用户名: 密码: 验证码:
土壤中石油污染物行为特征及植物根际修复研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国干旱半干旱地区蕴藏石油资源丰富,石油开采量逐年攀升,然而在原油开采、运输及加工过程中由于技术、管理及事故等原因,造成大量石油进入环境给周围土壤、水体带来严重污染,使原本脆弱的自然生态环境更加恶化。由于干旱与半干旱地区气候条件所限,土壤石油污染仅仅依靠土著微生物修复不仅周期长而且效率低,只有通过微生物与植物联合作用下才能达到良好的修复效果。
     本文以干旱与半干旱地区土壤石油污染植物修复为主线,采用原位试验与室内试验相结合的方法,研究了石油在土壤系统中的挥发、吸附、解吸、自然降解等行为特征及石油污染物在土壤-植物系统中的迁移和降解特征,通过监测土壤总石油烃含量(TPH)、植物生态指标、土壤主要性质指标等,考察了不同植物对石油污染物的修复作用,利用气相色谱质谱技术研究了石油污染物在植物修复中的根际分泌物的分布特征,揭示了根际分泌物对石油污染物降解的协同作用。以根际土壤为研究目标,分离、筛选获得了高效石油降解菌,考察菌株降解石油的过程和效果。建立了石油污染的植物修复技术方法,为土壤石油污染生物治理提供了科学依据。
     主要研究成果及结论如下:
     1、石油污染物在土壤、土壤-植物系统中的主要行为特征包括挥发、吸附、解吸、自然降解和迁移等。①石油污染物在粉质壤土中的挥发行为可以用Elovich动力学方程m=A+Blnt或一阶动力学方程m=m0e-kt描述。粗颗粒含量高、环境温度高、土壤石油污染浓度大有利于石油污染物在土壤中的挥发;②石油污染物在粉质壤土中的吸附行为可用拉格朗日二阶动力学方程dqt/dt=k2(qe-qt)2较好得描述。石油污染物在供试土壤中的平衡吸附量大小主要取决于土壤中粘粒的含量,细颗粒含量高的土壤平衡吸附量大。土壤对石油污染物吸附为放热过程,吸附过程自由能变(ΔG0)为负值,吸附过程能自发进行,整个吸附体系中熵减(ΔS0)是吸附作用进行的主要驱动力。③石油污染物在粉质壤土中的解吸行为特征可以用4参数2室一阶动力学方程qt/q0=Frexp(-krt)+Fsexp(-kst)描述。动力学分析表明石油的慢解吸速率常数要比相应的快解吸速率常数低2个数量级以上。25℃条件下渭河阶地粉质壤土、黄土台塬粉质壤土、陕北黄土高原粉质壤土中的石油解吸率分别为43.08%、52.54%和34.60%。④石油污染物在粉质壤土中的自然降解符合一阶动力学方程Ct=C0exp(-kt),渭河阶地粉质壤土石油污染浓度为3000mg/kg时,降解速率常数最大,为1.689d-1,半衰期最短,为410天;黄土台塬粉质壤土石油污染浓度为10000mg/kg时,降解速率常数最小,为0.984×10-3d-1,半衰期最长,为704天。⑤石油污染物在土壤-植物系统中的迁移特征表现为:粗颗粒含量高的渭河阶地粉质壤土在三种石油污染浓度条件下,石油污染物均迁移到90cm以下的土壤中。较渭河阶地粉质壤土中细颗粒含量多的黄土台塬粉质壤土和陕北黄土高原粉质壤土在污染浓度为3000mg/kg条件下石油污染物未穿透80cm土壤。种植红三叶草的陕北黄土高原粉质壤土各层石油污染物含量均比种植黑麦草各层高。⑥四种供试植物修复后红三叶草土壤中TPH降解率最高,其余三种植物的降解率由高到低的顺序为:扁穗冰草、黑麦草和狗牙根。在植物修复条件下,土壤中TPH降解率较空白对照提高了35-48%。
     2、石油胁迫下植物根际分泌物研究:3000mg/kg石油污染下红三叶草根际区的小分子有机酸、总糖和氨基酸的含量较7000mg/kg和10000mg/kg高。三种污染浓度条件下三种根际分泌物含量均较空白对照高。表明在低浓度石油胁迫下能够促进根际区小分子有机酸、总糖和氨基酸的分泌,说明植物在石油胁迫下做出积极的反应。
     3、根际石油降解菌筛选及降解特性研究:以土壤石油污染红三叶草修复区根际污染土壤为石油降解菌菌源,分离得到10株石油降解菌,通过复筛获得了4株高效降解菌,分别为SL-1、SL-3、SL-7和SL-9;通过对菌株形态观察、结合生理生化特征研究和16SrDNA分子学鉴定,确定菌株SL-1、SL-3、SL-7和SL-9分别为动性杆菌、藤黄微球菌、蜡状芽孢杆菌、短小芽孢杆菌;通过石油降解试验,建立了石油微生物一级降解动力学模型,获得了土壤中微生物降解反应速率常数与半衰期等模型参数;采用气相色谱/质谱(GC/MS)联合技术分析了菌群X6(即SL-1、SL-3、SL-7和SL-9)对石油的降解性能,结果表明:X6菌群为高效降解菌群,54天石油的降解率可达到90.50%,较空白对照提高了67.72%;随着生物降解时间的延长,石油组分中的正构烷烃、异构烷烃及环烷烃相对总量均呈减小趋势,而芳香烃和其他醇类、醛和酸类的相对含量增加。
     4、土壤石油污染修复植物筛选:选择适宜在干旱半干旱地区生长的四种植物(红三叶草、扁穗冰草、黑麦草和狗牙根)进行土壤石油污染修复试验。通过监测污染土壤中的TPH降解率、植物生长性状、土壤主要性质、土壤和植物氮同位素等特征指标,筛选出高效修复植物。利用红三叶草对污染浓度为3000mg/kg的渭河阶地粉质壤土进行修复,455天土壤中TPH降解率可达94.52%,较扁穗冰草、黑麦草和狗牙根分别高13.82%、18.28%和20.82%。从植物的生长性状分析扁穗冰草对石油污染胁迫的耐受性强,初期植物的株高和生物量均较其它三种植物大。对土壤脱氢酶活性和过氧化氢酶活性以及氧化还原电位分析结果表明红三叶草三种指标随修复时间增加增长率均高于其它三种植物。红三叶草和扁穗冰草可作为干旱和半干旱地区修复土壤石油污染植物修复的良好品种。
Arid and semi-arid area of China is rich in crude petroleum. The crude petroleum production andpetroleum processing capacity are on the rise year by year. However, because of the mining technology,management, accident and other reasons of mining crude oil, transportation and processing, it results in alarge number of petroleum and its products leaking to the soil and water environment. It caused seriouspollution to the fragile natural ecological environment. Because the climate of arid and semi-arid area is notsuitable for the microorganism, the bioremediation technology for soil pollution is very difficult toguarantee long-term effects. It needs to joint plants to achieve good effect.
     In this study, the research methods combine in-situ testing and physical simulation test, the process ofphytoremediation for arid and semi-arid areas soil petroleum pollution are the main study objectives. Thekinetic processes of volatilation, adsorption, desorption, migration and degradation petroleum form the soilwere observed by experiments. The transportation and degradation characteristics of petroleumcontaminants were monitored in the soil-plant system. The degradation rate of total petroleum hydrocarbon,plant rhizosphere secretions, soil enzyme activity in the soil, plant ecological indicators, soil physicalchemical indicators, soil and plant nitrogen isotopes were monitored. The repairing effects of differentplants were studied. It was used gas chromatography-mass chromatography technology to revealphytoremediation rhizosphere secretions distribution characteristics. The microbial degradation ofpetroleum components and the process, rhizosphere repair mechanism were revealed. The methods ofphytoremediation for soil petroleum pollution were built and provided a scientific basis for the soilpetroleum pollution bioremediation.
     The main conclusions are as following:
     1. The petroleum pollutants behavioral characteristics in the soil and soil-plant system, the mainbehavior characteristics includes volatilation, adsorption, desorption, migration and microbial degradation.①the volatile behavior of petroleum pollutants in silty loam can use Elovich dynamics equation m=A+Blntor first-order kinetics equation m=m0e-ktto describe. High ambient temperature, high contents of coarsegrains and high petroleum concentration in the spetroleum were beneficial to petroleum componentsvolatilation from the spetroleum.②The adsorption behavior of petroleum pollutants in silty loam can useLagrange second-order dynamic equation dqt/dt=k2(qe-qt)2to describe. The equilibrium adsorption ofpetroleum pollutants in silt loam were mainly affected by the soil clay content. The equilibrium adsorptionis large of fine grain content of soil. The adsorption process of petroleum onto soil is exotherme and theadsorption reaction is a spontaneous process. The amounts of petroleum adsorption gradually slow down with the temperature increasing. The confusion degree was reduced in the adsorption process.③Thedesorption behavior of petroleum pollutants in silty loam can use the4-parameter biphasic first-orderkinetic to describe. The conclusion showed that fast constant rate of desorption was more than two ordersfor slow constant rate. Under the25°C, the silty loam in Weihe terrace,silty loam in loess tableland andsilty loam in northern Loess Plateau desorption rate for petroleum were43.08%,52.54%and34.60%respectively.④The natural degradation behavior of petroleum pollutants in silty loam can use thefirst-order kinetics equation Ct=C0exp(-kt)to describe. Under the different soil and different petroleumconcentration, the natural degradation rate constant and half life is different. In the silty loam in Weiheterrace3000mg/kg petroleum concentration, the maximum degradation rate constant is1.689d-1, theminimum half-life is410days. In the silty loam in loess tableland10000mg/kg petroleum, the minimumdegradation rate constant is0.984×10-3d-1, the maximum half-life is704days.⑤The migration Behavioralcharacteristic of petroleum contaminants in the soil-plant system: the petroleum contaminants all migratedbelow the90cm soil in the silty loam in Weihe terrace under three concentrations. The oil pollutants werenot penetrate80cm soil in the silty loam in northern Loess Plateau and silty loam in loess tableland under3000mg/kg concentration.The oil pollutants content of each layers in silty loam in northern Loess Plateauplanted with Trifolium repens Linn was more than ryegrass.⑥The TPH degradation rate of Trifoliumrepens Linn soil was highest among four test phytoremediation plant. The order degradation rate of theremaining three plants as follows Agropyron cristatum (L.), Gaertn, Lolium perenne L. andCynodondactylon Linn.Pers. The TPH degradation rate of soil in phytoremediation conditions was higherthan control for35-48%.
     2、Study the plant rhizosphere secretions under the petroleum pollutio: The organic acid, total sugarand amino acid content in the rhizosphere soil of Trifolium repens Linn under3000mg/kg petroleumpollution were higher than the7000mg/kg and10000mg/kg petroleum pollution.. The contents of plantrhizosphere secretions under the above three pollution concentrations was more than the control.It wasindicated that the low petroleum concentration can promote producing the small molecule organic acid,total sugar and amino acid. It explains that the plants can make positive reaction under petroleum stress.
     3、Rhizosphere petroleum degradation bacteria screening and degradation characteristics study: thestrains were isolated from the petroleum-contaminated soil which collected from Trifolium repens Linnrhizosphere for petroleum containment soil and with crude petroleum as sole carbon source.10highefficient petroleum-degrading strains were obtained by enriching, domestication and purification. The bestmicroflora was composed SL-1, SL-3, SL-7and SL-9by rescreening and orthogonal experiments. The four strains had the function of degradation straight chain alkane. The two strains had the function ofdegradation cycloalkanes. The strains were identified as Planomicrobium chinense (T), Micrococcus luteus,Bacillus cereus and Bacillus pumilus based on its morphology, Physiology and biochemistry characteristicsand sequence analysis by16SrDNA. The petroleum degrading capacity of four strains was analyzed byGC/MS. The results indicated that the petroleum degradation rate could reach90.50%after54d by mixedstrain, which was67.72%higher than the control. The relative contents of the normal alkanes,isomerization alkane and cycloparafin hydrocarbon are decreased with the biodegradation time prolonged.The relative contents of aromatic hydrocarbons, alcohols, aldehydes and acids are increased.
     4、Screen the plants to repair the petroleum-contaminated soil: Screen the plants to repair thepetroleum-contaminated soil: It was choosed four types of plants in arid and semi-arid area for repairing thepetroleum pollution soil.It was Trifolium repens Linn、Agropyron cristatum (L.) Gaertn、Lolium perenne L、Cynodondactylon Linn.Pers.respectively. The Trifolium repens Linn and Agropyron cristatum (L.) Gaertnwere the first time to repairing the soil with petroleum pollution.Through the monitoring the TPHdegradation rate, plant growth index, soil main properties and soil plant nitrogen isotope, then screen outadvantage plants. Through the Trifolium repens Linn repaiing the3000mg/kg petroleum contamination inhigh organic matter silty loam, the TPH degradation rate was94.52%, it was higher than Agropyroncristatum (L.) Gaertn、Lolium perenne L and Cynodondactylon Linn.Pers respectively for13.82%、18.28%G and20.82%. From the growth traits, it can be concluded that the Agropyron cristatum (L.) Gaertn hasstrong tolerance to petroleum pollution than the other three plants. The initial height and biomass ofAgropyron cristatum (L.) Gaertn was more than others. Based on soil dehydrogenase activity and hydrogenperoxide enzyme activity and oxidation reduction potential analysis, it was showed that the growth rate ofthree kinds of index with Trifolium repens Linnthe was more than others. Trifolium repens Linn andAgropyron cristatum (L.) Gaertn could be used to repairing petroleum-contaminated soil in arid andsemi-arid areas.
引文
[1]王汉杰.我国干旱半干旱地区的退耕还林还草与高效生态农牧业建设[J].林业科技开发,2001,15(1):7-9
    [2]曹清尧.对我国干旱半干旱地区国土绿化的思考[J].求是,2010,19:56-58
    [3]余萃,廖先清,刘子国,等.石油污染土壤的微生物修复研究进展[J].湖北农业科学,2009,48(5):1260-1263
    [4]高云文,曹海东,常铮,等.陕北油气田开发中水资源综合利用[J].地球科学与环境学报,2005,27(4):75-78
    [5]孙宁生,周军.延安市石油开采污染治理调查及其防治对策[J].陕西环境,2001,8(1):11-12
    [6] Karen E. Gerhardt, Xiao-Dong Huang, Bernard R. Glick, et al. Phytoremediation and rhizoremediationof organic soil contaminants: potential and challenges [J]. Plant Science,2009,176:20-30
    [7] Katy Euliss, Chi-hua Ho, A.P. Schwab, et al. Greenhouse and field assessment of phytoremediation forpetroleum contaminants in a riparian zone [J]. Bioresource Technology,2008,99:1961-1971
    [8] Jing Wang, Zhongzhi Zhang, Youming Su, et al. Phytoremediation of petroleum polluted soil [J].Petroleum Science,2008,5:167-171
    [9] Kostecki P, Calabrese E. Petroleum contaminated soils: remediation techniques, environmental fate,and risk assessment [M]. Chelsea, Michigan: Lewis Publishers,1988
    [10]蔺昕,李培军,台培东,等.石油污染土壤植物-微生物修复研究进展[J].生态学杂志,2006,25(1):93-100
    [11]管芜萌.长庆油田石油污染土壤的原位修复微生物的筛选和鉴定[D].陕西:西北农林科技大学,2010
    [12] Scheibenbogen K, Zytner RG, Lee H, et al. Enhanced removal of selected hydrocarbons from soil byPseudomonas aeruginosa UG2biosurfactants and some chemical surfactants [J]. Journal of ChemicalTechnology and Biotechnology,1994,59(1):53-59
    [13] Environmental Protection Agency of United States (USEPA). Underground storage tankprogram-25years of protecting our land and water [EB/OL].[2010-06-15]. http://www. epa.gov/OUST/pubs/25annrpt.pdf
    [14] Environmental Protection Agency of United States (USEPA). FY2008Annual report on theunder-ground storage tank program [EB/OL].[2010-06-15]. http://www. epa.gov/OUST/pubs/OUSTFY08_Annual_Report-_Final_3-19-09.pdf
    [15] Wikipedia. Deepwater Horizon Oil Spill [EB/OL].[2010-08-23]. http://en. wikipedia. org/wiki/Deep-water_Horizon_oil_spill
    [16] Philp J. Environmental pollution and restoration: A role for bioremediation [M]. Washington DC:ASMPress,2005:1-48
    [17] Gildeeva I. Environmental protection during explora-tion and exploitation of oil and gas fields[J].Environmental Geosciences,1999,6(3):153-154
    [18] USA today. Pipeline rupture causes large oil spill in central russia[EB/OL].[2006-12-10].http://www.usatoday.com/news/world/2006-10-24-russia-oil-sp-ill_x.htm
    [19]刘五星,骆永明,滕应,等.我国部分油田土壤及油泥的石油污染初步研究[J].土壤,2007(2):247-251
    [20]赵士振,尹倩.生物技术治理石油污染新方向[J].中国石化,2009:33-35
    [21]张胜,陈立,李政红,等.中原地区微生物修复石油污染土壤的实验研究[J].南水北调与水利科技,2010,8(6):46-49
    [22]何良菊,魏德洲,张维庆.土壤微生物处理石油污染的研究[J].环境科学进展,1999,7(3):110-115.
    [23]孙长梅.论石油开发对乡村生态环境的污染及其危害—以长庆油田在甘肃省庆阳市开发石油为例[J].河南社会科学,2008,16:107-109
    [24]田敏,张昌楠.盘锦市典型区域土壤中石油烃的污染状况调查与分析[J].现代农业科技,2008,20:352,354
    [25]李方敏,姚金龙,王琼山.修复石油污染土壤的植物筛选[J].中国农学通报,2006,22(9):429-431
    [26]高拯民.土壤:植物系统污染生态研究[M].北京:中国科学技术出版社,1986
    [27]刘庆生,刘高焕,励惠国.辽河三角洲土壤中石油类含量光谱分析初探[J].油气田环境保护,2004,14(2):43-45
    [28]冷延慧,郭书海,聂远彬,等.石油开发对辽河三角洲地区苇田生态系统的影响[J].农业环境科学学报,2006,25(2):432-435.
    [29]陈嫣,李广贺,张旭,等.石油污染土壤植物根际微生态环境与降解效应[J].清华大学学报(自然科学版),2005,45(6):784-787
    [30]史红星.石油类污染物在黄土高原地区环境中迁移转化规律的研究[D].西安:西安建筑科技大学,2001
    [31] Daisuke Sugimori. Edible oil degradation by using yeast coculture of Rhodotorula pacifica ST3411and ryptococcus laurentii ST3412[J]. Appl Microbiol Biotechnol,2009,82:351-357
    [32]郜红建,蒋新,常江,等.根分泌物在污染土壤生物修复中的作用[J].生态学杂志,2004,23(4):135-139
    [33]池振明.现代微生物生态学[M].北京:科学出版社,2005
    [34] Glick B R. The enhancement of plantg rowth by free-living bacteria[J]. Canadian Journal ofMicrobiology,1995,41(2):109-117
    [35] Elizabeth Pilon-Smits. Phytoremediation [J]. Annual Review of Plant Biology,2005,56:15-39
    [36] Salt DE, Blaylock M, Kumar NPBA, et al. Phytoremediation: a novel strategy for the removal of toxicmetals from the environment using plants. Biotechnology,1995,13:468-474
    [37] Banks MK, Schwab P, Liu B, et al. The effect of plants on the degradation and toxicity of petroleumcontaminants in soil: A field assessment [J]. Advances in biochemical engineering/biotechnology,2003,78,75-96
    [38] Kaimi E, Mukaidani T, Miyoshi S, et al. Ryegrass enhancement of biodegradation in dieselontaminated soil [J]. Environmental and experimental botany,2006,55,110-119
    [39] Shengwei Peng, Qixing Zhou, Zhang Cai, et al. Phytoremediation of petroleum contaminated soilsbyMirabilis JalapaL. in a greenhouse plot experiment[J]. Journal of Hazardous Materials,2009,168:1490-1496
    [40]刘继朝,崔岩山,张燕平,等.狗牙根对石油污染土壤的修复效果研究[J].水土保持学报,2009,23(2),166-168
    [41]张松林,董庆士,周喜滨,等.人为石油污染土壤紫花首藉田间修复试验[J].兰州大学学报(自然科学版).2008,44(1),47-50
    [42]刘晓艳,孙景欣,戴春雷等.大庆油区石油污染风沙土植物修复实验研究[A].第五届全国环境化学大会,2009
    [43] Khorshid Razmjoo, Zohrab Adavi. Assessment of bermudagrass cultivars for phytoremediation ofpetroleum contaminated soils [J]. International journal of phytoremediation,2012,14:14-23
    [44] Frick CM, Farrell RE, Germida JJ. Assessment of phytoremediation as an in-situ technique forcleaning oil-contaminated sites [M]. PTAC Petroleum Technology Alliance Canada, Calgary,1999
    [45] Phytoremediation of Petroleum Hydrocarbons. Amanda Van Epps Environmental CareersOrganization for U.S. Environmental Protection Agency Office of Solid Waste and EmergencyResponse Office of Superfund Remediation and Technology Innovation Washington, DC,2006
    [46] Brandt R, Merkl N, Schultze-Kraft R, et al. Potential of Vetiver (Vetiveria zizanioides (L.) Nash) forphytoremediation of petroleum hydrocarbon-contaminated soils in Venezuela [J]. International Journalof Phytoremediation,2006,4:273-284
    [47] Ndimele PE. Evaluation of phytoremediative properties of water hyacinth (Eichhorniacrassipes[Mart.]Solms) and biostimulants in restoration of oil-polluted wetland in the Niger Belta[M].University of Ibadan, Nigeria,2008
    [48] Qianxin Lin, Irving A. Mendelssohn. Potential of restoration and phytoremediation with Juncusroemerianus for diesel-contaminated coastal wetlands [J]. Ecological Engineering,2009,35:85-91
    [49] Muratova AY, Dmitrieva TV, Panchenko, LV, et al. Phytoremediation of oil-sludge-contaminated soil[J]. International Journal of Phytoremediation.2008,10:468-502
    [50] Li Yuying, Meng Xitai, Li Bing, et al. Volatilization behaviors of diesel oil from the soils [J]. Journalof Environmental Science,2004,16(6):1033-1036
    [51] Guohui Wang, Sayonara Brederode F. Reckhorn, Peter Grathwohl. Volatile organic compoundsvolatilization from multicomponent organic liquids and diffusion in unsaturated porous media [J].Vadose Zone Journal,2003,2:692-701
    [52] Xia Yubo, YangYuesuo, Du Xinqiang. Dynamics of photodecomposition biodegradation andvolatilization behaviors of petroleum on soil surface [J]. Advanced Materials Research,2011,181-182:480-484
    [53] B. Srinivasarao Naik, IM. Mishra, SD. Bhattacharya. Biodegradation of total petroleum hydrocarbonsfrom oily sludge [J]. Bioremediation Journal,2012,15(3):140-147
    [54] XU SY, CHEN YX, WU WX, et al. Enhanced dissipation of phenenthrene and pyrene in spiked soilsby combined plants cultivation [J]. Science of the Total Environment,2006,363:206-215
    [55] Kechavarzi C, Pettersson K, Leeds-Harrison P, et al. Root establishment of perennial ryegrass (L.perenne) in diesel contam inated subsurface soil layers [J]. Environmental Pollution,2007,145(1):68-74
    [56] MerklN, Schultze-kraftR, Infante C. Phytoremediation in the tropics-influence of heavy crude oilonrootmorpho-logical characteristics of graminoids [J]. Environmental Pollution,2005,138(1):86-91
    [57]王靖,张忠智,苏幼明,等.石油污染土壤植物修复根际效应研究[J].石油化工高等学校学报,2008, V21(2):36-40
    [58] Dean N, Kerner F. Advancing research of bioremediation [J]. Environmental Progress,1992,3(7):19-25
    [59] Yang Lixue, Wang Peng, KongChuihua. Effect of larch (Larix gmelini Rupr.) root exudates onManchurian walnut (Juglans mandshurica Maxim.) growth and soil juglone in a mixed-speciesplantation [J]. Plant Soil,2010,329:249-258
    [60] Helmut Bürgmann, Stefan Meier, Michael Bunge, et al. Effects of model root exudates on structureand activity of a soil diazotroph communit [J]. Environmental Microbiology,2005,7(11):1711-1724
    [61] Liste HH, Alexander M. Rapid screening of plants promoting phenanthrene degradation [J]. Journal ofEnvironmental Quality,1999,28:1376-1377
    [62]刘军,温学森,郎爱东.植物根系分泌物成分及其作用的研究进展[J].食品与药品,2007,9(3):63-65.
    [63]张福锁.根系分泌物及其对根际微生态系统中养分有效性的直接影响[A].土壤-植物营养研究新动态(第一卷)[C].北京:北京农业大学出版社,1992:64-72
    [64]张福锁,等.环境胁迫与植物根际营养[M].北京:中国农业出版社,1997.
    [65] Neumann, G.et al.Physiological adaptations to phosphorusdeficiency during proteoid rootdevelopment on white lupin[J]. Planta,1999,208:373-382
    [66]胡红青,等.不同浓度对小麦根系氨基酸和糖类的影响[J].土壤通报,1995,26(1):15-17.
    [67]李花粉,等.根系分泌物对根际重金属动态的影响[J].环境科学学报,1998,18(2):199-203.
    [68]林琦,陈英旭,陈怀满,郑春荣.根系分泌物与重金属的化学行为研究[J].植物营养与肥料学报2003,9(4):425-431
    [69]金婷婷,徐根娣,刘鹏等.铝胁迫下大豆根系分泌物对根际土壤微生态的影响.土壤学报.2008,45(3)
    [70] Joel G. Burken, Jerald L. Phytoremediation: plant uptake of atrazing and role of root exudates [J].Journal of Environmental Engineering,1996,12:958-963
    [71] álvarez A, Ya ez ML, Benimeli CS, et al. Maize plants (Zea mays) root exudates enhance lindaneremoval by native Streptomyces strains [J]. International Biodeterioration and Biodegradation,2012,66:14-18
    [72] Binet P, Portal JM, Leyval C. Application of GC-MS to the study of anthracene disappearance in therhizosphere of ryegrass [J]. Organic Geochemistry,2001,32:217-222
    [73] Joner EJ, Corgie SC, Amellal N, et al. Nutritional constraints to degradation of polycyclic aromatichydrocarbons in a simulated rhizosphere [J]. Soil Biology&Biochemistry,2002,34:859-864
    [74] Sarah A. Ficko, Allison Rutter, Barbara A. Zeeb. Effect of pumpkin root exudates on ex situpolychlorinated biphenyl (PCB) phytoe xtraction by pumpkin and weed species [J]. EnvironmentalScience Pollution Resouce,2011,18:1536-1543
    [75] Knaebel DB, Vestal JR. Effects of intact rhizosphere microbial communities on the minealization ofsurfactants in surface soils [J]. Canadian Journal of Microbiology,2002,38:643-653
    [76] Schnoor JL, Licht LA, Meutcheon SC, et al. Phremediation of organic and nutrient contaminants [J].Environmental Science of Technology,1995,29(7):318-323
    [77] Xie Xiaomei, Liao Min, Yang Jing, et a1. Influence of root-exudates concentration on pyrenedegradation and soil microbial characteristics in pyrene contaminated soil [J]. Chemosphere,2012,88:1190-1195
    [78] Sun Bingqing, Gao Yanzheng, Liu Juan. The impact of different root exudate components onphenanthrene availability in soil [J]. Soil Science Society of America Journal,2012,76:2041-2050
    [79]张太平,潘伟斌.根际环境与土壤污染的植物修复研究进展[J].生态环境,2003,12(1):76-80
    [80] Didier Técher, Philippe Laval-Gilly, Sonia Henry, et a1. Contribution of Miscanthusx giganteus rootexudates to the biostimulation of PAH degradation: An in vitro study [J]. Science of the TotalEnvironment,2011,409:4489-4495
    [81] Sun Tianran, Cang Long, Wang Quanying, et a1. Roles of abiotic losses, microbes, plant roots, androot exudates on phytoremediation of PAHs in a barren soil [J]. Journal of Hazardous Materials,2010,176:919-925
    [82] Yoshitorlri KJ, Sharm JR. Corn root exudates and their impact on cpyrene mineralization [J].International Microbial,1997,26(1):43-45
    [83]信欣,蔡鹤生.农药污染土壤的植物修复研究[J].植物保护,2004,30(1):8-11
    [84] ZhuYanhong, Zhang Shuzhen, Huang Honglin, et a1. Effects of maize root exudates and organic acidson the desorption of phenanthrene from soil [J]. Journal of Environmental Sciences,2009,21:920-926
    [85] White JC, Mattina MI, Lee WY, et a1. Role of organic acids in enhancing the desorption and uptake ofweathered P, P’-DDE by cucurbita pepo [J]. Environmental Pollution,2003,124(1):71-80
    [86]李宛泽,谢文明,江涛,等.3种低相对分子质量有机酸对土壤中DDT的解吸[J].北华大学学报(自然科学版),2009,10(6):551-553
    [87]万大娟,贾晓珊,陈娴.多氯代有机污染物胁迫下植物某些根系分泌物的变化[J].中山大学学报(自然科学版),2007,46(1):110-113
    [88]许超,夏北成.芘对玉米根系分泌氨基酸的影响[J].生态环境学报,2009,18(1):172-175
    [89] ListeH, Felgentreu D. Crop growth, culturable bacteria, and degradation of petrolhydrocarbons(PHCs)in a long-term contam inated field soil [J]. Applied soil ecology,2006,31(1-2):43-52
    [90] Kirk JL, Klironomos JN, Lee H, et al. The effects of perennial ryegrass and alfalfa onm icrobialabundance and diversity in petroleum contam inated soil [J].Environ Pollut,2005,133(3):455-465
    [91]杜森,高祥照.土壤分析技术规范[M].北京:中国农业出版社,2006
    [92]关松荫.土壤酶学研究方法[M].北京:农业出版社,1986,294-296
    [93]土壤农化分析[M].北京:中国农业出版社,1986
    [94]李学垣.土壤化学及实验指导[M].北京:中国农业出版社,1997,251-252
    [95]吴胜春,骆永明,蒋先军,等.重金属污染土壤的植物修复研究: Ⅱ.金属富集植物BrassiceJuncea根际土壤中微生物数量的变化[J].土壤,2000,2:75-78
    [96] Cheema SA, Khan MI, Tang X, Zhang, et al. Enhancement of phenanthrene and pyrenedegradation inrhizosphere of tall fescue (Festuca arundinacea)[J]. Journal of Hazardous Materials,2009,166,1226-1231
    [97] Acher AJ, Boderie P, Yaron P. Soil Pollution by Petroleum Produets: I MultiPhase migration ofkerosene components in soil columns [J]. Journal of Contaminated Hydorlogy,1990,4:333-345
    [98] Spencer WF, Farmer WJ, Jury WA. Behvaior of organic chemicals at soil, air, water interfaces asrelated to perdicting the transport and volatilization of organic pollutants [J]. Enviornmental Toxicology and Chemistry,1982,1:17-26
    [99] Saeid Azizian. Kinetic models of sorption: a theoretical analysis [J]. Journal of Colloid and InterfaceScience,2004,276:47-52
    [100] Rudzinski W, Plazins ki W. Kinetics of solute adsorption at solid/solution interfaces: a theoreticaldevelopment of the empirical pseudo-first and pseudo-second order kinetic rate equations, based onapplying the statistical rate theory of interfacial transport [J]. Journal of Physical Chemsitry,2006,110:16514-16525
    [101] Rudzinski W, Plazins ki W. Kinetics of isothermal gas adsorption on heterogeneous solid surfaces:equations based on generalization of the statistical rate theory of interfacial transport [J]. Journal ofPhysical Chemsitry,2005,111:21868-21878
    [102] Wojciech Plazinski, Wzadyszaw Rudzinski. A novel two-resistance model for description of theadsorption kineticsonto porous particles [J]. Langmuir,2010,26(2),802-808
    [103] Suzuki, M. Adsorption Engineering [M]. Godin Lyttle press,2008
    [104] Juang RS, Chen ML. Competitive sorption of metal ions from binary sulfate solutions withsolvent-impregnated resins [J]. Reactive and Functional Polymers,1997,34(1),93-102
    [105]郑西来,李永乐,林国庆,等.土壤对可溶性油的吸附作用及其影响因素分析[J].地球科学,2003,28(5):563-566
    [106] Agrawal A, Sahu KK. Kinetic and isotherm studies of cadmium adsorption on manganese noduleresidue [J]. Journal of Hazardous Materials,2006,137(2):915-924
    [107] Tan IAW, Ahmad AL, Hameed BH. Adsorption isotherms, kinetics, thermodynamics and desorptionstudies of2,4,6-trichlorophenol on oil palm empty fruit bunch-based activated carbon [J]. Journal ofHazardous Materials,2009,164:473-482
    [108] Srivastava VC, Mall ID, Mishra IM. Characterization of mesoporous rice husk ash (RHA) andadsorption kinetics of metal ions from aqueous solution onto RHA[J]. Journal of Hazardous Materials,2006,134(1-3):257-267
    [109] Unlu N, Ersoz M. Adsorption characteristics of heavy metal ionsonto a low cost biopolymericsorbent from aqueous solutions [J]. Journal of Hazardous Materials,2006,136(2):272-280
    [110] Martin D, Johnson T, Michael Keinath II, et al. A distributed reactivity model for sorption by soilsand sediments14characterization and modelingof phenanthrene desorption rates [J]. EnvironmentalScience Technology,2001,35,1688-1695
    [111] Cornelissen G, van Noort P C M, Parsons J R, et al. Temperature dependence of slow dsorption anddesorption kinetics of organic compounds in sediments [J]. Environmental Science Technology,1997,31:454-460
    [112]谭凯旋,张哲儒,王中刚.矿物溶解的表面化学动力学机理[J].矿物学报,1994,14:207-213
    [113] Li Jing, Zhang Jiayao, Xia Shenglin, et al. Adsorption and desorption of crude oil in soils [J].Envrironmental Science and Technology,1997, V79(4):5-8
    [114]宁心哲.大青山油松虎榛子根系分泌物及根际土壤酶活性研究[D].内蒙古:内蒙古农业大学,2008
    [115] Jones DL, Hodge A, Kuzyakov Y. Plant and mycorrhizal regulation of rhizodeposition [J]. NewPhytologist,2004,163:459-480
    [116] Pinton R, Varanini Z, Nannipieri P. The rhizosphere [M]. Marcel Dekker Inc, New York, USA,2001
    [117] Neumann G. The release of root exudates as affected by the plant's physiological status [M]. MarcelDekker Inc, New York, USA.,2001,41-94
    [118] Farrar J, Hawes M, Jones D, et al. How roots control the flux of carbon to the rhizosphere [J].Ecology,2003,84:827-833
    [119] Kuzyakov Y, Hill PW, Jones DL. Root exudate components change litter decomposition in asimulated rhizosphere depending on temperature [J]. Plant and Soil,2007,290:293-305
    [120]冯文婷.哀牢山常绿阔叶林土壤简单糖类和氨基酸研究[D].中国科学院,2007
    [121] Farrar J, Hawes M, Jones D, et al. How roots control the flux of carbon to the rhizosphere [J].Ecology,2003,84:827-833
    [122] Janssens I A, Sampson D A, Curiel-Yuste J, Carrara A and Ceulemans R. The carbon cost of fineroot turnover in a Scots pine forest [J]. Forest Ecology and Management,2002,168:231-240
    [123] Nordgren A, Ottonsson Lofvenius M, Hogberg M, et al. Tree root and soil heterotrophic respirationas revealed by girdling of boreal Scotspine forest: extending observations beyond the first year [J].Plant, Cell andEnvironment,2003,26:1287-1296
    [124] Swinnen J. Evaluation of the use of a model rhizodeposition technique to separate root and microbialrespiration in soil [J]. Plant and Soil,1994,165:89-101
    [125] Shengjing Shi, Alan E. Richardson, Maureen O’Callaghan, et al. Effects of selected root exudatecomponents on soil bacterial communities [J]. Fems microbiology ecology,2011,77:600-610
    [126] Paterson E, Gebbing T, Abel C, et al. Rhizodeposition shapes rhizosphere microbial communitystructure in organic soil [J]. New Phytologist,2007,173:600-610
    [127] Henry S, Texier S, Hallet S, et al. Disentangling the rhizosphere effect on nitrate reducers anddenitrifiers: insight into the role of root exudates [J]. Environmental Microbiology,2008,10:3082-3092
    [128] Faina Kamilova, Lev V. Kravchenko, Alexander I. Shaposhnikov, et al. Organic acids, sugars, andL-tryptophane in exudates of vegetables growing on stonewool and their effects on activities ofrhizosphere bacteria [J]. Molecular Plant-Microbe Interactions,2006,19(3):250-256
    [129] Gao Yanzheng, Ren Lili, Ling Wanting, et al. Desorption of phenanthrene and pyrene in soils by rootexudates [J]. Bioresource Technology,2010,101(4):1159-1165
    [130] Ling W, Ren L, Gao Y, et al. Impact of low-molecular-weight organic acids on the availability ofphenanthrene and pyrene in soil [J]. Soil Biology and Biochemistry,2009,41(10):2187-2195
    [131]赵振华,蒋新,郎印海,等.几种低分子量有机酸对红壤中DDTs类物质释放动力学的影响[J].环境科学,2006,27(8):1665-1670
    [132] White JC, Parrish ZD, Isleyen M, et al. Influence of citric acid amendments on the availability ofweathered PCBs to plant and earthworm species [J]. International Journal of Phytoremediation,2006,8(1):63-79
    [133] Foster NW, Beauchamp EG, Corke CT. Microbial activity in a pinusbanksiana Lamb. forst flooramended with nitrogen and carbon [J]. Candiana Journal of Soil Science,1980,60:199-209
    [134] McGill WB, Canon KR, Robertson JA, et al. Dynamics of soilmicrobial biomass and water-soluableorganis C in Breton L after50years ofcropping to two rotations [J]. Canadian Journal of Soil Science,1986,66:1-19
    [135] Coody PN, Sommers LE, Nelson DW. Kinetics of glucose uptake by soil microorganisms [J]. SoilBiology&Biochemistry,1986,18:283-289
    [136] Kuzyakov Y, Hill PW and Jones DL. Root exudate components change litterdecomposition in asimulated rhizosphere depending on temperature [J]. Plant and Soil,2007,290:293-305
    [137] Materechera SA, Dexter AR, Alston AM. Formation of aggregates by plant roots in homogenizedsoils [J]. Plant and Soil,1992,142:69-79
    [138] Stevenson FJ. Organic forms of soil nitrogen [M]. USA.1982,67-122
    [139] Xu CX, Wu SR. Composition of organic nitrogen in Lousoil and its changes under fertilizationconditions [J]. Chinese Journal of Soil Science,1991,27(2):54-56
    [140] Kraffczyk I, Trolldenier G, Beringer H. Soluble root exudates of maize: influence of potassiumsupply and rhizosphere microorganisms [J]. Soil Biology and Biochemistry,1984,16:315-322
    [141] Jones DL, Kielland K. Soil amino acid turnover dominates the nitrogen fluxin permafrost-dominatedtaiga forest soils [J]. Soil Biology and Biochemistry,2002,34:209-219
    [142] Lipson DA, Monson RK. Plant-microbe competition for soil amino acids in the alpine tundra: effectsof freeze-thaw and dry-rewet events [J]. Oecologia,1999,113:406-414
    [143] Jones DL, Healey JR, Willett VB, et al. Dissolved organic nitrogen uptake by plants-an important Nuptake pathway [J]. Soil Biology and Biochemistry,2005,37:413-423
    [144] Lipson DA, Raab TK, Schmidt SK, et al. An empirical model of amino acid transformations in analpine soil [J]. Soil Biology and Biochemistry,2001,33:189-198
    [145] Chapin FS, Matson PA, Mooney HA. Terrestrial nutrient cycling. In: principles of terrestrialecosystem ecology [M]. Springer, New York,2002,97-122
    [146] Lambers H, Chapin SF, Pons T. Plant physiological ecology [M]. Springer, New York,1998
    [147]任华峰,单德臣,李淑芹.石油污染土壤微生物修复技术的研究进展[J].东北农业大学学报,2004,35(3):373-376
    [148] Banks MK, Mallede H, Rathbone K. Rhizosphere microbial characterization in petroleumcontaminated soil [J]. Soil Sediment Contamination,2003,12(3),371-385
    [149] Labuzek S, Hupert Kocurek KT, Skurnik M. Isolation and characteriastion of new Planococcus sp.Strain able for aromatic hydrocarbons degradation [J]. Acta Microbiol Pollution,2003,52(4):395-404
    [150]朱颖旻,许铭翾,刘庆华,等.一株动性球菌ZOYM的初步鉴定及其内源性质粒pPcz1和pPcz2的分析[J].微生物学通报,2009,36(9):1294-1298
    [151]郭万奎,侯兆伟,石梅,等.短短芽孢杆菌和蜡状芽孢杆菌采油机理及其在大庆特低渗透油藏的应用[J].石油勘探与开发,2007,34(1),73-78
    [152]张向东,杨谦.酒精耐受性短小芽孢杆菌在硝基苯降解中的应用[J].化工进展(增刊),2009,28,548-551
    [153]丁克强,骆永明.生物修复石油污染土壤[J].土壤,2001,4:179-184,196
    [154] Gudin, C, Syratt WJ. Biological aspects of land rehabilitation following hydrocarbon contamination[J]. Environmental Pollution,1975,8:107-112
    [155] Aprill W, Sime RC. Evaluation of prairie grasses for stimulating polycyclic aromatic hydrocarbontreatment in soil [J]. Chemosphere,1990,20:253-265
    [156] Amundson R, Austin AT, Schuur AG, et al. Global patterns of the isotope composition of soil andplant nitrogen [J]. Global Biogeochemistry,2003,17:1-10
    [157] Aranibar JN, Otter L, Macko SA, et al. Nitrogen cycling in the soil-plant system along a precipitationgradient in the Kalahari sands [J]. Global Change Biology,2004,10:359-373
    [158]Wang Zhoufeng, Wang Wenke, Liu Weiguo. Study on changes of plant and soil δ15N under soilpetroleum contaimination [A]. ISWREP,2011,3:2158-2161
    [159] Pfaemder FK, Buckley EN. Effects of petroleum on microbial communities [M]. In: Atlas RH (Ed).Petroleum Microbiology. Macmillan Publishing Company, New York,1984:507-536
    [160] Chang ZZ, He JJ. Effects of crude oil contamination on the rates of nitrogen mineralization andnitrification in soil [J]. Rural Eco-environment,1998,14:39-42
    [161]杨万勤,钟章成,陶建平,等.缙云山森林土壤酶活性与植物多样性的关系[J].林业科学,2001,37(4):124-128
    [162]杨万勤,钟章成,韩玉萍.缙云山森林土壤酶活性的分布特征,季节动态及其与四川大头茶的关系研究[J].西南师范大学学报,1999,24(3):318-324

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700