用户名: 密码: 验证码:
WS_2亚微米粒子摩擦学机理研究及高性能高温润滑脂研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究开发高性能高温润滑脂,对满足设备的高温润滑要求具有重要意义。本文以新型润滑材料WS_2亚微米粒子作为高性能高温润滑脂的添加剂,对其在润滑脂中所起的抗磨、减摩、抗极压等作用进行了实验研究和高温轴承台架试验,并用电子探针显微镜和俄歇电子能谱仪等对摩擦表面进行了分析。针对润滑脂中亚微米粒子的微观分散问题,引入了超声波分散技术。根据试验结果对WS_2亚微米粒子在高温润滑脂中的润滑机理和超声波对润滑脂中亚微米粒子的分散作用机理进行了分析,并研制出两种达到国际先进水平的高性能WS_2高温润滑脂。
     本文的主要研究结果有:
     1.通过实验发现WS_2亚微米粒子能大大提高两种主要高温润滑脂:复合锂基润滑脂和复合磺酸钙基润滑脂的抗磨、减摩、抗极压等摩擦学性能。在滚动轴承用润滑脂中添加适量WS_2亚微米粒子,能有效降低轴承在高温环境下工作时的摩擦因数,降低能耗,并能减少润滑脂消耗,延长润滑脂的工作寿命。并发现WS_2亚微米粒子的润滑性能大大优于石墨和MoS_2。
     2.发现亚微米粒子的最佳添加量与润滑脂的皂纤维结构有关。在复合锂基润滑脂中,由于部分WS_2亚微米粒子被封锁在皂纤维所组成的网状结构中,没有发挥润滑作用,故最佳添加量较大,为1.5%左右;在复合磺酸钙基润滑脂中,由于WS_2亚微米粒子主要是和团状皂纤维混合,大部分发挥了润滑作用,故最佳添加量较小,为1%左右。
     3.发现在较低的温度下,润滑脂中所含的WS_2亚微米粒子除了依靠晶体内部层间滑移减少摩擦外,主要依靠在金属摩擦表面形成WS_2吸附膜,以起到润滑作用。吸附膜的覆盖比例和厚度是影响润滑效果的关键,由于WS_2吸附膜比同等条件下MoS_2生成的吸附膜覆盖比例大,且更厚,故在比MoS_2具有更好抗磨、减摩和抗极压性能。
     4.发现在较高的温度下,润滑脂中所含的WS_2亚微米粒子主要依靠在摩擦副表面发生摩擦化学反应,生成化学反应膜,以降低摩擦,减少磨损。在钢-钢摩擦中,这层化学反应膜的形成过程为:在摩擦热作用下,WS_2分解生成W和S负离子(S~(2-)),然后W扩散沉积在金属表面,同时S与基体金属Fe作用生成FeS等抗磨、减摩的成分。这层化学反应膜不仅阻止了摩擦表面之间的直接接触,而且拥有很高的承载能力,使得由剪切应力引起的弹性变形和塑性变形局限于润滑膜区域,因而有效地抑制了摩擦表面的粘着磨损和接触疲劳,起到保护摩擦表面的作用。化学膜的厚度是影响润滑效果的关键,由于这种化学膜的厚度远大于同等条件下MoS_2生成的反应膜,故比MoS_2具有更好抗磨、减摩和极压性能。同时给出了反应膜厚度与工作温度的关系,指出反应膜厚度随工作温度的升高首先增加,当达到一定极限时,开始下降。
     5.发现WS_2亚微米粒子在轴承润滑脂中高温工作下产生的少量氧化生成物WO_3为粒径小于100nm的球状微粒,能在润滑过程中产生“滚珠轴承”效应,具有良好的摩擦学性能。
     6.首次将超声波分散技术引入对润滑脂中亚微米固体添加剂的分散中来,证实采用超声波能够产生声流搅拌并引起润滑脂中空化泡崩溃而产生瞬时高压,实现亚微米固体添加剂在润滑脂中微观上的均匀分布,提高了润滑脂的润滑性能。
     7.以WS_2亚微米粒子为主要添加剂,并引入超声波均化技术,研制出高性能WS_2复合锂基润滑脂和高性能WS_2复合磺酸钙基润滑脂,其性能基本达到国外同类先进高性能高温润滑脂产品的水平,部分指标甚至要优于国外产品。在工厂的实际应用情况表明,自行研制的高性能WS_2润滑脂在高温下工作情况良好,能够满足生产实践的需要,已部分取代进口同类产品,并出口到多个国家和地区,取得了较大的经济效益,值得在高温工作场合下推广运用。
Research and development of high performance high temperature grease has important significance to lubricate the equipment at high temperature. In this paper, a new lubricating material-WS_2 submicron particle is used as additive of high performance high temperature grease and its effects on anti-wear, antifriction and extreme pressure in grease are researched and the high temperature bearing bed test is carried out, the friction surface is analyzed with EPMA and AES. To solve the problem of the microscopic dispersing the submicron particles in grease, Ultrasonic method is used. According to the results, lubrication mechanism of WS_2 submicron particle in high temperature in grease and disperse mechanism of ultrasonic dispersing to submicron particle in grease are analyzed, and two kinds of high performance WS_2 high temperature grease which approach international advanced level are presented.
     Main research findings of this paper are as follows:
     1. The results of experiment show that WS_2 submicron particle can enhance the tribology property, including anti-wear, antifriction and extreme pressure, of two main high temperature grease-lithium complex grease and complex calcium sulfonate grease. Adding proper WS_2 submicron particle into the grease used in rolling bearing can reduce the friction factor, consumption, wastage of grease and prolong the working life of grease. It is also found that the lubrication property of WS_2 submicron particle is much better than that of graphite and MoS_2.
     2. The best proportion of submicron particle is related to soap's fibre structure of grease. In lithium complex grease, some WS_2 submicron particle is blocked in reticular soap fibre and is not into lubrication, so the best percent should be higher and is about 1.5%; In calcium sulfonate complex grease, WS_2 submicron particle is only mixed with nodular soap fibre and is all into lubrication, so the best percent should be lower and is about 1%.
     3. It is discovered that, under a lower temperature, the metal is lubricated mainly by WS_2 adsorption membrane which is formed between metal friction surfaces besides crystal interior layer slipping of WS_2 submicron particle in the grease. The adsorption membrane cover proportion and thickness are the key to affect the lubrication effect, because WS_2 adsorption membrane cover proportion is higher and WS_2 adsorption membrane is thicker than that of MoS_2 under the same condition.
     4. It is discovered that, under a higher temperature, the friction and wear are reduced mainly by chemical film which is produced by the friction chemical reaction of friction pairs' surface. In the steel-steel friction, the forming process of this chemical film is: the WS_2 is decomposed into W and S~(2-) with friction heat. then the W spreads and deposits on metal surface, simultaneously the anti-wear and antifriction ingredients, such as FeS is produced by reaction of S and substrate metal Fe, not only is the direct contact between friction surface prevented, but also the metal has higher beating capacity, which limits the elastic deformation and plastic deformation caused by shear stress to lubricating film region. Thus effectively restrains the friction surface coherence to wear and to contact wearily, so the friction surface is well protected. Chemical film thickness is the key factor to lubrication effect. Because the chemical film is much thicker than the film produced by MoS_2 under the same condition, and has better antiwear, antifriction and extreme pressure performance. Meanwhile, the relation between chemical film thickness and working temperature is presented, which shows that the chemical film becomes thicker as the working temperature rises, and start to drop when it achieves a certain temperature.
     5. It is discovered that, a little oxidized resultant WO_3 which is produced by WS_2 submicron particle in beating grease under high working temperature, is smaller than 100nm spherical particle, can act as ball bearing and has good friction performance.
     6. For the first time, ultrasonic dispersion technique is introduced to disperse submicron solid additive in grease. Ultrasonic wave have the sonic flow to stir and cause grease cavitation soaks the collapse to produce the instantaneous high pressure, disperses submicron solid additive in grease equably at micro level, and enhances the lubricating properties of grease.
     7. Take WS_2 submicron particle as the main additive, introduce ultrasonic dispersion technique, and develop high performance WS_2 lithium complex grease and high performance WS_2 calcium sulfonate complex grease, which can achieve the advanced level at whole performance, some performances excels overseas same kind products. Indicated in the factory practical application situation, independently develops high performance WS_2 grease puts down work in the high temperature makes the situation be good, can meet the requirement of production practice, has replaced some import grease, and has exported to some countries and areas, owing to good economical benefits, is worthy to extending use in the high temperature working conditions.
引文
[1] ASTM D 288, Annual Book of ASTM Standard. ASTM, West Cinshohocken, 1961; obsolete.
    [2] D. Dowson. History of Tribology[M]. London: Professional Engineering Publishing, 1998, 28~33.
    [3] W. F. Parish. Lubricants[J]. Encyclopedia Britannica, 1929, 14(14): 453.
    [4] 阿.费克里.埃及古代史[M].北京:商务印书馆,1973.
    [5] 于夯译注.诗经[M].太原:山西古籍出版社,1999,21.
    [6] 司马迁.史记[M].长沙:岳麓书社,2001,312.
    [7] Wells H.G.世界史纲(第十五版)[M].吴文藻、谢冰心、费孝通等译.桂林:广西师范大学出版社,2001.
    [8] 孙士海,葛维钧.列国志:印度[M].北京:社会科学文献出版社,2003.
    [9] R.C.马宗达高级印度史[M].北京:社会科学文献出版社,2003.
    [10] 陈晓红.失落的文明:巴比伦[M].上海:华东师范大学出版社,2001.
    [11] 安筱鹏.工具的革命与社会形态的演变[J1.理论观察,2005,3:27~30.
    [12] British Patent 6945, 07. 12. 1835.
    [13] 吴晓滨.煤焦油加工行业的现状与发展趋势[J].轻工科技,2006,17:86~87.
    [14] J. Lewkowitsch. Chemical Technology and Analysis of Oils, Fats and Waxes[J]. Vieweg, Braunschweig, 1905.
    [15] 王革华.能源与可持续发展[M].北京:化学工业出版社,2005.
    [16] 高艳青,刘庆廉.中国润滑脂用脂现状及发展趋势简介[J].石油商技,2006,1:17~19.
    [17] 郭太勤,蒋明俊,郭小川等.高温润滑脂的发展现状[J].润滑与密封,2006,1:164~167.
    [18] 颜志光,杨正宇.合成润滑剂[M].北京:中国石化出版社,1996,32.
    [19] 孙全淑.润滑脂性能与应用[M].北京:烃加工出版社,1988.
    [20] L E Tedrow, F S Sayles. Field Performance of Synthesized Hydrocarbon (Polyalphaolefin) Greases[J]. NLGI Spokesman, 1984, 50(11): 395~398.
    [21] 张澄清.润滑脂生产[M].北京:中国石化出版社,2003.
    [22] Barnes J E. Silicone Grease and Compounds: Their Components, Properties and Applications[J]. NLGI Spokesman, 1989, 53(3): 103~111.
    [23] 董浚修.润滑原理与润滑油[M].北京:中国石化出版社,1998.
    [24] 梁治齐.润滑脂生产及应用[M].北京:化学工业出版社,2000,176.
    [25] L. W. Mclerman, US Pantent 2417428, 18 March 1947.
    [26] M. Ehrlish, T. G Musili. The Development of Lithium Complex Grease[J]. NLGI Spokesman, 1980, 6(3): 87~100.
    [27] L. D. Compell, G. L. Harting. A New Generation of Lithium Complex Grease[J]. NLGI Spokesman, 1976, 6: 193~200.
    [28] US Pantent 4376060, 4415299, 4505832.
    [29] Mobil Oil Co, US Pantent 3806650, 1974.
    [30] 蒋明俊,郭小川,董浚修等.添加剂在复合锂基脂中的作用[J].合成润滑材料,2000,3:1~7.
    [31] 毛大恒,孙晓亚.提高高温复合锂基润滑脂滴点的机理研究[J].南方金属,2006,6:21~24.
    [32] 孙晓亚.提高超高温润滑脂主要理化性能的实验研究[硕士学位论文].长沙:中南大学,2006.
    [33] W. Blockhuis, R. Muir, US Pantent 4560489, 24 December 1985.
    [34] 刘显秋.高碱性复合磺酸钙基润滑脂[J].合成润滑材料,2004,31(1):24~26.
    [35] Muir R.. High Performance Calcium Sulfonate Complex Lubricating Grease[J]. NLGI Spokesman, 1988, 53(4): 140~146.
    [36] 蒋明俊,孙全淑.复合磺酸钙基润滑脂抗磨作用机理的探讨[J].润滑与密封,1992,3:5~7.
    [37] 黄精忠.复合磺酸钙基脂的结构探讨和性能研究[J].润滑与密封,1996,1:37~44.
    [38] 黄志坚,董一敏,刘威.复合磺酸钙基脂及其在冶金润滑工程中的应用[J].南方钢铁,1999,4:20~22.
    [39] C. G. Brannen, L. C. Brimstrum, E. A. Swaken. Substituted Ureas as Grease Thickeners[J]. NLGI Spokesman, 1954, 18: 8~13.
    [40] 杨玮,姚立丹,郑善伟.聚脲润滑脂的结构及反应机理的研究[J].石油学报(石油加工),2000,16(4):38~42.
    [41] 陈秀云,杜东根,刘文.用脲基聚合物生成聚脲基润滑脂[J].河北化工,1998,12:18~19.
    [42] Seiji Okamura, Masao Toyota. Long Life Urea Grease for High Temperature and High Speed Application[J]. NLGI Spokesman, 1992, 56(3): 14~20.
    [43] Yang Wei, Yao Lidan, Zheng Shanwei. A Study on Structure and Mechanism of Diurea Grease[J]. NLGI Spokesman, 2003, 67(4): 14~19.
    [44] Jon C Root. A Comparative Study of Polyurea and Lithium Complex Grease Thickeners[J]. NLGI Spokesman, 1994, 58(9): 22~24.
    [45] Dr Dirk, Herbert Kardlnal. Lifetime Lubrication of Bearings at High Temperature[J]. NLGI Spokesman, 1999, 63(7): 12~14.
    [46] 池淼,俞楠,江家珍.聚脲基脂及其在电机轴承上的应用[J].润滑油,2003,18(3):60~62.
    [47] 王世超.冶金设备用润滑脂的现状及发展[J].润滑油,2001,6:59~62.
    [48] 朱廷彬.润滑脂技术大全[M].北京:中国石化出版社,2005,552~558.
    [49] S. K. Gupta, R. G Srivastava, P. S. Venkataramani. High Temperature Greases Based on Polyurea Grllants[J]. Journal of Synthetic Lubrication, 1987, 4(3): 229~234.
    [50] Xie Liangsen, Li Hui. Study of Greases Based on Polyureas[J]. Journal of Synthetic Lubrication, 1991, 8(1): 39~50.
    [51] T. Endo. Recent Developments in Diurea Greases[J]. NLGI Spokesman, 1993, 57: 532~541.
    [52] T. Endo. Current Trends in Diurea Greases in Japan[J]. Eurogrease, 1997, November/December: 25~40.
    [53] Smith C. R.. Base Exchange Reactions of Bentonite and Salts of Organic Bases[J]. JACS, 34, 56(2): 1561~1563.
    [54] 吕爱敏,刘淑萍.有机膨润土合成及应用[J].河北化工,2004,6:22~91.
    [55] 王旭.膨润土的有机化及其产品应用[J].辽宁化工,2000,29(5):295~297.
    [56] 曹春兰.疏水性白碳黑在氧气系统润滑脂的应用[J].合成润滑材料,2001,2:7~10.
    [57] 秦晓东,蒋晓明,陈月珠.用纳米二氧化硅试制高温润滑剂[J].石油学报,2002,18(3):80~85.
    [58] 赵永镇,杨兴钰.HZ-8605高温重载润滑脂的研制及应用[J].润滑与密封,1989,3:34~38.
    [59] 赵永镇,赵进.有机硅聚脲润滑脂的合成[J].润滑与密封,1994,2:49~52.
    [60] 陈济美,龚关.累托石高温润滑脂的研制[J].材料保护,1999,32(5):34~35.
    [61] 黄焱球,高广立.累托石制备润滑脂的初步研究[J].矿物岩石,1999,19(1):88~91.
    [62] 刘维民,薛群基.无机硼酸盐润滑油抗磨添加剂的发展现状[J].摩擦学学报,1993,13(4):382~387.
    [63] 刘维民,薛群基.有机硼酸酯润滑油减磨抗磨添加剂[J].摩擦学学报,1992,12(3):193~202.
    [64] 王泽爱,陈国需,宗明.超细粒子在润滑脂中的应用及展望[J],润滑油,2006,21(6):12~15.
    [65] 毋伟,陈建峰,卢寿慈.超细粉体表面修饰[M].北京:化学工业出版社,2004,2.
    [66] Josef Pohlen, Graham Gow, AB Axel. From Black to White - Problem Solving for Heavy Load Applications[J]. NLGI Spokesman, 2000, 64(2): 9~13.
    [67] 志贺三千男.[J],1984,7(8):730~732.
    [68] Witte, Arnold C. Lithium Complex Soap Thickened Grease Containing Calcium Acetate[P], US 4483776, 1984.
    [69] 陈惠卿.二硫化钼在润滑脂中的应用[J].合成润滑材料,2002,29(1):13~19.
    [70] Risdon T J, Sargent D J. Comparison of Commercially Available Grease With and without Molybdenum Disulfide[J]. NLGI Spokesman, 1971, 24(10): 8~12.
    [71] Risdon T J. Evaluation of MoS_2 in Newer Grease Thickener Systems[J]. NLGI Spokesman, 1986, 50(6): 211~214.
    [72] Risdon T J, Gresty D A. The Effect of MoS_2 on Wear with Greases Containing an Abrasive Conta - minant[J]. NLGI Spokesman, 1978, 46(6): 182~186.
    [73] Hafner E R. Extreme Operating Conditions[J]. Mechanical Engr, 1977, 99(12): 35~40.
    [74] Muller, Klaus. How to Reduce Fretting Corrosion - Influence of Lubricant[J]. Tribology International, 1975, 8(2): 57~64.
    [75] Gassenfeit E H, Soom A. Friction coefficients Measured at Lubricated Planar Contacts During Start - up [J]. Journal of Tribology, 1988, 110: 533~538.
    [76] Ann Drury. Review of Greases Containing Solids for Centrailzed Systems[J]. NLGI Spokesman, 1987, 51(3): 91~93.
    [77] Cron A, Fatikin J. Graphite in Lubrication: Fundamental Parameters and Selection Guide[J]. NLGI Spokesman, 1989, 45(4): 137~147.
    [78] Albert V. The Effect of Graphite Type, Purity and Concentration on the Performance of a Clay Filled Polyalphaolefm Grease, Based on Four Ball Wear (ASTM D2269) with Coefficient of Friction, and Load Wear Index (ASTM D2596) [J]. NLGI Spokesman, 2002, 65(12): 10~25.
    [79] Ruediger Holinski, Manfred Jungk. New Solid Lubricants as Additive for Greases- Polarized Graphite[J]. NLGI Spokesman, 2000, 64(6): 23~27.
    [80] Anthony Gaskell. New Life for Old Technology[J]. Lubricants World, 1998, 8(1): 40~43.
    [81] Anuj Mistry, Ron Bradbury. Investigation into the Effect of Molybdenum Disulfide and Graphite on the load Carrying Capacity of a Grease[J]. NLGI Spokesman, 2002, 66(3): 25~29.
    [82] Ernie Ballester, Manshi Sui. Effect of PTFE Particle Size on Wear and Coefficient of Friction[J]. NLGI Spokesman, 2001, 65(1): 22~27.
    [83] 汪涛锋,章得胜.有机固体润滑剂MCA的性能评价[J].固体润滑,1989,9(3):137~143.
    [84] Ganshheimer J. Schmierstoffe fur oszillierende Bewegungenein neuer Fortschritt in der Tribotechnik[J]. Konstruktion, 1990, 42: 391~395.
    [85] Theo Mang. Wilfried Dresel[M]. Lubricants and Lubrication, Weinheim, 2001.
    [86] Under, Klaus. Spherical Silica Particles[P]. DE 3534143, 1985.
    [87] 何灼成,郭小川.超细软金属铜粉在润滑脂中摩擦学性能的考察[J].润滑与密封,2004,(5):33~35.
    [88] Murugan P, Kumar Vijay, Kawazoe Yoshiyuki, et al. Atomic Structures and Magnetism in Small MoS_2 and WS_2 Clusters[J]. Physical Review A-Atomic, Molecular, and Optical Physics, 2005, 71(6): 1~6.
    [89] Jaroslav S, Gunnar S. Ion Bombardment of Solid Lubricating Nanoparticle Coatings[J]. Nuclear Instruments and Methods in Physics Research B, 1997, 127/128: 945~948.
    [90] S W Gregory, B Thierry. Lubrication of Mo, W, and Their Alloys with H_2S Gas Admixtures to Room Temperature Air[J]. Wear, 1999, 225-229: 581~586.
    [91] Baranov N G, Ageeva V S, Ⅱ'nitskaya A I, et al. Structure and Tribological Characteristics of Copper-Tungsten Disulfide Powder Composite Material[J]. Soviet Powder Metallurgy and Metal Ceramics, 1991, 29(10): 832~835.
    [92] 邢鹏飞,翟玉春,田彦文等.WS_2在空气中氧化动力学的研究[J],金属学报,1996,32(2):187~190.
    [93] 程继贵,熊二涛,蒋阳等.WS_2超细粉体的固相法合成[J],应用化学,2006,23(7):786~789.
    [94] 石琛,毛大恒,俸颢.二硫化钨发动机油的摩擦学性能研究[J],润滑与密封,2007,32(3):83~87.
    [95] 王海斗,庄大明,王昆林等.高速钢离子渗硫层的摩擦磨损性能研究[J],摩擦学学报,2002,22(7):250~253.
    [96] 邹娣,刘晓.高酸值乙醇润滑下几种活塞环材料的摩擦学性能[J],重庆工商大学学报(自然科学版),2006,23(1):89~92.
    [97] 徐泽儒.金属硫化物减摩材料的研究[J],河南冶金,1997,2:26~29.
    [98] Mao Daheng, Feng Hao, Sun Xiaoya. Study on A Hyperthermal Lithium Complex Grease[J]. Transactions of Nonferrous Metals Society of China, 2005, 15(6): 1361~1366.
    [99] 俸颢,毛大恒.一种二硫化钨高温润滑脂的研制与性能研究[J].重庆师范大 学学报(自然科学版),2004,21(3):50~54.
    [100] 俸颢,毛大恒,刘巧红等.二硫化钨超细粉末对高温复合锂基润滑脂性能的影响[J].四川大学学报(工程科学版),2005,38(3):119~123.
    [101] 熊文.WS_2高温锂基润滑脂摩擦学性能的研究[硕士学位论文].长沙:中南大学,2004.
    [102] 熊文,毛大恒,吴尔京.二硫化钨在高温锂基润滑脂中摩擦学性能的研究[J].润滑与密封,2005,2:107~109.
    [103] 俸颢,毛大恒,刘巧红等.超声波对润滑脂中固体添加剂分散作用的研究[J].河北化工,2006,29(9):7~9.
    [104] 姚俊兵.润滑油脂抗磨极压添加剂研究进展[J].润滑油,2006,21(3):29~37
    [105] Scott Field. ZDDP: Going, Going...or not?[J]. Tribology & Lubrication Technology, 2005, (5): 26~30.
    [106] 李凤生.超细粉体技术[M].北京:国防工业出版社,2000.
    [107] 张国旺,黄圣生.超细粉体制备技术的应用和发展[J].化工矿物与加工,2001,12:1~3.
    [108] 张国旺.超细粉碎设备及其应用[M].北京:冶金工业出版社,2000.
    [109] 崔越昭,吴一善.我国超细粉碎工艺技术现状及发展建议[J].非金属矿,1995,3:23~24.
    [110] Ben Schneider. Processing of Ultra-fine Minerals[J]. Industrial Minerals, 1997, 10: 91~99.
    [111] 孙成林,郭惠兰.我国超细粉碎设备发展现状及其存在问题[J].化工矿物与加工,2000,6:1~4.
    [112] 张国旺,黄圣生.高效超细搅拌磨机的设计和应用[J].矿冶工程,2002,3:45~47.
    [113] He M, Wang Y, Forssberg E. Slurry Rheology in Wet Ultrafme Grinding of Industrial Minerals[J]. Powder Technology, 2004, 147: 1~3.
    [114] 谷士强.冶金机械安装与维护[M].北京:化学工业出版社,2005.
    [115] 熊会思.水泥厂设备润滑管理[M].北京:中国建材工业出版社,2004.
    [116] Nicholas P.Cheremisinoff.化工过程设备手册[M].师树才,乔学福,杨盛启等译.北京:中国石化出版社,2004.
    [117] 潘杰.现代平板印刷操作指南[M].北京:化学工业出版社,2005.
    [118] 唐万有,袁纪连,王丰军等.平板印刷机[M].北京:化学工业出版社,2005.
    [119] Christopher Stevens.选择润滑脂及防卡死添加剂的实践经验[J].设备管理与维修,2000,9:40~42.
    [120] 波纳尔C J.现代润滑脂[M].刘明森译.北京:石油工业出版社,1982,341.
    [121] 中国石油化工股份有限公司科技开发部编.石油产品的行业标准汇编[M].北京:中国石化出版社,2005.
    [122] 中国石化股份有限公司炼油事业部编.中国石油化工产品大全[M].北京:中国石化出版社.2002.
    [123] 徐世敏,杨正宇.2000年中国和世界润滑脂生产状况[c].全国第十一届润滑脂技术交流会论文集,2001.
    [124] 石淼森.固体润滑技术[M].北京:中国石化出版社,1998,147~148.
    [125] 林河成.二硫化钨的生产及发展浅析[J].稀有金属和硬质合金,1998,9:52~57.
    [126] 谭跃雄.现代质量管理学[M].长沙:中南工业大学出版社,1999,197~199.
    [127] Leslie R.Rudnick,Ronaid L.Shubkin.合成润滑剂及其应用(第二版)[M].李普庆、关子杰、耿英杰译.北京:中国石化出版社,2006.
    [128] 王世超.冶金设备用润滑脂的现状及发展[J].润滑油,2001,6:59~62.
    [129] 康健,赵玉贞.高温润滑脂的发展[J].合成润滑材料,2005,32(2):25~30.
    [130] 姚立丹,杨海宁.近年来国外润滑脂的发展[J].石油商技,2004,22(5):1~6.
    [131] 姚立丹,杨海宁.润滑脂技术发展动向[J].石油商技,2006,2:7~9.
    [132] Hurley S, Cann P M, Spikes H A. Lubrication and Reflow Properties of Thermally Aged Greases[J]. Tribology Transactions, 2000, 43(2): 221~228.
    [133] 张澄清.润滑脂生产[M].北京:中国石化出版社,2003,256~257.
    [134] S. K. Gupta, R. G Srivastava, P. S. Venkataramani. High Temperature Greases Based on Polyurea Grllants[J]. JSL, 1987, 4: 229~234
    [135] H. Li, L. Xie. A Study of Greases Based on Polyureas[J]. JSL, 1991, 8: 39~50.
    [136] T. Endo. Recent Developments in Diurea Greases[J]. NLGI Spokesman, 1993, 57: 532~541.
    [137] T. Endo. Current Trends in Diurea Greases in Japan[J]. Eurogrease, 1997, November/December: 25~40.
    [138] Warren D. Seider, J. D. Seader, Daniel R. Lewin. Product & Process Design Principles-Synthesis, Analysis, and Evaluation(2e)[M]. London: John Wiley & Sons, Inc, 2003.
    [139] 刘志强.化工企业成本核算与财务管理实务手册[M].银川:宁夏大地音像出版社,2003.
    [140] 王振东.润滑油(剂)生产配方优化设计与新材料的应用及质量检测标准规范实务全书[M].银川:宁夏大地出版社,2004.
    [141] 小宫.Technological Trends of Greases for Bearing[J].润滑经济,2002,6:14~20.
    [142] Yoshikiyo Yukawa. Trends and Future Prospects for Rolling Bearing Technologies[J]. KOYO Engineering Journal English Edition, 2001, 159: 23~30.
    [143] Kim Byung Chul, Park Dong Chang, Kim Hak Sung, et al. Development of Composite Spherical Beafing[J]. Composite Structures, 2006, 75(1-4): 231~240.
    [144] Yang Helai, Ru Bingwei, Shi Jin. Development of Ceramic Sliding Bearing[J]. Progress of Machining Technology - Proceeding of the Seventh International Conference on Progress of Machining Technology, lCPM'2004, 2004: 1007~1011.
    [145] Bertheville B, Deroide B, Zanchetta J V, et al. Spectroscopic Studies and Electronic Properties of Heat Treated Calcium Sulphonate[J]. Lubrication Science, 1994, 6(3): 229~245.
    [146] Giasson S, Espinat D, Palermo T. Study of Microstructural Transformation of Overbased Calcium Sulphonates During Fricfion[J]. Lubrication Science, 1993, 5(2): 91~111.
    [147] Selvi Emre, Ma Yanzhang, Aksoy Resul, et al. High Pressure X-ray Diffraction Study of Tungsten Disulfide[J]. Journal of Physics and Chemistry of Solids, 2005, 67(9-10): 2183~2186.
    [148] Schutte W J, Deboer J L, Jellinek F. Crystal Strucures of Tungsten Disulfide and Diselenide[J]. Journal of Solid State Chemistry, 1987, 70(2): 207~209.
    [149] Ellmer K, Seeger S, Mientus R. Rapid Crystallization of WS_2 Films Assisted by a Thin Nickel Layer: An Insitu Energy-dispersive X-ray Diffraction Study[J]. Physica Status Solidi(A) Applied Research, 2006, 203(10): 2457~2462.
    [150] Holinski R, Gansheimer J. A study of the Lubricating Mechanism of Molybdenum Disulfide[J]. Wear, 1972, 19: 329~343.
    [151] 无机盐工业手册编写组.无机盐工业手册(第二版)下册[M].北京:化学工业出版社,1999.
    [152] 刘新锦,朱亚先,高飞.无机元素化学[M].北京:科学出版社,2005.
    [153] 王平,郑少华,苏登成等.几种无机纳米粒子在润滑油中抗磨性对比研究[J].润滑与密封,2006,9:157~159.
    [154] Bakunin V N, Suslov G N. Synthesis and Application of Inorganic Nanoparticles and Lubricant Components - a Review[J]. Nanoparticle Research, 2004, 6: 273~284.
    [155] Hosoe. The Effect of Super Fine Particles of Oxide Ceramics on the Lubricity of Lubricating Grease[J]. Material Technology, 2000, 18(3)·71~78.
    [156] Hu Z S, Dong J X, Chen G X. Study on Antiwear and Reducing Friction Additive of Nanometer Ferric Oxide[J]. Tribology International, 1998, 31 (7): 355~360.
    [157] Huang Weijiu, Hou Bin, Zhang Peng. Tribologieal Performance and Action Mechanism of S-[2-(acetamido) thiazol-1-yl] Dialkl Dithiocarbanmate as Additive in Rapeseed Oil[J]. Wear, 2004, 256: 1106~1113.
    [158] Zhan Wei Qiang, Song Yuping, Ren Tianhui, et al. The Tribological Behavior of Some Triazine-dithiocarbamate Derivatives as Additives in Vegetable Oil[J]. Wear, 2004, 256: 268~274.
    [159] 刘维民,薛群基,周静芳等.纳米颗粒的抗磨作用及作为磨损修复添加剂的应用研究[J].中国表面工程,2002,52(3):21~25.
    [160] 欧忠文,徐滨士,丁培道等.纳米润滑材料应用研究进展[J].材料导报,2001,14(8):28~30.
    [161] 李宝良,李志刚,骆高志等.几种纳米粒子润滑脂添加剂的摩擦学性能[J].大连铁道学院学报,2006,23(3):41~43.
    [162] 王李波,冯大鹏,刘维民.几种纳米微粒作为锂基脂添加剂对钢-钢摩擦副摩擦磨损性能的影响研究[J].摩擦学学报,2005,25(2):107~111.
    [163] Weimin Liu, Shuang Chen. Study on the Tribological Behavior of the Surface-Modified ZnS Nanoparticles in Liquid Paraffin[J]. Wear, 2000, 238: 120~124.
    [164] Hu Z S, Dong J X, Chen G X. Study on Antiwear and Reducing Friction Additive of Nanometer Ferric Oxide[J]. Tribology International, 1998, 31(7): 355~360.
    [165] 梁治齐.润滑剂生产及应用[M].北京:化学工业出版社,2000:180~185.
    [166] Pamdit A B, Senthil Kumar P, Siva Kumar M. Improve reactions with hydrodynamic cavitation[J]. Chemical Engineering Progress, 1999, 95(5): 43.
    [167] Olli, Lany K, Rawlings, et al. Nanoscale amorphous magnetic metals[P]. US Patent, NO 5766764, 1998.
    [168] 刘金刚,刘浏,颜会成等.超声搅拌和气体搅拌去除央杂物Ⅲ.钢铁研究学报,2006,18(10):11~15.
    [169] 陆璇.应用统计[M].北京:清华大学出版社,1999,147~157.
    [170] 孙枫林.应用统计学[M].长沙:中南工业大学出版社,1998,33~47.
    [171] 许肖梅.声学基础[M].北京:科学出版社,2003,131~132.
    [172] 何柞镛.声学理论基础[M].北京:国防工业出版社,1985.
    [173] 河南省电力公司编.火电工程调试技术手册金属卷[M].北京:中国电力出版社,2003,39~47.
    [174] Tseumekawa Y, Suzuki H, Okumiva M. Preparation of Insitu Reinforced Composites Using Ultrasonic Vibration and Selective Incorporation of Reinforcements by Magneticfield[J]. Alum Trans, 2000, 2(1): 1~10.
    [175] 中西治通,恒川好树,毛利尚武等.生成发热反应应用粒子溶汤系超声波溶浸[J].同本金属学会志,1993,57(1):81~87.
    [176] 闰明涛,吴刚.超声波合成介孔分子筛[J].无机化学学报,2004,20(2):219~224.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700