用户名: 密码: 验证码:
碳包覆金属纳米粒子制备与应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳包覆金属纳米粒子(Carbon Encapsulated Metal Nano-Particles,CEMNPs)是一种具有核/壳结构的金属/碳纳米复合材料。多种金属纳米材料内核与碳壳的不同组合赋予这种复合材料众多奇特的物理化学性能,在生物医学、化工、新能源等许多领域都显示出巨大的潜在应用前景,比如作为磁共振成像造影剂、生物分析和药物载体、高热疗法介质、催化剂、磁记录和磁分离介质等。作为一种新型的碳复合纳米材料,碳包覆金属纳米粒子的制备、性质及应用基础研究已成为广泛关注的热点。人们已用多种方法合成不同金属粒子的纳米碳包覆材料。目前,主要的制备方法包括高能生长法(电弧、离子束、激光、爆炸)和化学气相沉积、碳基转化等等,能耗高、设备要求高、制备工艺复杂、价格昂贵。碳包覆金属纳米粒子,特别是核为磁性金属的CEMNPs,生产效率较低,制约了关于CEMNPs的应用基础研究发展。
     本文以价格低廉、获取方便的蔗糖和金属硝酸盐为主要原料,首先采用热解法在N2气氛下制备出碳包覆钴纳米粒子(记为Co@C)、碳包覆铜镍纳米粒子(记为CuNi@C);在此基础上,将软化学方法和热解法与结合,提出了液相还原-高温炭化法,制备出碳包覆铜纳米粒子(记为Cu@C)、碳包覆铁纳米粒子(记为Fe@C)、碳包覆钴纳米粒子[记为Co@C(LR)]和碳包覆铁铜纳米粒子(记为FeCu_4@C),实现了CEMNPs成单分散状。对所制备的CEMNPs,采用多种现代分析测试方法对其化学组成、物相、显微结构和一些主要物理、化学性质进行了较为系统的表征,试验研究了碳包覆金属纳米粒子作为润滑油添加剂对摩擦磨损性能的影响;探讨了碳包覆金属纳米粒子修饰玻碳电极的电化学催化性能。研究结果表明:
     Co@C的核为fcc-Co、壳为多层同心层状六角形碳网,在碳网上连接有=O、-OH等基团。在Co@C纳米粒子外围存在无定形碳,分散粒径均值162.8nm, TEM测定粒径均值35.3nm。室温下其饱和磁化强度M_s=24.7emu/g,剩余磁化强度M_r=3.71emu/g,矫顽力H_c=275.2Oe。碳壳保护作用明显,金属核在1000℃后才氧化。Co@C具有一定的导电性,常温电阻率9.46·cm。对于8~18GHz微波具有一定的吸收能力,在14.7GHz时吸收最大为6.36dB。
     Co@C(LR)壳层为无定形碳,核为多晶fcc-Co,基本呈单分散状,平均粒径49.6nm。样品中不足1/5的碳为纯C-C结合,其余均连接有其它基团,钴核主要呈现0价金属态和少量氧化态。室温下Co@C(LR)的M_s=130.7emu/g、M_r=13.0emu/g,H_c=56Oe,表现出超顺磁性。BET法测试的Co@C(LR)比表面积SSA=167.0m2/g。在液体石蜡中添加Co@C进行的摩擦磨损试验发现:当添加量为0.6wt%时其承载力有所提高,添加量为0.4wt%时摩擦系数μ和磨痕宽度W最小,均低于对照油,说明Co@C(LR)有一定的减摩抗磨效果。对比以裸玻碳电极(GCE)和以Co@C(LR)修饰的GCE为工作电极时得到的CV曲线,Co@C(LR)对对硝基苯酚(PNP)的电化学反应有良好的催化效果。
     CuNi@C的核为多晶fcc-CuNi合金,壳为可观察到石墨结构层的C,但晶格条纹不够连续、完整。壳外粘连有无定形碳,其分散粒径为134.1nm、TEM测试粒径为55nm。样品中约1/3的碳为纯C-C结合,余下的都与其它基团有相互作用,Cu、Ni都存在金属态和氧化态两种形式。CuNi@C有一定的导电性,室温电阻率为100.56Ω cm,对于8~18GHz微波具有一定的吸收能力,在14.9GHz时吸收最大为8.1dB。将CuNi@C添加到液体石蜡中进行的摩擦磨损试验结果表明,当添加量为0.6wt%时有效降低了摩擦系数μ和磨痕宽度W,表现出了较好的减摩抗磨性能。
     Fe@C的核主要是多晶bcc-Fe,壳为无定形碳,为单分散状,平均粒径48nm。样品中约43%的碳为C-C结合,其余与其-OH、-N有相互作用,约76%的Fe为0价金属,其余为Fe~(3+)。磁性能测试结果为:M_s=54.56emu/g,M_r=5.35emu/g, H_c=205Oe。BET法测得的SSA=522.7m~2/g。Fe@C对PNP的电化学反应有良好的催化效果,最佳NaOH浓度为1mol/L。
     Cu@C的核为多晶fcc-Cu,壳为无定形碳,局部能观察到晶格条纹,单分散状,平均粒径49.5nm。约1/2的C为纯C-C连接,其余的连接有其它基团,Cu有0价金属和CuO两种状态。BET法测得的SSA=94.1m~2/g。在液体石蜡中添加一定量的Cu@C具有明显的减摩抗磨效果,当添加量为0.6wt%时,与对照油相比μ降低了21.6%,W降低了30.0%。Cu@C对PNP的电化学反应有良好的催化效果,最佳NaOH浓度为0.5mol/L。
     FeCu_4@C的核为fcc-FeCu_4,壳为无定形碳,单分散状,平均粒径62.8nm。约36%的C为纯C-C连接,其余的连接有其它基团,Cu有0价金属和Cu(OH)_2两种状态,Fe含量低,只检测到0价金属态。磁性能测试结果为:M_s=13.01emu/g,M_r=0.37emu/g,H_c=54.43Oe。BET法测得的SSA=269.9m~2/g。
     基于上述研究工作在碳包覆金属纳米粒子制备方法、性能表征和摩擦学性能研究等方面获得的知识,丰富了碳包覆金属纳米材料的基础理论,在促进应用技术发展方面提供了支持。
Carbon encapsulated metal nano-particles (CEMNPs)are types of carbon/metalcomposite materials with core/shell structure in nanoscale. The different combination ofvarious metal nanometer materials as core and carbon as shell rewards the composite withmany peculiar physical and chemical properties.Therefore, CEMNPs have huge potentialapplications in many fields, such as s MRI contrast agent, bio-analysis, drug carrier, mediumhigh heat therapy, catalyst, magnetic record, magnetic separation and so on. The preparation,properties and applied basic research of carbon encapsulated metal nano-particles as a newkind of carbon based nanocomposite have become a research hotspot.
     A lot of methods have been developed for preparing carbon encapsulated metalnanoparticles. Currently, main preparation methods include high energy growing approach(such as electric arc, ion beam, laser and explosion), chemical vapor deposition and carbontransition. These methods have the features with high energy assumption, complex technicsand expensive prices. Moreover, the production rate is low for CEMNPs, especially forCEMNPs with magnetic cores, which limits the application and research interests ofCEMNPs.
     In this study, different types of carbon encapsulated metal nanoparticles, includingcarbon encapsulated cobalt nanoparticles (assigned as Co@C), carbon encapsulated coppernickel nanoparticles (assigned as CuNi@C), were prepared using pyrolysis the precursorunder N2atmosphere which obtained by evaporating the mixture solution of sucrose andmetal nitrate to dryness, and the preparation scale was dozens of grams at a time. A newpreparation method for synthesis of the monodispersed CEMNPs samples, which was namedas liquid reduction-high temperature carbonization method, has been put forward bycombination of soft chemistry method and pyrolysis method.Some CEMNPs samples,including carbon encapsulated copper nickel nanoparticles (assigned as Cu@C), carbonencapsulated iron nanoparticles (assigned as Fe@C), carbon encapsulated cobaltnanoparticles [assigned as Co@C(LR)] and carbon encapsulated iron-copper nanoparticles(assigned as FeCu4@C), have been prepared by the developed method. The preparation amontis dozens of grams once. The chemical composition, phase, micro-structure and some majorphysical, chemical properties of as prepared CEMNPs samples were systematicallycharacterized by various modern analysis methods. The friction and wear properties of somekinds of the as-prepared CEMNPs samples were then studied by adding them into the atoleine as an additive of lubricating oil. The electrochemical catalytic performance was measuredthrough modifying a glassy carbon electrode in the electrochemical reaction of p-Nitrophenol.The following research results are obtained in this study.
     The core of Co@C is fcc-Co while the shells are homocentrically hexagonal multi-layercarbon nets which are connected with some group, such as=O,-OH and so on. The dispersionparticle size is much bigger than that of observation under the transmission electronmicroscope (TEM) because there are some amorphous carbons being around of the Co@Cnanoparticles. Tthe average value of the former is equal to162.8nm and that of the latter isequal to35.3nm. The saturation magnetization, M_s, is equal to24.7emu/g under ambienttemperature measured using a vibrating specimen magnetometer (VSM), and the residualmagnetization, Mr=3.71emu/g, the magnetic coercive force, Hc=275.2Oe. The results ofTG-DSC test revealed that the metallic core of Co@C had been obviously oxygenated until1000℃for the protection of carbon shells. The sample of Co@C is an electrical conductorwhich resistivity is equal to9.46·cm under ambient temperature and there is absorbingcapacity for the microwave with the frequency of8~18GHz, the maximum is equal to6.36dB at the frequency of14.7GHz.
     The shells of Co@C(LR) are composed of amorphous carbons, and the cores arepolycrystal of fcc-Co. The nanoparticles are monodispersion with an average particle size of49.6nm. Only less than1/5of the carbons in the as-prepared sample are connected withanother carbon atom, and all of the else are connected with other groups. The cobalt atoms arein two states too. That is, the vast majority of the cobalt atoms are the metallic state, and theothers are oxidation state. The sample of Co@C(LR) showed a quasi-superparamagnetismunder room temperature, and M_s=130.7emu/g, Mr=13.0emu/g, Hc=56Oe. The special surfacearea (SSA) measured using BET method is equal to167.0m2/g. The friction and wear testresults of adding the sample into the atoleine as an additive of lubricating oil showed that theCo@C(LR) had better performance of friction-reduction and anti-wear. The bearing capacityof the test oil has significantly increased when the additive amount of Co@C(LR) is0.6wt%,and the friction coefficient (μ) and wear rate (W) decrease to minimum when the additiveamount is0.4wt%, which are lower than that of the matched oil. The Co@C(LR) haspresented good catalytic activity in the electrochemical reaction of p-Nitrophenol (PNP) bycomparing the CV curves measured using a glassy carbon electrode (GCE) modified by theCo@C(LR) with that of measured using a bare GCE.
     The core of CuNi@C is composed of the polycrystal of fcc-CuNi alloy and the shells are carbon of which the lattice fringes can be observed but no longer continuous and perfect. Thedispersion particle size is much bigger than that of observation under TEM because there aresome amorphous carbons being around of the CuNi@C nanoparticles. The average value ofthe former is equal to134.1nm and that of the latter is equal to55.0nm. The quantity ofcarbon atoms connected with another carbon atom is about one third and the else areconnected with other groups. All of the cobalt and nickel are in two states: metallic state andoxidation state. The CuNi@C is apoor electrical conductor whose resistivity is equal to100.56·cm under ambient temperature and there is absorbing capacity for the microwavewith the frequency of8~18GHz, the maximum is equal to8.1dB at the frequency of14.9GHz. The friction and wear test results of adding the sample into the atoleine as anadditive of lubricating oil showed that the CuNi@C had better performance offriction-reduction and antiwear. The friction coefficient and wear rate decrease to minimumwhen the additive amount of CuNi@C is0.6wt%, which are much lower than that of thematched oil.
     The core of Fe@C is mainly composed of the polycrystal of bcc-Fe and the shells areamorphous carbons. The nanoparticles are monodispersion with an average particle size of48nm. The quantity of carbon atoms of the samples which are connected with another carbonatom is about43%and the others are connected with–OH=N and so on. The ratio of iron formetallic state is about76%, the valence state of other iron is Fe3+. The magnetic properties ofthe Fe@C measured by VSM are: M_s=54.56emu/g, Mr=5.35emu/g, Hc=205Oe. The specialsurface area measured by BET method is equal to522.7m2/g. The Fe@C has present goodcatalytic activity in the electrochemical reaction of p-Nitrophenol (PNP) and the bestconcentration of NaOH solution is1mol/L.
     The core of Cu@C is mainly composed of the polycrystal of fcc-Cu and the shells areamorphous carbons, but the lattice fringe can be observed on local area. The nanoparticles aremonodispersion with an average particle size of49.5nm. The quantity of carbon atoms of thesamples which are connected with another carbon atom is about1/2and the else areconnected with other groups. The atoms of copper are in two states: metal and CuO. Thespecial surface area measured by BET method is equal to94.1m2/g. The friction and wear testresults of adding the sample into the atoleine as an additive of lubricating oil showed that theCu@C had better performance of friction-reduction and anti-wear. Compared with thematched oil, the friction coefficient decreased21.6%, the wear rate reduced30.0%when theadding amount was0.6wt%. The Cu@C has present good catalytic activity in theelectrochemical reaction of p-Nitrophenol (PNP) and the best concentration of NaOH solution is0.5mol/L.
     The core of FeCu4@C is mainly composed of the polycrystal of fcc-FeCu4and the shellsare amorphous carbons. The nanoparticles are monodispersion with an average particle size of62.8nm. The ratio of carbon atoms of the samples which are connected with another carbonatom is about36%and the else are connected with other groups. The atoms of copper are intwo states: metal and Cu(OH)2. The content of iron is very lower so only the metallic state hasbeen detected. The magnetic properties of the Fe Cu4@C measured by VSM are:M_s=13.01emu/g, Mr=0.37emu/g, Hc=54.43Oe. The special surface area measured by BETmethod is equal to269.9m2/g.
     The knowledge for the preparation, characterization and tribology of carbonencapsulated metal nanoparticles gained in this study would enrichthe basic theory ofCEMNPs and promote the application of CEMNPs.
引文
[1]Setton Ralph, Bernier Patrick, Lefrant Serge, editors. Carbon Molecules And Materials[M]. NewYork: CRC Press;2002.512.
    [2]Kroto H. W., Heath J. R., O'Brien S. C., et al. C60:Buckminster fullerene [J]. Nature,1985,318:162-3.
    [3]Iijima Sumio. Helical Microtubles of Graphite Carbon [J]. Nature,1991,354:56-8.
    [4]Novoselov K. S., Geim A. K., Morozov S. V., et al. Electric Field Effect in Atomically ThinCarbon Films [J]. Science,2004,306(5696):666-669.
    [5]Ruoff Rodney S., Lorents Donnald C., Chan Bryan, et al. Single crystal metals encapsulated incarbon nanoparticles [J]. Science,1993,259(5093):346-348.
    [6]An-Hui Lu, Salabas E. L., Schuth Ferdi. Magnetic Nanoparticles: Synthesis, Protection,Functionalization, and Application [J]. Angewandte Chemie International Edition,2007,46(8):1222-1244.
    [7]Seo Won Seok, Lee Jin Hyung, Sun Xiaoming, et al. FeCo/graphitic-shell nanocrystals asadvanced magnetic resonance imaging and near-infrared agents [J]. Nature Materials,2006,5:971-979.
    [8]Chopra Nitin, Bachas Leonidas G., Knecht Marc R. Fabrication and Biofunctionalization ofCarbon-Encapsulated Au Nanoparticles [J]. Chemistry of Materials,2009,21(7):1176-1178.
    [9]Oh W. K., Yoon H., Jang J. Size control of magnetic carbon nanoparticles for drug delivery [J].Biomaterials,2009,31(6):1342–1348.
    [10]Cao Hongming, Huang Guangjian, Xuan Shaofeng, et al. Synthesis and characterization ofcarbon-coated iron core/shell nanostructures [J]. Journal of Alloys and Compounds,2008,448:272-276.
    [11]Taylor Arthur, Krupskaya Yulia, Kraemer Kai, et al. Cisplatin-loaded carbon-encapsulated ironnanoparticles and their in vitro effects in magnetic fluid hyperthermia [J]. Carbon,2010,48(8):2327-2334.
    [12]Lukanov Petar, Anuganti Vijay K., Krupskaya Yulia, et al. CCVD Synthesis ofCarbon-Encapsulated Cobalt Nanoparticles for Biomedical Applications [J]. AdvancedFunctional Materials,2011,21(18):3583-3588.
    [13]Lalande G., Guay D., Dodelet J. P., et al. Electroreduction of Oxygen in Polymer ElectrolyteFuel Cells by Activated Carbon Coated Cobalt Nanocrystallites Produced by Electric ArcDischarge [J]. Chemistry of Materials,1997,9(3):784-790.
    [14]Takashi Harada, Shigeru Ikeda, Yun Hau Ng, et al. Rhodium Nanoparticle Encapsulated in aPorous Carbon Shell as an Active Heterogeneous Catalyst for Aromatic Hydrogenation [J].Advanced Functional Materials,2008,18(15):2190-2196.
    [15]毛莉,邱介山,梁长海, et al.碳包覆铁纳米材料的制备及其作为磁性分离催化剂载体的应用研究[C].第五届全国环境催化与环境材料学术会议.中国山东烟台,2007.
    [16]Shanmugam Sangaraju, Gabashvili Alexandra, Jacob David S., et al. Synthesis andCharacterization of TiO2@C Core Shell Composite Nanoparticles and Evaluation of TheirPhotocatalytic Activities [J]. Chem. Mater.,2006,18:22752282.
    [17]Valdés-Solís T., Valle-Vigón P., Sevilla M., et al. Encapsulation of nanosized catalysts in thehollow core of a mesoporous carbon capsule [J]. Journal of Catalysis,2007,251:239-243.
    [18]Wu Ping, Du Ning, Zhang Hui, et al. Carbon Nanocapsules as Nanoreactors for ControllableSynthesis of Encapsulated Iron and Iron Oxides: Magnetic Properties and Reversible LithiumStorage [J]. The Journal of Physical Chemistry C,2011,115(9):3612-3620.
    [19]Bystrzejewski M., Pyrzyńska K., Huczko A., et al. Carbon-encapsulated magnetic nanoparticlesas separable and mobile sorbents of heavy metal ions from aqueous solutions [J]. Carbon,2009,47(4):1201-1204.
    [20]Pyrzyńska Krystyna, Bystrzejewski Micha. Comparative study of heavy metal ions sorptiononto activated carbon, carbon nanotubes, and carbon-encapsulated magnetic nanoparticles [J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,2010,362(1-3):102-109.
    [21]Bystrzejewski M., Pyrzyńska K. Kinetics of copper ions sorption onto activated carbon, carbonnanotubes and carbon-encapsulated magnetic nanoparticles [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2011,377(1-3):402-408.
    [22]Wang Hui, Sun Yu-Bing, Chen Qian-Wang, et al. Synthesis of carbon-encapsulatedsuperparamagnetic colloidal nanoparticles with magnetic-responsive photonic crystal property[J]. Dalton Transactions,2010,39(40):9565-9569.
    [23]Wang Hui, Chen Qian-Wang, Yu Yi-Fei, et al. Size-and Solvent-Dependent MagneticallyResponsive Optical Diffraction of Carbon-Encapsulated Superparamagnetic Colloidal PhotonicCrystals [J]. The Journal of Physical Chemistry C,2011,115(23):11427-11434.
    [24]杜玙璠.红外微波兼容材料的制备及性能研究[D].北京:北京交通大学,2010.
    [25]Namura Masaru, Waki Ippei, Sato Yoshinori, et al. Preparation and characterization oflanthanum carbide encapsulated carbon nanocapsule/lanthanum hexaboride nanocomposites [J].Materials Letters,2009,63(15):1307-1310.
    [26]Saito Y., Matsumoto T., Nishikubo K. Encapsulation of TiC and HfC crystallites within graphitecages by arc discharge [J]. Carbon,1997,35(12):1757-1763.
    [27]McHenry M.E., Majetich S.A., Artman J.O., et al. Superparamagnetism in carbon coated Coparticles produced by Kratschmer carbon process [J]. Physical Review B,1994,49(16):11358-11364.
    [28]Yosida Y., Shida S., Ohsuna T. Synthesis, identification, and growth mechanism of Fe, Ni, andCo crystals encapsulated in multiwalled carbon nanocages [J]. J. Appl. Phys.,1994,76(8):4533-4539.
    [29]Brunsman E. M., R Sutton, Bortz E., et al. Magnetic properties of carbon-coated,ferromagnetic nanoparticles produced by a carbon-arc method [J]. J. Appl. Phys.,199475(10):5882-4.
    [30]Jiao Jun, Seraphin Supapan, Wang Xikun, et al. Preparation and properties of ferromagneticcarbon-coated Fe, Co, and Ni nanoparticles [J]. J. Appl. Phys.,1996,80(1):103-8.
    [31]Zhang Haiyan, Chen Jun, He Yanyang, et al. The Preparation of Carbon-Coated IronNanocrystals Produced from Fe2O3-containing Composite Anode in Arc Discharge [J].Materials Chemistry and Physics,1998,55(2):167-170.
    [32]Dong X. L., Zhang Z. D., Jin S. R., et al. Carbon-coated Fe–Co(C) nanocapsules prepared byarc discharge in methane [J]. J. Appl. Phys,1999,86(12):6701-6.
    [33]董星龙,金寿日,张志东.碳包覆磁性金属纳米胶囊的制备及表征[J].粉末冶金工业,1999,(02):25-27.
    [34]Qiu Jie Shan, Li Yong Feng, Wang Yun Peng, et al. Synthesis of carbon-encapsulated nickelnanocrystals by arc-discharge of coal-based carbons in water [J]. Fuel Processing Technology,2004,83:615-617.
    [35]Xu Bing She, Guo Jun Jie, Wang Xiao Min, et al. Synthesis of carbon nanocapsules containingFe, Ni or Co by arc discharge in aqueous solution [J]. Carbon,2006,44:2631-2634.
    [36]魏智强,朱林,乔宏霞, et al.直流碳弧等离子体法制备碳包覆铁纳米颗粒研究[J].真空科学与技术学报,2008,(05):454-457.
    [37]朱林.直流电弧等离子体法制备碳包覆金属纳米颗粒的研究[D].兰州:兰州理工大学,2010.
    [38]Wei Zhi-qiang, Liu Li-gang, Yang Hua, et al. Characterization of carbon encapsulatedFe-nanoparticles prepared by confined arc plasma [J]. Transactions of Nonferrous MetalsSociety of China,2011,21(9):2026-2030.
    [39]魏智强,刘立刚,冯旺军, et al.碳包裹镍核-壳结构复合纳米颗粒的制备及性能研究[J].材料工程,2011,(05):30-33.
    [40]Diggs B., Zhou A., Silva C., et al. Magnetic properties of carbon-coated rare-earthcarbide nanocrystallites produced by a carbon arc method [J]. J. App!. Phys.,1994,75:5879-81.
    [41]Saito Yahachi, Okuda Mitsumasa, et al. Correlation between Volatility of Rare Earth Metals andEncapsulation of Their Carbides in Carbon Nanocapsules [J]. J. Phys. Chem.,1994,98:6696-6698.
    [42]Funasaka Hideyuki, Sugiyama Kenji, Yamamoto Kazunori, et al. Synthesis of actinidecarbides encapsulated within carbon nanoparticles [J]. J. Appl. Phys.,1995,78(9):5320-4.
    [43]Saito Yahachi, Nishikubo Keishi, Kawabata Kenichiro, et al. Carbon nanocapsules andsingle-layered nanotubes produced with platinum-group metals (Ru, Rh, Pd, Os, Ir, Pt) by arcdischarge [J]. J. Appl. Phys.,1996,80(5):3062-3067.
    [44]Jiao Jun, Seraphin Supapan. Carbon encapsulated nanoparticles of Ni, Co, Cu, and Ti [J]. J. Appl.Phys.,1998,83(5):2442-2448.
    [45]李丽萍,张海燕,林锦, et al.碳包覆纳米铜粒子的制备及抗氧化性能[J].中国有色金属学报,2010,(09):1766-1774.
    [46]McHenry M. E., Majetich S. A., et al. Synthesis, structure, properties and magneticapplications of carbon-coated nanocrystals produced by a carbon arc [J].Materials Science and Engineering A,1995,204:19-24.
    [47]Bystrzejewski M., Cudzi o S., Huczko A., et al. Thermal stability of carbon-encapsulatedFe–Nd–B nanoparticles [J]. Journal of Alloys and Compounds,2006,423(1-2):74-76.
    [48]Majetich S. A., Artman J. O., McHenry M.E., et al. Preparation and properties of carbon coatedmagnetic nanocrystallites [J]. Physical Review B,1993,48(22):16845-16850.
    [49]Setlur A. A., Dai J. Y., Lauerhaas J. M., et al. Formation of filled carbon nanotubes andnanoparticles using polycyclic aromatic hydrocarbon molecules [J]. Carbon,1998,36(5-6):721-723.
    [50]Si Ping-Zhan, Zhang Zhi-Dong, Geng Dian-Yu, et al. Synthesis and characteristics ofcarbon-coated iron and nickel nanocapsules produced by arc discharge in ethanol vapor [J].Carbon,2003,41:247-251.
    [51]Qiu Jie-Shan, Li Yong Feng, Wang Yun Peng, et al. Preparation of carbon-coated magnetic ironnanoparticles from composite rods made from coal and iron powders [J]. Fuel ProcessingTechnology,2004,86(3):267-274.
    [52]李振涛,邱介山,于畅.以煤为碳源直流电弧法制备碳包覆磁性金属纳米颗粒[C].2008全国功能材料科技与产业高层论坛.中国天津,2008.
    [53]Teng Mao-Hua, Tsai Shao-Wei, Hsiao Chung-I, et al. Using diamond as a metastable phasecarbon source to facilitate the synthesis of graphite encapsulated metal (GEM) nanoparticles byan arc-discharge method [J]. Journal of Alloys and Compounds,2007,434-435:678-681.
    [54]Sergiienko Ruslan, Shibata Etsuro, Zentaro Akase, et al. Formation and characterization ofgraphite-encapsulated cobalt nanoparticles synthesized by electric discharge in an ultrasoniccavitation field of liquid ethanol [J]. Acta Materialia,2007,55:3671-3680.
    [55]Seraphin Supapan, Zhou Dan, Jiao Jun. Filling the carbon nanocages [J]. J. Appl. Phys.,1996,80(4):2097-2104.
    [56]Saito Yahachi. Nanoparticles and filled nanocapsules [J]. Carbon,1995,33(7):979-988.
    [57]Nolan P. E., Lynch D. C., Culter A. H. Graphite encapsulation of catalytic metal nanoparticles[J]. Carbon,1996,34(6):817-819.
    [58]Li Jian, Liu Cunye, Zhao Baogang, et al. Structures and properties of Fe-C fine particlesprepared by AC arc discharge [J]. Journal of Magnetism and Magnetic Materials,1999,195470-475.
    [59]张勋高,江明,刘英, et al.交流碳弧法合成碳包碳化铁纳米晶[J].高等学校化学学报,2001,(01):91-94.
    [60]Jiang Ming, Zhang Xun Gao, Liu Ying, et al. Ferromagnetic carbon-coated iron and itscompounds nanocrystallite synthesized at high metal to carbon rate and high yield by a modifiedAC arc method [J]. Materials Science and Engineering B,2001,87:66-69.
    [61]Ling Jie, Liu Ying, Hao Guangming, et al. Preparation of carbon-coated Co and Ninanocrystallites by a modified AC arc discharge method [J]. Materials and Engineering B,2003,100:186-190.
    [62]Suzuki Hitoshi, TakeshiSato, Kamitsuji Katsuya, et al. Novel method for preparing carbonnanoparticles carrying Pt clusters [J]. Journal of Crystal Growth,2004,268:238-241.
    [63]Dravid Vinayak P., Host Jonathon J., Teng M. H., et al. Controlled size nanocapsules [J]. Nature,1995,374602-603.
    [64]刘同冈,鲍久圣,杨志伊.直流钨电弧法制备碳包覆铁纳米微粒的研究[J].中国矿业大学学报,2007,36(02):201-204+250.
    [65]Hao Chuncheng, Xiao Feng, Cui Zuolin. Preparation and structure of carbon encapsulatedcopper nanoparticles [J]. Journal of Nanoparticle Research,2008,10(1):47-51.
    [66]Jeyadevan B., Suzuki Y., Tohji K., et al. Encapsulation of nano-particles by surfactant reduction[J]. Materials Science and Engineering A,1996,217/215:54-57.
    [67]Sergiienko Ruslan, Shibata Etsuro, Akase Zentaro, et al. Carbon encapsulated iron carbidenanoparticles synthesized in ethanol by an electric plasma discharge in an ultrasonic cavitationfield [J]. Materials Chemistry and Physics,2006,98:34-38.
    [68]Byeon Jeong Hoon, Park Jae Hong, Yoon Ki Young, et al. Ambient spark generation tosynthesize carbon-encapsulated metal nanoparticles in continuous aerosol manner [J]. Nanoscale,2009,1(3):339-343.
    [69]Byeon Jeong Hoon, Kim Jang-Woo. Morphology and Structure of Aerosol Carbon-EncapsulatedMetal Nanoparticles from Various Ambient Metal Carbon Spark Discharges [J]. ACS AppliedMaterials&Interfaces,2010,2(4):947-951.
    [70]Liu Zong-Jian, Yuan Zhong-Yong, Zhou Wuzong, et al. Controlled Synthesis ofCarbon-Encapsulated Co Nanoparticles by CVD [J]. Chem. Vap. Deposition,2001,7(6):248-251.
    [71]雷中兴,刘静,李轩科, et al. CVD法制备的碳包覆(Fe,Co)纳米粒子的结构及电磁特性[J].磁性材料及器件,2003,(04):4-6.
    [72]Qiu Jieshan, Li Qixiu, Wang Zhiyu, et al. CVD synthesis of coal-gas-derived carbon nanotubesand nanocapsules containing magnetic iron carbide and oxide [J]. Carbon,2006,44:2565-2568.
    [73]Singjai P., Wongwigkarn K., Laosiritaworn Y., et al. Carbon encapsulated nickel nanoparticlessynthesized by a modied alcohol catalytic chemical vapor deposition method [J]. CurrentApplied Physics,2007,7:662-666.
    [74]袁观明,苏勇,董志军, et al.碳包覆粒子的制备与表征[J].武汉科技大学学报,2009,(01):56-59+63.
    [75]曹高翔,付业伟,孙慧慧, et al.碳包覆纳米铁镍磁性颗粒的合成[J].无机化学学报,2011,(07):1431-1435.
    [76]Liu B.H., Ding J., Zhong Z.Y., et al. Large-scale preparation of carbon-encapsulated cobaltnanoparticles by the catalytic method [J]. Chemical Physics Letters,2002,358:96-102.
    [77]Tsai S.H., Lee C.L., Chao C.W., et al. A novel technique for the formation ofcarbon-encapsulated metal nanoparticles on silicon [J]. Carbon,2000,38:775-785.
    [78]Qi J. L., Wang X., Tian H. W., et al. Syntheses of carbon nanomaterials by radio frequencyplasma enhanced chemical vapor deposition [J]. Journal of Alloys and Compounds,2009,486(1-2):265-272.
    [79]Yang Guangmin, Wang Xin, Xu Qiang, et al. Two types of carbon nanocomposites: Graphiteencapsulated iron nanoparticles and thin carbon nanotubes supported on thick carbon nanotubes,synthesized using PECVD [J]. Journal of Solid State Chemistry,2009,182(4):966-972.
    [80]Hisada Daijiro, Fujiwara Yuji, Sato Hideki, et al. Structure and magnetic properties of FeConanoparticles encapsulated in carbon nanotubes grown by microwave plasma enhanced chemicalvapor deposition [J]. Journal of Magnetism and Magnetic Materials,2011,323(24):3184-3188.
    [81]Wang Z. H., Zhang Z. D., Choi C. J., et al. Structure and magnetic properties of Fe(C) and Co(C)nanocapsules prepared by chemical vapor condensation [J]. Journal of Alloys and Compounds,2003,361:289-293.
    [82]He C. N., Du X. W., Ding J., et al. Low-temperature CVD synthesis of carbon-encapsulatedmagnetic Ni nanoparticles with a narrow distribution of diameters [J]. Carbon,2006,44:2330-2356.
    [83]El-Gendy A. A., Ibrahim E. M. M., et al. The synthesis of carbon coated Fe, Co and Ninanoparticles and an examination of their magnetic properties [J]. Carbon,2009,47(12):2821-2828.
    [84]Ebara A., Kuramoch K., Yamazaki T., et al. Structural study of graphite-encapsulated ironnanoparticles via chemical vapor deposition combined with spray method [J]. Carbon,2007,45:892-902.
    [85]Lee Sang Ho, Mathews Martin, Toghiani Hossein, et al. Fabrication of Carbon-EncapsulatedMono-and Bimetallic (Sn and Sn/Sb Alloy) Nanorods-Potential Lithium-Ion Battery AnodeMaterials [J]. Chemistry of Materials,2009,21(11):2306-2314.
    [86]Pandurangan A., Morin Cedric, et al. Single-step synthesis of germanium nanowiresencapsulated within multi-walled carbon nanotubes [J]. Carbon,2009,47(7):1708-1714.
    [87]Inagaki M., Okada Y., Miura H., et al. Preparation of carbon-coated transition metal particlesfrom mixtures of metal oxide and polyvinylchloride [J]. Carbon,1999,37:329-334.
    [88]Tsang Shik Chi, Qiu Jieshan, Harris Peter J.F., et al. Synthesis of fullerenic nanocapsules frombio-molecule carbonisation [J]. Chemical Physics Letters,2000,322:553-560.
    [89]Sano Noriaki, Akazawa Hiroshi, Kikuchi Takeyuki, et al. Separated synthesis of iron-includedcarbon nanocapsules and nanotubes by pyrolysis of ferrocene in pure hydrogen [J]. Carbon,2003,41:2159-2179.
    [90]Kosugi Kentaroh, Bushir M. Junaid, Nishi Nobuyuki. Formation of air stable carbon-skinnediron nanocrystals from FeC2[J]. Applied Physics Letters,2004,84(10):1753-5.
    [91]Tomita Satoshi, Hikita Masahiro, Fujii Minoru, et al. A new and simple method for thin graphiticcoating of magnetic-metal nanoparticles [J]. Chemical Physics Letters,2000,316:361-364.
    [92]Wu Wei Ze, Zhu Zhen Ping, Liu Zhen Yu. Metal–carbon nano-materials prepared directly frompitch [J]. Carbon,2002,40:787-803.
    [93]Song Huaihe, Chen Xiaohong. Large-scale synthesis of carbon-encapsulated iron carbidenanoparticles by co-carbonization of durene with ferrocene [J]. Chemical Physics Letters,2003,374400-404.
    [94]Song Huaihe, Chen Xiaohong, Chen Xuegang, et al. Influence of ferrocene addition on themorphology and structure of carbon from petroleum residue [J]. Carbon,2003,41:3037-3046.
    [95]Huo Jun Ping, Song Huai He, Chen Xiao Hong. Preparation of carbon-encapsulated ironnanoparticles by co-carbonization of aromatic heavy oil and ferrocene [J]. Carbon,2004,42:3177-3182.
    [96]霍俊平.碳包覆铁纳米晶低维材料的合成、结构及性能研究[D]:北京化工大学,2007.
    [97]Sajitha E.P., Prasad V., Subramanyam S.V., et al. Synthesis and characteristics of ironnanoparticles in a carbon matrix along with the catalytic graphitization of amorphous carbon [J].Carbon,2004,42:2815-2820.
    [98]邱介山,孙玉峰,周颖, et al.淀粉基碳包覆铁纳米胶囊的合成及其磁学性能[J].新型炭材料,2006,(03):202-205.
    [99]Yu C., Qiu J.S. Preparation and magnetic behavior of carbon-encapsulated cobalt and nickelnanoparticles from starch [J]. chemical engineering research and design,2008,86:904-908.
    [100]赵军.碳包裹纳米金属及其合金粒子的制备和性能研究[D].南京:南京理工大学,2007.
    [101]Huang Yu'an, Xu Zheng, Yang Yang, et al. Preparation, Characterization, and SurfaceModification of Carbon-Encapsulated Nickel Nanoparticles [J]. The Journal of PhysicalChemistry C,2009,113(16):6533-6538.
    [102]Zhao Mu, Song Huaihe. Synthesis of carbon-encapsulated iron carbide/iron nanoparticles fromphenolic-formaldehyde resin and ferric nitrate [J]. Materials Chemistry and Physics,2010,124(1):861-864.
    [103]Bystrzejewski M., Klingeler R., Gemming T., et al. Synthesis of carbon-encapsulated ironnanoparticles by pyrolysis of iron citrate and poly(vinyl alcohol): a critical evaluation of yieldand selectivity [J]. Nanotechnology,2011,22(31):315606.
    [104]Cui Wang-jun, Li Feng, Liu Hai-jing, et al. Core-shell carbon-coated Cu6Sn5prepared by insitu polymerization as a high-performance anode material for lithium-ion batteries [J]. J. Mater.Chem.,2009,19:7202-7207.
    [105]Huang Chien-Hua, Wang H. Paul, Chang Juu-En, et al. Synthesis of nanosize-controllablecopper and its alloys in carbon shells [J]. Chem. Commun.,2009:4663-4665.
    [106]Yu F., Wang J. N., Sheng Z. M., et al. Synthesis of carbon-encapsulated magnetic nanoparticlesby spray pyrolysis of iron carbonyl and ethanol [J]. Carbon,2005,43:3018-21.
    [107]Bystrzejewski M., Karoly Z., Szepvolgyi J., et al. Continuous synthesis of carbon-encapsulatedmagnetic nanoparticles with a minimum production of amorphous carbon [J]. Carbon,2009,47(8):2040-2048.
    [108]Bystrzejewski M., Károly Z., Szépv lgyi J., et al. Continuous synthesis of controlled sizecarbon-encapsulated iron nanoparticles [J]. Materials Research Bulletin,2011,46(12):2408-2417.
    [109]R.T.K Baker. Catalytic growth of carbon filaments [J]. Carbon,1989,27(3):315-323.
    [110]Du Guixiang, Feng Shouai, Zhao Jianghong, et al. Particle Wire Tube Mechanism for CarbonNanotube Evolution [J]. Journal of the American Chemical Society,2006,128(48):15405-15414.
    [111]Wu Bin, Song Huaihe, Zhou Jisheng, et al. Formation mechanism of carbon-encapsulated ironnanorods in a co-carbonization process [J]. Carbon,2011,49(3):890-894.
    [112]Tomita Satoshi, Hikita Masahiro, Fujii Minoru, et al. Formation of Co filled carbonnanocapsules by metal-template graphitization of diamond nanoparticles [J]. J. Appl. Phys.,2000,88(9):5452-5456.
    [113]Babonneau D., Cabioch T., Naudon A., et al. Silver nanoparticles encapsulated in carbon cagesobtained by co-sputtering of the metal and graphite [J]. Surface Science,1998,409:358-371.
    [114]You Tianyan, Niwa Osamu, Tomita Masato, et al. Characterization and electrochemicalproperties of highly dispersed copper oxide/hydroxide nanoparticles in graphite-like carbonfilms prepared by RF sputtering method [J]. Electrochemistry Communications,2002,4:468-471.
    [115]Abrasonis Gintautas, Kovacs Gyrgy J, Mcklich Arndt, et al. Substrate Effects on theMorphology of Carbon Encapsulated Nickel Nanoparticles Grown by Surface Diffusion AssistedPhase Separation [J]. The Journal of Physical Chemistry C,2009,113(20):8645-8651.
    [116]Chen Hong, Huang Rong Bin, Tang Zi Chao, et al. Single titanium crystals encapsulated incarbon nanocages obtained by laser vaporization of sponge titanium in benzene vapor [J]. Appl.Phys. Lett.,2000,77(1):91-93.
    [117]Bystrzejewski M., Hübers H. W., Huczko A., et al. Bulk synthesis of carbon nanocapsules andnanotubes containing magnetic nanoparticles via low energy laser pyrolysis of ferrocene [J].Materials Letters,2009,63(21):1767-1770.
    [118]Dumitrache F., Morjan I., Alexandrescu R., et al. Nearly monodispersed carbon coated ironnanoparticles for the catalytic growth of nanotube synanofibres [J]. Diamond and RelatedMaterials,2004,13:362-370.
    [119]Veintemillas-Verdaguer Sabino, Leconte Yann, Costoa Roc o, et al. Continuous production ofinorganic magnetic nanocomposites for biomedical applications by laser pyrolysis [J]. Journal ofMagnetism and Magnetic Materials,2007,311:120-124.
    [120]张梅梅.脉冲激光合成碳包覆镍颗粒的研究[D]:天津大学,2007.
    [121]Park J.B., Jeong S.H., Jeong M.S., et al. Synthesis of carbon-encapsulated magneticnanoparticles by pulsed laser irradiation of solution [J]. Carbon2008,46:1369-1377.
    [122]Ma Yanwen, Hu Zheng, Huo Kaifu, et al. A practical route to the production of carbonnanocages [J]. Carbon,2005,43:1667-1672.
    [123]Wu Wei Ze, Zhu Zhen Ping, Liu Zhen Yu, et al. Preparation of carbon-encapsulated ironcarbide nanoparticlesby an explosion method [J]. Carbon,2003,41:317-321.
    [124]Lu Yi, Zhu Zhen Ping, Liu Zhen Yu. Carbon-encapsulated Fe nanoparticles fromdetonation-induced pyrolysis of ferrocene [J]. Carbon,2005,43:369-374.
    [125]孙贵磊,李晓杰,闫鸿浩.碳包覆铁碳化合物的爆轰合成及表征[C].第六届中国功能材料及其应用学术会议.中国湖北武汉,2007.
    [126]Luo Ning, Li Xiaojie, Wang Xiaohong, et al. Preparation and magnetic behavior ofcarbon-encapsulated iron nanoparticles by detonation method [J]. Composites Science andTechnology,2009,69(15-16):2554-2558.
    [127]李晓杰,罗宁,闫鸿浩, et al.爆轰法合成碳包覆铁纳米金属材料的研究[C].中国力学学会学术大会'2009.中国河南郑州,2009.
    [128]罗宁,李晓杰,闫鸿浩, et al.爆轰合成碳包覆钴、镍磁性纳米颗粒的探索[J].高压物理学报,2009,(06):415-420.
    [129]Luo Ning, Li Xiaojie, Wang Xiaohong, et al. Synthesis and characterization ofcarbon-encapsulated iron/iron carbide nanoparticles by a detonation method [J]. Carbon,2010,48(13):3858-3863.
    [130]李晓杰,罗宁,闫鸿浩, et al.爆轰法制备碳包覆铁镍合金纳米颗粒及其表征[J].稀有金属材料与工程,2010,(S1):429-433.
    [131]罗宁,李晓杰,王小红, et al.碳包覆镍/钴纳米颗粒的爆轰合成法[J].爆炸与冲击,2010,(04):390-394.
    [132]罗宁.爆轰法合成碳包覆金属纳米材料的研究[D].大连:大连理工大学,2011.
    [133]张晓军.爆轰法合成碳包覆铜纳米颗粒[D].大连:大连理工大学,2011.
    [134]Bystrzejewski Micha, Huczko Andrzej, Lange Hubert, et al. Combustion synthesis route tocarbon-encapsulated iron nanoparticles [J]. Diamond&Related Materials,2007,16:225-228.
    [135]Bystrzejewski M., Szala M., Kicinski W., et al. Self-sustaining high-temperature synthesis ofcarbon-encapsulated magnetic nanoparticles from organic and inorganic metal precursors [J].New Carbon Materials,2010,25(2):81-88.
    [136]Borysiuk J., Grabias A., Szczytko J., et al. Structure and magnetic properties of carbonencapsulated Fe nanoparticles obtained by arc plasma and combustion synthesis [J]. Carbon,2008,46(13):1693-1701.
    [137]Bystrzejewski M., Huczko A., Soszyński M., et al. An Easy One‐step Route to Carbon‐encapsulated Magnetic Nanoparticles [J]. Fullerenes, Nanotubes and Carbon Nanostructures,2009,17(6):600-615.
    [138]Fan Na, Ma Xicheng, Ju Zhicheng, et al. Formation, characterization and magnetic propertiesof carbon-encapsulated iron carbide nanoparticles [J]. Materials Research Bulletin,2008,43(6):1549-1554.
    [139]Bystrzejewski M. Synthesis of carbon-encapsulated iron nanoparticles via solid state reductionof iron oxide nanoparticles [J]. Journal of Solid State Chemistry,2011,184(6):1492-1498.
    [140]Sun Xiaoming, Li Yadong. Colloidal Carbon Spheres and Their Core/Shell Structures withNoble-Metal Nanoparticles [J]. Angewandte Chemie International Edition,2004,43(5):597-601.
    [141]Wang Zhi Fei, Xiao Peng Fen, He Nong Yue. Synthesis and characteristics of carbonencapsulated magnetic nanoparticles produced by a hydrothermal reaction [J]. Carbon,2006,44:3277-3284.
    [142]Hao Qin, Xu Liqiang, Li Guangda, et al. Hydrothermal Synthesis of Microscaled Cu@CPolyhedral Composites and Their Sensitivity to Convergent Electron Beams [J]. Langmuir,2009,25(11):6363-6367.
    [143]Li Xueliang, Tian Xiangliang, Zhang Dawei, et al. Solvothermal synthesis and characterizationof nitrogen-enriched carbon-encapsulated nickel nanospheres [J]. Materials Science andEngineering: B,2008,151(3):220-223.
    [144]文海荣,杨永珍,任文芳, et al.脱油沥青溶剂热合成碳包覆纳米金属颗粒[J].电子显微学报,2009,(04):367-370.
    [145]Nishijo Junichi, Okabe Chie, Oishi Osamu, et al. Synthesis, structures and magnetic propertiesof carbon-encapsulated nanoparticles via thermal decomposition of metal acetylide [J]. Carbon,2006,44:2943-2949.
    [146]Harris P.J.F., Tsang S.C. A simple technique for the synthesis of filled carbon nanoparticles [J].Chemical Physics Letters,1998,293:53-58.
    [147]Bokhonov B., Korchagin M. The formation of graphite encapsulated metal nanoparticles duringmechanical activation and annealing of soot with iron and nickel [J]. Journal of Alloys andCompounds,2002,333:308-320.
    [148]Kwon Y.S., Andreev V.M., Lomovsky O.I., et al. Synthesis of tungsten carbide nanoparticlesencapsulated with graphite shell [J]. Journal of Alloys and Compounds,2005,386(1-2):115-118.
    [149]Koltypin Yuri, Fernandez Asuncion, Rojas T. Cristina, et al. Encapsulation of NickelNanoparticles in Carbon Obtained by the Sonochemical Decomposition of Ni(C8H12)2[J].Chem. Mater.,1999,11:1331-1335.
    [150]Cao Hong, Ru Li, Xue Jun, et al. A simple technique for preparing carbon encapsulated La andEu nanoparticles [J]. Carbon,2009,47:1543-548.
    [151]Hernadi K., Siska A., Thien-Nga L., et al. Reactivity of different kinds of carbon duringoxidative purification of catalytically prepared carbon nanotubes [J]. Solid State Ionics,2001,141-142:203-209.
    [152]钱湛芬.碳素工艺学[M].北京:冶金工业出版社,2000.164.
    [153]黄胜涛.固体X射线学(一)[M].北京:高等教育出版社,1985.
    [154]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001.
    [155]刘立华. Fe-Cu合金的制备及结构和性质研究[D]:延边大学,2000.
    [156]南京大学地质学矿物岩石学教研室.粉晶X射线物相分析[M].北京:地质出版社,1980.
    [157]杨南如.无机非金属材料测试方法[M].武汉:武汉工业大学出版社,1990.
    [158]Nicklow R., Wakabayashi N., Smith H. G. Lattice Dynamics of Pyrolytic Graphite [J]. PhysicalReview B,1972,5(12):4951-62.
    [159]Tuinstra F., Koenig J. L. Raman spectrum of graphite [J]. The Journal of Chemical Physics,1970,53(3):1126-1130.
    [160]Companini G., Puglisi O., Foti G. Raman spectra of virgin and damaged graphite edge planes[J]. Carbon,1997,35(12):1793-1797.
    [161]Nemanich R. J., Solin S. A. First-and second-order Raman scattering from finite-size crystalsof graphite.[J]. Physical Review B,1979,20(2):392-401.
    [162]Ferrari A. C., Robertson J. Interpretation of Raman spectra of disordered and amorphouscarbon [J]. Physical Review B,2000,61(20):14095.
    [163]Ferrari Andrea Carlo, Robertson John. Raman spectroscopy of amorphous, nanostructured,diamond–like carbon, and nanodiamond [J]. Philosophical Transactions of the Royal Society ofLondon. Series A: Mathematical, Physical and Engineering Sciences,2004,362(1824):2477-2512.
    [164]Obiuztsova E. D., Fujii M., Hayashi S., et al. Raman identification of onion-like carbon [J].Carbon,199836(5-6):821-826.
    [165]Bacsa W. S., Heer W. A. de, Ugarte D., et al. Raman spectroscopy of closed-shell carbonparticles [J]. Chemical Physics Letters,1993,211(4-5):346-352.
    [166]Galakhov V. R., Shkvarin A. S., Semenova A. S., et al. Characterization ofCarbon-Encapsulated Nickel and Iron Nanoparticles by Means of X-ray Absorption andPhotoelectron Spectroscopy [J]. The Journal of Physical Chemistry C,2010,114(51):22413-22416.
    [167]Galakhov V. R., Buling A., Neumann M., et al. Carbon States in Carbon-Encapsulated NickelNanoparticles Studied by Means of X-ray Absorption, Emission, and PhotoelectronSpectroscopies [J]. The Journal of Physical Chemistry C,2011,115(50):24615-24620.
    [168]Rajumon M. K., Hegde M. S., Rao C. N. R. Adsorption of carbon monoxide on Ni/Ti andNi/TiO2surfaces prepared in situ in the electron spectrometer: A combined UPS-XPS study [J].Catalysis Letters,1988,1(11):351-359.
    [169]Pels J.R., Kapteijn F., Moulijn J.A., et al. Evolution of nitrogen functionalities in carbonaceousmaterials during pyrolysis [J]. Carbon,1995,33(11):1641-1653.
    [170]Wang Z. H., Choi C.J., Kim B.K., et al. Characterization and magnetic properties ofcarbon-coated cobalt nanocapsules synthesized by the chemical vapor-condensation process [J].Carbon,2003,41:1751-1758.
    [171]Makarewicz M., Podsiad ly M., Ba land M. Magnetic Investigation of Carbon Coated Co-,Ni-and Fe-Nanoparticles [J]. Acta physica polonica A,2009,115(2):568-571.
    [172]吴爱兵.碳包覆磁性纳米颗粒的合成、结构及磁性能研究[D].长春:吉林大学,2011.
    [173]CRC Handbook of Chemistry and Physics,72nd ed., edited by D. R. Lide (Chemical Robber,Boca Raton, FL,1991–1992), pp.12–95.
    [174]都有为,罗河烈.磁记录材料[M].北京:电子工业出版社;1992.
    [175]Sajitha E. P., Prasad V., Subramanyam S. V., et al. Synthesis and charaeteristics of ironnanopartieles in a carbon matrix along with the catalytic graphitization of amorphous carbon [J].Carbon,2004,42:2815-2820.
    [176]Bystrzejewski Micha, Cudzi o Stanis aw, Huczko Andrzej, et al. Carbon encapsulatedmagnetic nanoparticles for biomedical applications: Thermal stability studies [J]. BiomolecularEngineering,2007,24(5):555-558.
    [177]袁霞,安玉良,郑朝晖, et al.核壳结构碳包覆Ni纳米材料的合成及电磁性能分析[J].功能材料,2010,(05):791-793.
    [178]温诗铸.纳米摩擦学[M].北京:清华大学出版社;1998.
    [179]Gnecco Enrico, Meyer Ernst, editors. Fundamentals of friction and wear[M]. New York:Springer;2007.
    [180]Zhou Jingfang, Yang Jianjun, Zhang Zhijun, et al. Study on the structure and tribologicalproperties of surface-modified Cu nanoparticles [J]. Materials Research Bulletin,1999,34(9):1361-1367.
    [181]周静芳,张治军,王晓波, et al.油溶性铜纳米微粒作为液体石蜡添加剂的摩擦学性能研究[J].摩擦学学报,2000,20(2):123-126.
    [182]Zhao Yanbao, Zhang Zhijun, Dang Hongxin. Preparation of tin nanoparticles by solutiondispersion [J]. Materials Science and Engineering A,2003,359:405-407.
    [183]Urbakh Michael, Klafter Joseph, Gourdon Delphine, et al. The nonlinear nature of friction [J].Nature,2004,430:525-8.
    [184]Zhao Yanbao, Zhang Zhijun, Dang Hongxin. A simple way to prepare bismuth nanoparticles [J].Materials Letters,2004,58790-793.
    [185]Carpinteri Alberto, Paggi Marco. Size-scale efects on the friction coefcient [J]. InternationalJournal of Solids and Structures,2005,42:2901-2910.
    [186]Li Zhiwei, Tao Xiaojun, Cheng Yaming, et al. A simple and rapid method for preparing indiumnanoparticles from bulk indium via ultrasound irradiation [J]. Materials Science andEngineering A,2005,407:7-10.
    [187]Zhao Wenjie, Mo Yufei, Pu Jibin, et al. Effect of cation on micro/nano-tribological propertiesof ultra-thin ionic liquid films [J]. Tribology International,2009,42(6):828-835.
    [188]Mosleh Mohsen, Atnafu Neway D., Belk John H., et al. Modification of sheet metal formingfluids with dispersed nanoparticles for improved lubrication [J]. Wear,2009,267(5-8):1220-1225.
    [189]龚斌,陈波水,娄方, et al.纳米硼酸铝添加剂的制备、表征及其在水溶液中的摩擦学性能[J].润滑与密封,2008,(02).
    [190]Hu Z. S., Dong J. X., Chen G. X., et al. Preparation and tribological properties of nanoparticlelanthanum borate [J]. Wear,2000,243:43-47.
    [191]闫玉涛,胡广阳,李夜, et al.纳米二硫化钼粉体制备及其摩擦学性能[J].东北大学学报(自然科学版),2009,(03).
    [192]石琛,毛大恒.纳米二硫化钨在绿色试验油中的应用与机理研究[J].应用基础与工程科学学报,2009,(03).
    [193]Zhou Xiaodong, Wu Danmei, Shi Huaqiang, et al. Study on the tribological properties ofsurfactant-modified MoS2micrometer spheres as an additive in liquid paraffin [J]. TribologyInternational,2007,40:863-868.
    [194]Hu J. J., Zabinski J. S. Nanotribology and lubrication mechanisms of inorganic fullerene-likeMoS2nanoparticles investigated using lateral force microscopy (LFM)[J]. Tribology Letters,2005,18(2):173-0.
    [195]马士玉,郑少华,苏登成, et al. SiO2纳米颗粒作为润滑添加剂的抗磨减摩性能[J].润滑与密封,2008,(05).
    [196]闫玉涛,霍玉秋,孙志礼.添加纳米二氧化硅的菜籽油润滑行为[J].东北大学学报(自然科学版),2007,(09).
    [197]Carrion F. J., Sanes J., Bermudez Maria-Dolores. Influence of ZnO nanoparticle filler on theproperties and wear resistance of polycarbonate [J]. Wear,2007,262:1504-1510.
    [198]Cho M. H., Bahadur S. Study of the tribological synergistic effects in nano CuO-filled andfiber-reinforced polyphenylene sulfide composites [J]. Wear,2005,258:835-845.
    [199]魏小平,史永刚,傅敏, et al.纳米试验油添加剂研究进展[J].润滑与密封,2008,33(11):107-109.
    [200]Geza Toth, Jani Molin, Niina Halonen, et al. Carbon-Nanotube-Based Electrical BrushContacts [J]. Advanced Materials,2009,21(20):2054-2058.
    [201]Christian A. Rottmair, Michael Gruhl, Ralf Winter, et al. Properties of Powder InjectionMolded Graphite for Tribological Applications [J]. Advanced Engineering Materials,2009,11(5):346-349.
    [202]何春霞,万芳新,张静, et al.纳米碳黑与纳米石墨填充ptfe复合材料摩擦磨损性能比较研究[J].润滑与密封,2008,(12).
    [203]Xu Bing-she. Prospects and research progress in nano onion-like fullerenes [J]. New CarbonMaterials,2008,23(4):289-301.
    [204]Joly-Pottuz L., Matsumoto N., Kinoshita H., et al. Diamond-derived carbon onions as lubricantadditives [J]. Tribology International,2008,41:69-78.
    [205]Bhushan Bharat, Galasso Barbara, Bignardi Cristina, et al. Adhesion, friction and wear on thenanoscale of MWNT tips and SWNT and MWNT arrays [J]. Nanotechnology,2008,19:125702-11.
    [206]李春风,罗新民,候滨.膨胀石墨的表面改性及作为试验油添加剂的摩擦学性能[J].润滑与密封,2007,(07).
    [207]郭晓燕,彭倚天,胡元中, et al.碳纳米管添加剂摩擦学性能研究及机制探讨[J].润滑与密封,2007,(11):95-97.
    [208]Grierson David S., Carpick Robert W. Nanotribology of carbon-based materials [J]. Nanotoday,2007,2(5):12-21.
    [209]Jiang Guichang, Guan Wenchao, Zheng Qixin. A study on fullerene–acrylamide copolymernanoball-a new type of water-based lubrication additive [J]. Wear,2005,258:1625-1629.
    [210]Zoo Yeong-Seok, An Jeong-Wook, Lim Dong-Phil, et al. Effect of carbon nanotube addition ontribological behavior of UHMWPE [J]. Tribology Letters,2004,16(4):305-9.
    [211]Cai Hui, Yan Fengyuan, Xue Qunji. Investigation of tribological properties ofpolyimide/carbon nanotube nanocomposites [J]. Materials Science and Engineering A,2004,364:94-100.
    [212]Zhao Xinluo, Inoue Sakae, Jinno Makoto, et al. Macroscopic oriented web of single-wallcarbon nanotubes [J]. Chemical Physics Letters,2003,373:266-271.
    [213]Xia Younan, Xiong Yujie, Lim Byungkwon, et al. Shape-controlled synthesis of metalnanocrystals: simple chemistry meets complex physics?[J]. Angewandte Chemie,2009,48(International Edition):60-103.
    [214]Z.Y. Lin, J.H. Chen, G.N. Chen. An ECL biosensor for glucose based oncarbon-nanotube/Nafion film modified glass carbon electrode [J]. Electrochimica Acta,2008,53:2396-2401.
    [215]L.W. J, Z. Lin, A.J. Medford, X.W. Zhang. In-Situ Encapsulation of Nickel Particles inElectrospun Carbon Nanofibers and the Resultant Electrochemical Performance [J].Chemistry-A European Journal,2009,15:10718-10722.
    [216]S.F. Wang, Q. Xu, X.G. Zhang, G.D. Liu. Sensitive electrochemical determination of calciumdobesilate on the carbon-iron nanoparticle modified glassy carbon electrode [J].Electrochemistry Communications,2008,10:411-415.
    [217]S.F. Wang, F. Xie, R.F. Hu. Carbon-coated nickel magnetic nanoparticles modified electrodesas a sensor for determination of acetaminophen [J]. Sensors and Actuators B,2007,123:495-500.
    [218]S.F. Wang, F. Xie, R.F. Hu. Electrochemical study of brucine on an electrode modified withmagnetic carbon-coated nickel nanoparticles [J]. Anal Bioanal Chem,2007,387:933–939.
    [219]C.L. Bian, Q.X. Zeng, H.Y. Xiong, X.H. Zhang, S.F. Wang. Electrochemistry of norepinephrineon carbon-coated nickel magnetic nanoparticles modified electrode and analytical applications[J]. Bioelectrochemistry,2010,79:1-5.
    [220]唐登勇,郑正,郭照冰,等.活性碳纤维吸附处理对硝基苯酚生产废水[J].化工环保,2009,29:239-241.
    [221]Y.E. Gu, Y.Z. Zhang, F.Y. Zhang, J.P. Wei, C.M. Wang, Y.L. Du, W.C. Ye. Investigation ofphotoelectrocatalytic activity of Cu2O nanoparticles for p-nitrophenol using rotating ring-diskelectrode and application for electrocatalytic determination [J]. Electrochimica Acta,2010,56:953-958.
    [222]R.Z. Chen, Q.Q. Wang, Y. Du, W.H. Xing, N.P. Xu. Effect of initial solution apparent pH onnano-sized nickel catalysts in p-nitrophenol hydrogenation [J]. Chemical Engineering Journal,2009,145:371-376.
    [223]马淳安.有机电化学合成导论[M].北京:科学出版社,2002,97-100.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700