberg PA. Excitatory amino acids as a final common pathway for neurologic disorders [J]. Nengl J Med, 1994; 330: 613-622
    [17] 张均田,张庆柱.神经药理学研究技术与方法[M].北京:人民卫生出版社,2005;9
    [18] Fukada K, Shoda T, Mima H, et al. Midazolam induces expression of c-Fos and EGR-1 by a non-GABA ergic mechanism[J]. Anesth Analg, 2002; 95: 373-378
    [19] Shinomiya N, Shinomiya M. Dichlorodiphenyltrichoethane suppresses neurite outgrowth and induces apoptosis in PC12 pheochromocytoma cells[J]. Toxicol lett, 2003; 137: 175-183
    [20] Peruche B, Xrieslstein J. Neuroblastma cels for testing neuro protective elects[J]. J Pharmacol Meth, 1991; 23: 632.
    [21] 周金黄,王筠默.中药药理学[M].上海科学技术出版社,1986;158
    [22] 杨晓燕,陈发奎.菖蒲的化学成分研究概况[J].沈阳药科大学学报,1999;16(1):71.
    [23] 高玉琼,刘建华,霍昕.石菖蒲挥发油成分的研究[J].贵阳医学院学报,2003;28(1):31.
    [24] 吴启端,方永奇,魏刚,等.石菖蒲去油水煎液的高效液相色谱分析[J].时珍国医国药,2002;13(7):385
    [25] 陶宏,朱恩圆,王峥涛.石菖蒲的化学成分[J].中国天然药物,2006;4(2):159-160
    [26] 杨峻山,向仁德,姚志成.石菖蒲挥发油化学成分的研究[J].中国中药杂志,1983;8(05):31-32,27
    [27] 张晖,倪云霞,王军,等.石菖蒲挥发油的初步研究——Ⅲ不同产区石菖蒲挥发油中主成分及其含量的比较[J].南京要学院学报,1979;2:38-42
    [28] 洪永福,郭学敏,孙连娜,等.石菖蒲中多糖成分的分析[J].药学实践杂志,1998;16(3):149-151
    [29] 徐敏,梁文权.a-细辛醚凝胶帖剂的体外大鼠皮肤渗透动力学[J].中国临床药学杂志 2006;15(5):318-320
    [30] 魏立平,吴玫涵.β-细辛醚及石菖蒲挥发油中β-细辛醚在家兔体内的药代动力学[J].第四军医大学学报,2005;26(15):1431-1434
    [31] 魏立平,王文俊,吴玫涵.石菖蒲挥发油中β-细辛醚在小鼠体内的吸收、分布和排泄研究[J].中国药学杂志,2004;39(11):845-847
    [32] 魏立平,王文俊,吴玫涵.石菖蒲挥发油中β-细辛醚在家兔及小鼠体内的药动学[J].中国临床药学杂志,2004;13(4):224-227
    [33] 杨晓燕,陈发奎,刘玉兰.石菖蒲抗抑郁药理作用的研究[J].海军军事医学,1999;20(2):16
    [34] 方永奇,吴启端,王丽新,等.石菖蒲对中枢神经系统兴奋——镇静作用研究[J].广西中医药,2001;24(1):49-50.
    [35] 刘国卿,蒋莹.几种中药挥发油的急性毒性发对戊巴比妥钠的协同作用[J].中国药科大学学报,1999;20(1):57
    [36] 杜毅,周超凡.石菖蒲临床应用与实验研究的概述[J].内蒙古中医药,1993;18(1):40
    [37] 黄泰康.常用中药成分与药理手册[M].北京:中国医药科技出版社,1994;686
    [38] 唐洪梅.石菖蒲不同部位对大鼠脑电图的影响[J].中成药,2003;25(11):928
    [39] 张家俊,陈文为.中药酸枣仁、龙齿、石菖蒲对小鼠脑组织单胺类神经递质及其代谢物的影响[J].北京中医药大学,1995;18(6):64
    [40] 唐洪梅,席萍.石菖蒲不同部位镇静抗惊厥作用实验研究[J].中国实验方剂学杂志,2004;10(4):45
    [41] 陈俐,廖卫平.石菖蒲水煎剂抗癫痫动物模型的药效学研究[J].广州医学院学报, 2002;30(3):13-15
    [42] 张信岳,孙永红.石菖蒲的益智和抗惊厥作用研究[J].浙江中医学院学报,1999;23(2):46-47
    [43] 方若鸣,方更利,方永奇.安脑片治疗癫痫的药效观察[J].中成药2006;28(9):1323-1325
    [44] 张信岳,郑高利,寿燕,等.石菖蒲的益智和抗惊厥作用研究[J].浙江中医学院学报,1999;23(2):46
    [45] 周大兴.石菖蒲的促进小鼠学习记忆和提高耐缺氧力作用[J].现代应用药学,1993;10(4):4
    [46] 周大兴.石菖蒲对小鼠学习记忆的促进作用[J].中草药,1992;23(8):417
    [47] 钱曾年.a-细辛醚对中枢神经系统的影响[J].苏州医学院学报,1986,3(4):47
    [48] 胡锦官,顾健,王志旺.石菖蒲及其有效成分对学习记忆的实验研究[J].中药材,1999;22(11):584
    [49] 景玉宏,冯慎远,汤晓琴.石菖蒲对学习记忆的影响及突触机制[J].中国中医基础医学杂志,2002;8(6):38-40
    [50] 李明亚,陈红梅.石菖蒲对行为绝望动物抑郁模型的抗抑郁作用[J].中药材,2001;24(1):40
    [51] 陈文伟.石菖蒲、赤芍醇提物对实验性抑郁及血管活性肠肽和P物质的影响[J].华西医学,2006;21(2):321-322
    [52] 匡忠生,谢宇晖,李翎,等.石菖蒲提取液对脑缺血/再灌注诱导的神经细胞凋亡保护作用[J].广东医学,2002;23(5):459
    [53] 江湧,方永奇,何玉萍.石菖蒲有效成分配伍对AB损伤PC12细胞的保护作用[J].中药新药与临床药理,2006;17(5):335-338
    [54] Cho J, Kim YH, Kong JY, et al. Protection of cultured rat contical neurons from excitoxicity by asarone, a major essential oil component in the rhizomes of Acorus gramineus[J]. Life Sci, 2002; 71(5): 591-599
    [55] Irie Y, Keung WM. Rhizoma acori graminei and its active principles protect PC-12 cells from the toxic effect of amyloid-beta peptide [J]. Brain Res. 2003; 963 : 282-289
    [56] 申军,肖柳英.石菖蒲挥发油抗心律失常的实验研究[J].广州医药,1993;24(3):44—45
    [57] 季宇彬.中药有效成分药理与应用[M].黑龙江科学技术出版社出版,1994;46
    [58] 季宇彬.中药有效成分药理与应用[M].黑龙江科学技术出版社出版,1994;47
    [59] 周晓圆,李芮.药用菖蒲研究进展[J].山东中医学院学报,1994;18(4):270.
    [60] 吴启端,方永奇,陈奕芝,等.石菖蒲挥发油及β-细辛醚对心血管的保护作用中药新药与临床药理[J].2005;16(4):244-247
    [61] 何玉萍,江沔,方永奇.β-细辛醚干预缺氧诱导的内皮细胞黏附分子表达的作用[J].中药新药与临床药理,2006;17(3):170-172
    [62] 何玉萍,江湧,方永奇.β-细辛醚对ox-LDL诱导的内皮细胞黏附分子表达的干预作用[J].中国老年学杂志,2006;26(2):183-184
    [63] 袁倚盛,王承炜,周晓鹰.石菖蒲降脂有效成分的研究[J].中草药,1982,13(9):3-4
    [64] 蒋文跃,杨宇,李燕燕.化痰药半夏、瓜萎、浙贝母、石菖蒲对大鼠血液流变性的影响[J].中医杂志,2002;43(3):215.
    [65] 何玉萍,陈奕芝,方若鸣,等.石菖蒲加冰片对高血脂大鼠血小板活化功能的影响[J].中国中医药科技,2003;10(6):337
    [66] 冯亚,林炳辉,吴作干,等.行气祛痰化浊中药对血小板聚集性红、细胞变形性及血液粘度作用初探[J].福建中医学院学报,1998;8(1):24
    [67] 陈奕芝,方若鸣,何玉萍,等.石菖蒲挥发油、β-细辛醚对高血脂症大鼠血管舒缩与血小板活化的影响[J].中国中西医结合杂志,2004;24(s):16-19
    [68] 杨社华,王志旺.石菖蒲及其有效成分对豚鼠气管平滑肌作用的实验研究[J].甘肃中医学院学报,2003;20(2):12
    [69] 石琛,方永奇.β-细辛醚平喘作用的药效学研究[J].时珍国医国药,2006;17(9): F0003-F0004
    [70] 秦晓民,徐敬东,邱小青,等.石菖蒲对大鼠胃肠肌电作用的实验研究[J].中国中药杂志,1998;23(2):107
    [71] 胡锦官,顾健,王志旺,等.石菖蒲及其有效成分对消化系统的作用[J].中药药理与临床,1999;15(2):16
    [72] 李伟,郑天珍,张英福,等.水菖蒲和石菖蒲对大鼠离体胃平滑肌条作用的比较[J].甘肃中医学院学报,2000;17(4):7
    [73] 潘竞锵,林培英,冯昭明,等.石菖蒲挥发油对免疫功能影响的实验研究[J].现代应用药学,1995;13(s):29
    [74] 杜毅,周超凡.石菖蒲的效用与现代研究的关系[J].中国中药杂志,1993;18 (4):244
    [75] 陈俐,廖卫平.石菖蒲药理作用的实验研究[J].广州医学院学报,2002;30(4):1
    [76] 胡伯渊.水菖蒲抗癌活性研究:a-细辛醚对人癌细胞株的抗癌活性[J].中西医结合杂志,1986;6(8):480
    [77] 胡伯渊,赵真龄.水菖蒲抗癌活性研究:a-细辛醚对荷瘤动物作用及在小鼠血液中分布研究[J].中国药理学会通讯,1997;14(3):55
    [78] 赵真龄,胡伯渊.a-细辛醚对荷瘤动物抗癌活性的初步研究[J].江苏医药,1998;24(8):623
    [79] Taylor M, Jones WL. Toxicity of oil calamus [J]. Toxicology and Applied Pharmacology, 1967; (10): 405
    [80] Homburger F, Friedler G, Kelley T. 4-allyl-1,2-methylenedioxybenzene(safrole) as a new tool for the study of pathogenesis of toxic hepatic cirrhosis and adenomatosis [J]. Fed Proceed, 1961; 20: 288
    [81] Hagan EC, Food Flavourings and Compounds of Related Structure[J]. Toxicol Apll Pharmacal, 1965; 7: 18
    [82] Long EL, Nelson A, Fitzhugh O. G., et al. Liver tumors produced in rats by feeding safrole [J]. Arch Pathol, 1963; 75: 595
    [83] Epstein SS, et al. Carcinogenicity testing of selected rod additives by parenteral administration to infant Swiss mice[J]. Toxicol Appl Pharmacal. 1970; 16: 321
    [84] 杨永年,李庆天,唐玲芳,等.石菖蒲主要成分a-细辛醚致畸性研究[J].南京医科大学学报,1986;6(4):248
    [85] 杨永年,殷昌硕,肖杭,等.石菖蒲主要成分a-细辛醚致突变研究[J].南京医科大学学报,1986;6(1):11
    [86] 周晓园,陶凯,赵海霞,等.中药石菖蒲、九节菖蒲致畸、致突变的研究[J].中草药,1998;29(2):110
    [87] 肖崇厚.新编中药志[M].北京:化学工业出版社,2002;284
    [88] 饶芳,丁志山,郑小伟.石菖蒲对蟾蜍坐骨神经的阻滞作用[J].中华现代中西医杂志,2005;3(4):34
    [89] 李宗友译.菖蒲主要成分β-细辛脑的镇静和降温作用[J].国外医学·中医中药分册,1999;21(4):21
    [90] 何池全,叶居新.石菖蒲克藻效应的研究[J].生态学报,1999;19(5):754-758
    [91] 黄伯舜.石菖蒲临床应用一得[J].中国中药杂志,2006:31(15):1280-1282
    [92] 林祖辉,王珏,裘昌林.裘昌林妙用石菖蒲治脑系顽疾经验浅识[J].中医药学刊,2005;23(2):231,257
    [93] 上海纺织局第二医院,上海中药研究室植化组.石菖蒲注射液的临床及制剂[[J]. 中成药,1979;5:39
    [94] 王玺廷,王长印,王晓君.中西医结合治疗流行性乙型脑炎25例小结[J].吉林中医药,1984;3:16
    [95] 李宪梅.菖蒲善治疗耳鸣耳聋[J].中医杂志,1996;37(12):710-711
    [96] 杨晓彤.石菖蒲新用举隅[J].贵阳中医学院学报,2004;26(2):45-46
    [97] 瞿志明.清肝解痉止咳法治疗小儿喉源性咳嗽60例临床观察[J].江苏中医药,2006;27(5):41
    [98] 随桂荣,岳彩连.用细辛脑注射液佐治毛细支气管炎疗效观察[J].实用中西医结合临床,2005;5(4):50-51
    [99] 邹永祥,蔡典明,钟春玉.石菖蒲与薤白治疗支气管哮喘有效[J].四川中医,2003;21(12):25
    [100] 陆为民.徐景藩教授临床应用石菖蒲的经验[J].中国中药杂志,2006;31(5):430-431
    [101] 田代华.实用中药辞典[M].北京:人民卫生出版社,2002;471
    [102] 中华本草编委会.中华本草[M].上海:上海科学技术出版社,1999;475
    [103] 胡明.石菖蒲治风湿性关节炎的临床报道[J].浙江中医杂志,1992;9(2):82
    [104] 王强.石菖蒲治疗呃逆[J].基层医药论坛2004;8(6):501
    [105] 孙建明.徐福松妙用石菖蒲治疗男科病经验[J].河北中医,1999;21(5):305
    [106] 张素珍,索玉所,王桂荣.石菖蒲滴眼液治疗单纯疱疹性角膜炎疗效观察[J].中国中西医结合杂志,2005;25(5):468-469
    [107] Zitterkopf N L, McNeal D W, Eyster K M, et al. Lactate dehydrogenase-elevating virus induces apoptosis in cultured macrophages and in spinal cords of C58 mice coincident with onset of murine amyotrophic lateral sclerosis[J]. Virus Res, 2004; 106(1): 35-42
    [108] Tatton WG, Chalmers-Redman R, Brown D, et al. Apoptosis in Parkinsons disease: signals for neuronal degradation[J]. Ann Neurol, 2003; 53(Suppl 3): s61-70
    [109] Ikonomidou C, Bosch F, Miksa M, et al. Blockade of NMDA receptors and apoptotic neurodcgeneration in the developing brain[J]. Science, 1999, 283(5398): 70
    [110] 李宁,吴建中,蒋京生.脑缺血时海马细胞外液中兴奋性氨基酸的变化[J].中国病理生理杂志,1993;9(6):740.
    [111] 朱长庚.神经解剖学[M].北京:人民卫生出版社,2002;290
    [112] Fonnum F. Glutamate: a neurotransmitter in mammalian brain [J]. J Neurohem, 1984; 42(1): 1
    [113] Canmell J, Schoepp DD. Regulation of neurotransmitter release by metabotropic glutamate receptors[J]. J Neurochem, 2000; 75(3): 889
    [114] Nicholh D, Attwel D. The release and uptake of excitatory amino acids[J]. Trends Pharmacol Sci, 1990; 11(11): 46.
    [115] Chan PH, Fishman RA, Lee JL, et al. Efects of excitatory amino acids on swelling of rat brain cortical slices[J]. Neurochem, 1979; 33(6): 1309
    [116] 郭伟莉,赵英贤,张巧俊,等.促红细胞生成素对缺血性脑损伤的神经保护作用[J].中国临床康复,2003,7(5):783
    [117] 费舟,章翔,白红民,等.大鼠二次脑损伤后兴奋性谷氨酸与环核苷酸改变意义[J].现代康复,2001;4(7):62
    [118] Faden AI, Simon RP. A potential role for excitotoxins in the pathophysiology of spinal cord injury[J]. Ann Neurol, 1998; 23(6): 623
    [119] Garthwaite J, Garthwaite G, Hajos F. Amino acid neurotoxicity: relationship to neuronal depolarization in rat cerebellar slices[J]. Neuroscience, 1986; 18: 449-60
    [120] Vornov JJ, Coyle JT. Glutamate neurotoxicity and the inhibition of protein synthesis in the hippocampal slice[J]. JNeurochem, 1991; 56: 996-1006
    [121] Newell DW, Barth A, Papermaster V, Malouf AT. Glutamate and non-glutamate receptor mediated toxicity caused by oxygen and glucose deprivation in organotypic hippocampalcultures[J]. J Neurosci, 1995; 15, 7702-7211
    [122] Zaczek R, Balm M, Arlis S, et al. Quisqualate-sensitive, chloride-dependent transport of glutamate into rat brain synaptosomes[J]. J neurosci Res, 1987; 18: 425-431
    [123] Kato S, Negishi K, Mawatari K, Kuo CH. Amechanism for glutamate toxicity in the C6 glioma cells involving inhibition of cystine uptake leading to glutathione depletion[J]. Neuroscience, 1992; 48(4): 903-914
    [124] Han D, Sen CK, Roy S, etal. Protection against glutamate-induced cytotoxicity in C6 glial cells by thiol antioxidants[J]. Am J Physiol, 1997; 273: R1771- R1778
    [125] Murphy TH, Miyamoto M, Sastre A. etal. Glutamate toxicity in a neuronal cell line involves inhibition of cystine transport leading to oxidative stress[J]. Neuron, 1989; 2: 1547-1558
    [126] Simonian NA, Coyle JT. Oxidative stress in neurodegenerative diseases[J]. Annu Rev Pharmacol Toxicol, 1996; 36: 83-106
    [127] Pereira CM, Oliveira CR. Glutamate toxicity on a PC12 cell line involves glutathione(GSH) depletion and oxidative stress[J]. Free Radical Biol&Med, 1997; 23(4): 637-47
    [128] Ben-Yoseph O, Boxer PA, Ross BD. Assessment of the role of the glutathione and pentose phosphate pathways in the protection of primary cerebrocortical cultures from oxidative stress[J]. J Neurochem, 1996; 66: 2329-2337
    [129] Li YH, Maher P, Schubert D. Requirement for cGMP in nerve cell death caused by glutathione depletion[J]. J Cell Biol, 1997; 139(5): 1317-1324
    [130] 刘可云,黄贤珍.厚朴酚对大鼠局灶性脑缺血再灌注损伤的保护作用与γ-氨基丁酸的关系[J].时珍国医国药,2006;17(6):971-972
    [131] Schwartz-Bloom RD, Sah R. gamma-aminobutyric acid-neuro-transmission and cerebral ischemia[J]. Neurochem, 2001; 77(2): 353
    [132] 周竹娟,郑健.谷氨酸受体与脑缺血后迟发性神经元损伤[J].国外医学:脑血管疾病分册,1999;7(5):268-271
    [133] 曾水林,李涛,杨鹏,等.损毁帕金森病大鼠腹侧苍白球对纹状体内谷氨酸含量的影响[J].第四军医大学学报,2005;26(22):2025-2027
    [134] Parent A, Levesque M, Parent M. A re-evaluation of the current model of the basal ganglia[J]. Parkins Relat Dis, 2001; 7(2): 193—198.
    [135] Plaitakis A, Shashidharan P. Glutamate transport and inetabolism in dopaminergic neurons of substantia nigra: imphcations for the pathogenesis of Parkonson's disease[J]. J. Neurol, 2000; 247: 1125-1135
    [136] Niebroj-Dobosz I, Janik P. Amino acids acting as transmitters in amyotrophic lateral sclerosis (ALS) [J]. Acta Neurol Scand, 1999; 100(1): 6-11
    [137] Ferrarese C, Sala G, Riva R, et al. Decreased platelet glutamate uptake in patients with amyotrophic lateral sclerosis. Neurology, 2001; 56(2): 270-272
    [138] Takuma H, Kwak S, Yoshizawa T, et el. Reduction of GluR2 RNA editing, a molecular change that increase calcium influx through AMPA receptors, selective in the spinal ventral gray of Patients with amyotmphic lateral sclerosis[J]. Ann Neurol, 1999; 46(6): 806-815
    [139] Vanselow BK, Keller BU. Calcium dynamic and buffering in oculomotor neurons from mouse that particularly resistant during amyotrophic lateral sclerosis-related motor neuron disease. J Physiol, 2000; 525(2): 433-445
    [140] 邓元江,刘卫英,梁伟雄.穴位埋线对实验性癫痫大鼠海马及大脑皮质γ-氨基丁酸和谷氨酸[J].北京中医药大学学报,2006;29(8):562-565
    [141] Pavel M, Libor V. N-Methyl-D-aspartate(NMDA) induced seizures in developing rats[J]. Developmental Brain Research, 1992; 65: 185
    [142] Dyker AG, Lees KR. The safety and tolerability of GVI50526(a glycine site antagonist at the NMDA reeeptor) in patients with acute stroke, Two double blind, randomized, placebo eotatrolled, paralle group, ascending dose studies[J]. Stroke, 1999; 30(5): 896-992
    [143] 周洪霞,王海涛,朱丽华,等.谷氨酸受体拮抗剂MK-801对肢体缺血再灌注致脑 损伤大鼠脑组织中一氧化氮的影响[J].中国临床康复,2006;10(28):102-104
    [144] Parkinson Study Group. The glutamate antagonist remacemide improves motor performance in levodopa- treated Parkinson's disease[J]. Neurology, 1999; 52(6): 003
    [145] Shoulson L, Grenamyre T, Kieburtz K, et al. A multicenter randomized controled trial of remacemide hydroehloride as monotherapy for PD [J]. Neurology, 2000; 54(8): 1583—1588
    [146] Colboume F, Li H, Buchan, AM. Continuing posischemic neuronal death in CAI: influence of ischemia duration and cytoprotective doses of NBQX and SNX-Ⅲ in rats [J]. Stroke, 1999; 30(3):668
    [147] 黄卫东,费舟,章翔,等.皮层神经元机械性损伤后代谢型谷氨酸受体表达及其拮抗剂的保护作用[J].中华创伤杂志,2005;21(5):352-356
    [148] 李树合,章翔.谷氨酸释放抑制剂riluzole对弥漫性脑损伤的保护作用[J].第四军医大学学报,2000;21(2):164-166
    [149] 肖昭扬,孙长凯,肖绪武,等.银杏叶提取物抗N-甲基-D-天冬氨酸受体介导兴奋毒性作用及机制研究[J].中华医学杂志,2006;86(35):2479-2484
    [150] Kanada A, Nishimura Y, Yamaguchi JY, et al. Extract of Ginkgo biloba leaves attenuates kainate—induced increase in intracellular Ca~(2+) concentration of rat cerebellar granule neurons[J]. Biol Pharm Bull, 2005; 28: 934-936
    [151] 何其华,周慧芳,薛冰,等.雷公藤单体T10对谷氨酸所致PC12细胞损伤的保护作用及机制研究[J].北京大学学报(医学版),2003;35(3):252-255
    [152] 韩喻美,晏金平.黄芩甙对大鼠培养脑切片上谷氨酸递质释放的影响[J].江西医学院学报,1995;35f3):5-7
    [153] 何小华,李承晏.黄芪抗神经细胞缺氧最佳作用浓度的选择[J].卒中与神经疾病,1998;5(4):180-182
    [154] 董丽萍,王天佑.葛根素抗谷氨酸对小鼠神经细胞兴奋毒的作用[J].中国药理学报,1998;19(4):339-342
    [155] 陈文东,安文林.茯苓水提液对新生大鼠神经细胞内钙离子浓度的影响[J].中国中西医结合杂志,1998;18(15):293-295
    [156] 马丽焱,肖培根.三七总皂甙对脑细胞内游离钙浓度的影响[J].中国药学杂志,1998;33(8):467-469
    [157] 李天威,孔乐凯.人参皂甙对培养大鼠皮层神经细胞O~-_2和H_2O_2损伤的保护[J].白求恩医科大学学报,1998:24(2):130-132
    [158] 余上才,李晓玉.人参皂苷对β淀粉样蛋白诱导PC12细胞损伤及凋亡的影响[J].中国药学杂志,2000;35(10):662-664
    [159] 何丽云,范吉平,孙塑伦,等.救脑宁注射液对神经细胞凋亡及胞浆钙变化的影响[J].中国病理生理杂志,2001;17(4):312-314
    [160] 何丽云,孙塑伦,范吉平,等.救脑宁注射液对缺氧/缺糖神经细胞凋亡的影响[J].北京中医药大学学报,2001;24(2):21-23
    [161] Shafter T J, Atchison W D. Transmitter ion channel and receptor properties of PC12 cells: a model for neurotoxicological studies[J]. Neurotoxicology, 1991; 12(3): 473-492
    [162] Peterson M, Banchet SV, Heppeimann B, et al. Nerve growth factor regulates the expression of bradykinn binding sites on adult sensory neurons via the neurotrophin receptor P75[J]. Neuroscience, 1998; 83(1): 161-168
    [163] Berens S, Winter J. Nerve growth factor(NGF) differentially regulates the chemosensivity of adult rat cultured sensory neurons[J]. J Neuroscience. 1995; 15: 4918-4926
    [164] Choi DW. Excitotoxic cell death[J]. J Neurobiol, 1992; 23(4-6): 126
    [165] Paschen W. Role of calcium in neuronal cell injury: which subcellular compartment is involved[J]. Brain Res Bull, 2001; 53(4): 409-413
    [166] Lipton SA, Rosenberg PA. Excitatory amino acids as a final common pathway for neurologic disorders[J]. N Engl J Med, 1994; 330:613
    [167] 杨翠,赵晏,王会生,等.谷氨酸介导的大脑皮层神经细胞凋亡[J].西安医科大学学报,2001;22(3):205-208
    [168] Choi DW. Glutamate neurotoxicity in cortical cell culture[J]. J Neurosci, 1987; 7: 357-361
    [169] 孙蓉,武栋栋,张作平,等.芍药苷对谷氨酸引起的PC12细胞损伤的保护作用[J].中国药学杂志,2006;41(23):1792-1794
    [170] 颜涛,严奉祥,周家茂,等.迷迭香酸对谷氨酸诱导的PC12细胞损伤的效应[J].中国药理学通报,2006;22(8):955-959
    [171] Bonfoco E, Krainc D, Ankarcroma M, et al. Apoptosis and necrosis: Two distinct events induced, respectively, by mild and intense insult with NMDA or nitric oxide/superoxide in cortical cell culture[J]. Proc Ncad Sci USA, 1995; 92(16): 7162
    [172] Johnson EM JR, Greenlund IA, Aldns PT, et al. Neuronal apoptosis: current understanding of molecular machenisms and potential role in ischemia brain injury[J]. J Neurotrauma, 1995; 12(5): 843
    [173] Osuga S, Hogan MJ. In vivo uptake of [3h] nimodipine in focal cerebral ischemia: modulation by hyperglycemia[J]. J Cereb Blood Flow Metab, 1997; 17(10): 1057-1065
    [174] Mild LN, Mild LH, Dempsey, et al. Delayed treatment with nimodipine improves cerebral blood flow after complete cerebral, ischemia in the dog[J]. J Cereb Blood Flow Metab, 1986; 6: 332
    [175] 宁可,王正国,陈长才,等.兴奋性氨基酸及尼莫地平对培养大鼠脑皮层神经元电流的影响[J].中国药理学报,1999;20(4):329-332
    [176] 宁可,王正国,朱佩芳,等.天门冬氨酸及尼莫地平对培养新生大鼠脑皮层神经元钙电流的影响[J].解放军医学杂志,1997;22(4):237-238
    [177] Greiner C, Schmidinger A, Hulsmann S, et al. Acute protective elect of nimodipine and dimethyl sulfoxide against hypoxic and ischemic damage in brain slices [J]. Brain Res, 2000; 887(2): 316
    [178] 席刚明,魏国耀,何国厚,等.小鼠局灶性脑缺血后细胞凋亡及尼莫地平的影响[J].卒中与神经疾病,2005;12(3):164-166
    [179] 邓洪波,胡信群,李友元,等.依达拉奉合用尼莫地平对局灶性脑缺血再灌注大鼠脑损伤的保护作用[J].中国新药与临床杂志,2006;25(1):36-38
    [180] 庞鹤,朱陵群,张文生,等.丹参素对缺氧/缺糖损伤的神经细胞线粒体膜电位和凋亡的影响[J].中华中医药杂志,2006;21(6):329-332
    [181] 程喜,茹祥斌.噻唑蓝(MTT)比色的改良[M].实验方法汇编(第二集),1996;117
    [182] 邢文英,史学义,丁一,等.传代培养PC12细胞无丝分裂与细胞分化的观察[J].河南医科大学学报,2001;36(3):284-286
    [183] Papadopoulos M C, Koumenis I L, Gifard R G. Vulnerability to glucose deprivation injury correlates with glutathione levels in astrocytes[JJ. Brain Res, 1997; 748: 151-156
    [184] Koh JY, Choi DW. Quantitative determination of glutamate mediated cortical neuronal injuxy in cell culture by lactate dehydrogenase effiux assay[J]. J Neurosci Methods, 1987; 20(1): 83-91
    [185] Kromer G, Zamzami N, Susin SA. Mitochondrial control of apoptosis[J]. Immunol Today, 1997; 18: 44-52
    [186] 王颖超,曹励之,张朝霞,等.三氧化二砷诱导K562细胞线粒体跨膜电位的变化及其机制研究[J].实用儿科临床杂志,2005;20(1):18—19
    [187] Halestmp AP, Doran E, Gllespie JP, et al. Mitoehondrial and cell death[J]. Biochemi Soci Transac, 2000; 28: 170-177
    [188] Mukherjee PK, Decoster MA, Campbell FZ, et al. Glutamate receptor singaling interplay modulates stress-sensitive mitogen-activated protein kinases and neuronal death. J Biol Chem,1999; 274(10): 6493

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700