用户名: 密码: 验证码:
汽油HCCI发动机电控液压气门性能及仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了缓解石油存量有限和需求不断增加形成的矛盾,许多国家开始逐渐使用生物燃料,包括乙醇、甲醇和生物柴油等,替代石油系燃料。世界上石油储量有限和需求不断增长形成矛盾,而生物能源的开发利用又受食物的供应、生态环境承受能力的限制。提高内燃机燃烧现有能源——生物能源和传统石油的输出效率,并降低发动机输出单位能量的二氧化碳和污染物排放的技术和方法,可以缓解能源危机。HCCI燃烧具有减少排放物的潜力,部分负荷工况已经达到与汽车排气后处理器相当的水平。通过使用可变气门机构改变压缩前缸内残余已燃工质的量,在不对进气加热和改变压缩比的情况下,通过缸内残余已燃工质加热可以实现汽油均质压燃。采用不同的气门控制策略,控制气缸内捕集废气的百分比和工质的混合过程,可改善HCCI燃烧。
     可变配气机构是实现汽油发动机HCCI燃烧模式的关键技术,本文依托973项目低温燃烧新型的汽油机复合燃烧系统的需求,针对现有液压气门机构存在的不足,自主开发了双活塞驱动液压配气机构。通过VCU调节启闭触发信号,实现了气门定时大范围可变,通过液压阀和电液比例阀调节,实现了升程可调。为了掌握设计高速气门的理论和技术,建立电液气门运动数学模型,并搭建物理样机试验和虚拟样机计算平台,探索了影响电液气门性能的因素。本文各章节主要内容包括:
     第一章,综述了汽油HCCI发动机电控液压气门的研究背景,分析了HCCI燃烧的特点和实现方式。通过使用主动可调的可变气门机构(VVT),可以捕集已燃废气,在不对进气加热和改变压缩比的情况下实现HCCI燃烧。通过不同的气门控制策略,可以调节压缩前缸内残余已燃工质的量,调节HCCI燃烧放热速率和缸内的压升率。近年来处于试验研究和使用的全可变配气机构,主要有电控机械全可变配气机构、电磁驱动全可变配气机构、电控气压驱动全可变配气机构、电控液压全可变驱动配气机构以及凸轮和电控液压配合凸轮驱动全可变配气机构。电控液压驱动全可变配气机构作为很有希望取代传统的配气机构,本文对其进行了分类,并叙述了其研究现状。
     第二章,建立液压配气机构模拟仿真计算模型。研究电控液压双活塞配气机构工作过程,建立了电控双活塞液压气门的电子、液压和机械结构的数学模型。基于ZS1105四冲程发动机缸盖,设计并确定了模型参数。以Visual fortran作为求解器,VisualC++作为统一编译和调用工具,用AMEsim、Adams和Matlab构建了仿真平台。最后,搭建了物理样机试验平台,对电控液压双活塞配气机构模型进行了验证。
     第三章,对液压双活塞气门落座冲击和气门完全开启时活塞落座冲击,提出了弹簧缓冲、带液压节流孔的弹簧缓冲以及多节流孔缓冲三种模型。研究了三种模型的方案和原理,并建立子模拟模型。采用牛顿插值积分算法,确定了多节流孔方案中孔的直径和节流孔布置位置。联合液压配气机构的整体模型,对液压配气机构和缓冲机构参数的影响进行了研究。用子模型分析了大、小活塞直径对液压缓冲特性的影响。用液压配气机构的仿真模型,研究了液压配气机构关键参数和缓冲结构参数,对气门落座和完全开启活塞落座缓冲性能的影响。
     第四章,在液压气门机构模型及缓冲机构模型的基础上,通过黄金分割算法和试算法得到液压机构合理的参数值。通过遗传算法对大活塞直径、小活塞直径和节流孔直径等参数进行了优化,确定最优的液压气门性能和最小的落座冲击。
     第五章,研究液压系统关键参数对液压配气机构的开启和关闭过程的影响。首先,通过仿真模型计算,研究液压管路长度、液压管路直径和液压油粘度,对气门升程曲线、启闭延时和气门落座速度的影响。确定不同液压油温度下,气门开启和关闭的延时,并对延时波动进行统计分析。基于液压配气机构模型和试验,研究液压气门运行参数可控性,确定气门升程控制方案和参数。最后,对提高气门开启频率和排气门二次开启的可行性研究,分析转速对气门型线的影响,提出通过调整开启和关闭延时改善提高转速影响的方案。
     最后,搭建了液压气门HCCI发动机试验平台,通过试验确定液压油温度和压力等参数对系统延时的影响,建立气门启闭延时的三维MAP控制图。建立电控液压气门模糊和PID结合的自适应控制系统,实现气门启闭相位的准确控制。通过试验分析,排气门关闭定时、进气门开启定时和气门升程对HCCI发动机性能有很大的影响。最后,建立HCCI发动机液压气门控制策略。
In order to alleviate contradiction between limited reserves of petroleum andincreasing demands, many countries begin to use biofuels including ethanol, methanol andbiodiesel, as alternative to petroleum-based fuels. The contradiction among utilization ofbio-energy, food supply, and capacity limit of ecological environment also exists.Technologies and methods of improving efficiency of internal combustion engine to saveexisting petroleum-based energy and bio-energy, and reducing emissions of carbon dioxideand pollutants can alleviate the energy crisis. HCCI combustion has potential to reduceemissions, in part load condition which reaches a considerable low level emission withoutexhaust gas aftertreatment. Different valve control strategies to control percentage ofexhaust gas trapped into the cylinder and control the mixing process of working fluid, canoptimize HCCI combustion process.
     Variable valve is the key technology to achieve gasoline HCCI combustion at engine.To support the973project of low-temperature combustion research and developing HCCIengine, a dual-piston-driven hydraulic variable valve train (HVVT) is self-developed toovercome the shortcomings of existing valve system. Method of regulating the open andclose trigger signal from VCU achieves a wide range of variable valve timing. The HVVTlift is adjustable by adjusting the electro-hydraulic proportional valve. In order to masterthe design method of HVVT, the mathematical models of electro-hydraulic valve motion isestablished. A physical prototype and a virtual prototype platform are built to explorefactors that affect performance of HVVT. Main contents of this article are listed below.
     In chapter Ⅰ, HCCI combustion engine with HVVT is reviewed. Exhaust gas trappedby adjusting variable valve train (VVT), can achieve HCCI combustion without intake airheated and changing compression ratio. Different valve control strategies can adjustamount of burnt residual gas in cylinder (burnt gas fraction, BRF), to adjust heat releaserate of HCCI combustion and rise rate of cylinder pressure. In recent years, many fullyvariable valve trains were designed, such as electronically controlled mechanical variablevalve train, electro-magnetic fully variable valve train, electro-pneumatic fully variablevalve train, electro-hydraulic fully variable valve train, and cam coupled with electronicallycontrolled fully variable valve. HVVTs are promising to replace the traditional valve,which are classified.
     Chapter Ⅱ, work process of the dual piston driven hydraulic valve train is analyzedand a mathematical model of HVVT is established. Design parameters are determinedbased on the cylinder head of a ZS1105four-stroke engine. Based on mathematical modelsand physical prototypes, a simulation platform is built with AMEsim, Adams and Matlab,using Visual Fortran as a solver and Visual C++as a unified compiler, to establish platformof the dual piston driven Fully Variable Valve System(FVVS) model.
     Chapter Ⅲ, buffer mechanisms including spring buffer, orifice+spring buffer, andmulti-orifices buffer are used to reduce shock in the buffer stage of valve piston fully openand seated. After establishing and analyzing the buffer mechanisms and submodels ofFVVS, structural parameters are analoged. Assuming deceleration is uniform in the seatingprocess, Newton interpolation algorithm is used to optimize the number, diameters andarrangement of orifices. In conjunction with the simulation model of the hydraulicvalvetrain, the parameters of the hydraulic valve buffer simulation model are analyzed.
     Chapter Ⅳ, utilizing hydraulic valve train model established in the previous chapter,golden section algorithm and trial method are applied to get reasonable parameter values ofhydraulic valve mechanism. Larger piston diameter, smaller piston diameter and orificediameters and other key parameters are optimized by a genetic algorithm.
     Chapter Ⅴ, HVVT key parameters that affect open delay and close delay are analyzedby simulating and test. The effect of pipe length, hydraulic line diameter, oil viscosity andoil temperature is analyzed. Statistical analysis is undertaken to determine the delayfluctuation of valve open and close in different temperatures. With engine speed increasing,valve open frequency increases, the impact of valve open and close delay increases,continuous fully open state extends. Based on the hydraulic valve train models,controllability of HVVT operating in high frequency is analyzed.
     Finally, the hydraulic valve train is tested at engine. In order to achieve an accuratecontrol of the electro-hydraulic valve delay to meet requirements of the nonlinear delay ofthe electro-hydraulic valve train,a fuzzy and PID control system with three-dimensionalmap of open and close delay is established to control hydraulic valve. According to thehydraulic valve engine test results, the hydraulic mechanism parameters of HVVT aredetermined and an electro-hydraulic valve control strategy is built for HCCI engine.
引文
[1] BP International Oil and Gas Company. Statistical review of world energyfull_report2011[DB/OL]. http://www.bp.com/statisticalreview.
    [2]田春荣.2010年中国石油进出口状况分析[J].国际石油经济,2011-03:15-25.
    [3]李克让.土地利用变化和温室气体净排放与陆地生态系统碳循环[M].北京:气象出版社,2002.
    [4] Booz&Company Synergistics Limited, The eight overarching china automotivetrends that are revolutionizing the global auto industry [DB/OL]. The WorldEcological Forum,2010-07. http://autonews.gasgoo.com/commentary/the-eight-overarching-china-automotive-trends-that-090929.shtml.
    [5] Matthias Holweg, The competitive status of the UK automotive industry [M].PICSIE Books,2009.
    [6] P. Wolters, W. Salber, J. Geiger and M. Duesmann, Controlled auto ignitioncombustion process with an electromechanical valve train [J], SAE paper NO.2003-01-0032,2003.
    [7] O. Lang, W. Salber, J. Hahn, S. Pischinger, K. Hortmann and C. Bücker,Thermodynamical and mechanical approach towards a variable valve train forthe controlled auto ignition combustion process [J],SAE paperNO.2005-01-0762,2005
    [8] Iikka J rvi, VAVACT-variable valve actuation mechanism [J]. SAE paperNO.2003-01-0025,2003.
    [9] Peter Kreuter, Peter Heuser, Joachim Reinicke-Murmann, Rüdiger Erz, UlrichPeter and Oliver B cker, Variable valve actuation-switchable andcontinuously variable valve lifts [J]. SAE paper NO.2003-01-0026,2003.
    [10] Wilhelm Hannibal,Rudolf Flierl,Lutz Stiegler, Roland Meyer. Overview ofcurrent continuously variable valve lift systems for four stroke sparkignition engines and the criteria for their design ratings [J]. SAE paperNO.2004-01-1263,2004.
    [11] Christoph Luttermann, Erik Schünemann and Norbert Klauer, EnhancedVALVETRONIC technology for meeting sulev emission requirements [J]. SAEpaper NO.2006-01-0849,2006.
    [12] Yoshihiko Yamada, Kenichi Machida and Tetsuo Yamazaki, Development ofcontinuous variable valve event and lift control system for SI engine (VEL)[J]. SAE paper NO.2008-01-1348,2008.
    [13] Takaya Fujita, Kaoru Onogawa, Shinichi Kiga, Yosuke Mae, Yuzo Akasaka andKazuto Tomogane, Development of innovative variable valve event and lift(VVEL) system [J]. SAE paper NO.2008-01-1349,2008.
    [14] Yuzou Akasaka, Shinichi Kiga, Makoto Kobayashi and Daisuke Watanabe,Lubrication technology and analysis for variable valve event and lift (VVEL)System [J]. SAE paper NO.2009-01-1837,2009.
    [15] Marcin Marek Okarmus, Rifat Keribar and Edward Suh, Application of a generalplanar kinematics and multi-body dynamics simulation tool to the analysisof variable valve actuation systems [J]. SAE paper NO.2010-01-1193,2010.
    [16] Wilhelm Hannibal,Rudolf Flierl, Lutz Stiegler, Roland Meyer. Overviewof current continuously variable valve lift systems for four stroke sparkignition engines and the criteria for their design ratings [J]. SAE paperNO.2004-01-1263.
    [17] Chihaya Sugimoto, Hisao Sakai and Atsushi Umemoto,Study on variable valvetiming system using electromagnetic mechanism[J],SAE paper NO.2004-01-1869
    [18] Y. Wang, T. Megli, M. Haghgooie, K.S. Peterson and A.G. Stefanopoulou,Modeling and control of electromechanical valve actuator [J],SAE paperNO.2002-01-1106.
    [19] Wang Yan. Camless engine valvetrain: Enabling technology and controltechniques [D], California:University of California,2001
    [20] Alessandro di Gaeta, Veniero Giglio and Giuseppe Police, Model-baseddecoupling control of a magnet engine valve actuator [J], SAE paperNO.2009-01-2751.
    [21] Katherine S.Peterson, Control methodologies for fast&low impactelectromagnetic actuators for engine valves [D], Michigan: University ofMichigan,2005.
    [22] Chun Tai. Modeling and control of camless engine valvetrain systems [D],California: University of California,2002.
    [23] Chun Tai, Tsu-Chin Tsao. Adaptive nonlinear feedforward control of anelectrohydraulic camless Valvetrain,2000American Control Conference, June2000[C].US:IEEE PRESS,2009
    [24] Chun Tai, Tsu-Chin Tsao, Norbert A. Schorn and Michael B. Levin. Increasingtorque output from a turbodiesel with camless valvetrain [J]. SAE paper NO.2002-01-1108,2002.
    [25] Peter Bejoum Eyabi. Modeling and sensorless control of solenoid actuators[J], Ohio: Ohio State University,2003.
    [26] I. Haskaran, V V Kokotovic and L A Mianzo. Control of an electro-mechanicalvalve actuator for a camless engine [J], Int. J. Robust Nonlinear Control,2004(14):561-579.
    [27] Alessandro di Gaeta, Veniero Giglio and Giuseppe Police,Output observerbased feedback for soft landing of electromechanical camless valvetrainactuator, Proceedings of the American Control Conference, Anchorage,2002[C]. Anchorage:IEEE PRESS,2002
    [28] C. Acosta Lua, B. Castillo Toledo, M. D. Di Benedetto, and S. Di Gennaro,Output feedback regulation of electromagnetic valves for camless engines,Proceedings of the2007American control conference, USA, July11-13,2007[C]. US:IEEE PRESS,2007
    [29] Fitsos P. Harralson J. Valve Timing by Means of a Rotary Actuator.[J].SAE paper NO.1999-01-0330,1999.
    [30] Junfeng Zhao and Rudolf J. Seethaler. A fully flexible valve actuationsystem for internal combustion engines [J]. ASME Transactions OnMechatronics,2010:1-10
    [31] Alan Warburton, Lain Fleming, James Scott and Neil Butler.,IntelligentValve Actuation (IVA) System for Gasoline and Diesel Engines [J], SAE paperNO.2005-01-0772,2005.
    [32] John P. Watson and Russell J. Wakeman,Simulation of a pneumatic valveactuation system for internal combustion engine [J], SAE paper NO.2005-01-0771,2005.
    [33] Sasa Trajkovic, Alexandar Milosavljevic, Per Tunest l and Bengt Johansson.Wakeman,FPGA controlled pneumatic variable valve actuation [J],SAE paperNO.2006-01-0041,2006
    [34] Jia Ma,Harold Schock,Urban Carlson, Anders Hoglund and Mats Hedman,Analysis and modeling of an electronically controlled pneumatic hydraulicvalve for an automotive engine [J],SAE paper NO.2006-01-0042,2006
    [35] Jia Ma, Tom Stuecken,Harold Schock,Guoming Zhu and Jim Winkelman,ModelReference Adaptive Control of a Pneumatic Valve Actuator for InfinitelyVariable Valve Timing and Lift [J],SAE paper NO.2007-01-1297,2007.
    [36] Jia Ma, Guoming Zhu, Harold Schock and Jim Winkelman, Adaptive control ofa pneumatic valve actuator for an internal combustion engine, Proceedingsof the2007American Control Conference, July11-13,2007[C]. US:IEEEPRESS,2009
    [37] Guoming G. Zhu, Jia Ma, and Harold Schock, An iterative algorithm formodel-based predictive control of an electro-pneumatic valve actuator,2009American Control Conference, June10-12,2009[C]. US:IEEE PRESS,2009
    [38] Jia Ma, Guoming Zhu and Harold Schoc,A dynamic model of an electro pneumaticvalve actuator for internal combustion engines [J], Journal of DynamicSystems, Measurement, and Control,2010,3(132):1-10.
    [39] Jia Ma, Guoming G. Zhu, and Harold Schock. Adaptive control of a pneumaticvalve actuator for an internal combustion engine [J]. IEEE Transactions OnControl Systems Technology,2011,07(4):
    [40] Sergio Federal de cunha. Computer controlled synchronization of internalcombustion engine valves by means of a hydraulic actuation[D].Berkeley:University of California,1997.
    [41] Sérgio Barros da Cunha, J. Karl Hedrick and Albert P. Pisano. Variable valvetiming by means of a hydraulic actuation [J]. SAE paper NO.2000-01-1220,2000.
    [42] Christopher W. Turner, Guy R. Babbitt, Christopher S. Balton, Miguel A.Raimao and Daniel D. Giordano. Design and control of a two-stageelectro-hydraulic valve actuation system [J].SAE Paper NO.2004-01-1265,2004.
    [43] Dirk Denger, Karsten Mischker. The electro-hydraulic valvetrain systemEHVS-system and potential[J].SAE Paper NO.2005-01-0774,2005.
    [44] Ahmad M. Sabri. Regenerative hydraulic variable valve actuator for internalcombustion engines [D].Wisconsin Madison: University of Wisconsin Madison,1999.
    [45] Lucio Postrioti, Michele Battistoni, Luigi Foschini and Roberto Flora. Camprofile switching (CPS) and phasing strategy vs. fully variable valve train(FVVT) strategy for transitions between spark ignition and controlled autoignition modes [J]. SAE paper NO.2005-01-0766,2005.
    [46] Michele Battistoni, Francesco Mariani, Lucio Postrioti, Carlo N. Grimaldi,Marcello Cristiani, Michele Petrone and Stefano Petrecchia. Numericalanalysis of a new concept variable valve actuation system [J].SAE Paper NO.2006-01-3008,2006.
    [47] Michele Battistoni, Luigi Foschini, lucio postrioti and marcello cristiani.Development of an electro-hydraulic camless VVA system [J]. SAE paperNO.2007-24-0088,2007.
    [48] Lucio Postrioti, Luigi Foschini Michele, Battistoni Marcello and Cristiani.experimental and numerical study of an electro-hydraulic camless VVA system[J].SAE Paper NO.2008-01-1355,2008
    [49] Michele Battistoni, Francesco Mariani, Luigi Foschini and MarcelloCristiani.A parametric optimization study of a hydraulic valve actuationsystem [J]. SAE Paper NO.2008-01-1356,2008
    [50] Lucio Postrioti, Michele Battistoni, Luigi Foschini and Roberto Flora.Application of a fully flexible electro-hydraulic camless system to aresearch [J] SAE paper NO.2009-24-0076,2009.
    [51] Michele Battistoni and Francesco Mariani. Fluid dynamic study ofunthrottled part load si engine operations with asymmetric valve lifts [J].SAE paper NO.2009-24-0017,2009.
    [52] Michele Battistoni, Angelo Cancellieri and Francesco Mariani. Steady andtransient fluid dynamic analysis of the tumble and swirl evolution on a4vengine with independent intake valves actuation [J]. SAE paper NO.2008-01-2392,2008.
    [53] Carlo N. Grimaldi, Michele Battistoni and Francesco Mariani. Experimentaland Numerical Analysis of Charge Motion Characteristics Depending on IntakeValves Actuation Strategies [J]. SAE paper NO.2005-01-0242,2005.
    [54] Carlo N. Grimaldi, Michele Battistoni and Francesco Mariani. Dependenceof Flow Characteristics of a High Performance S.I. Engine Intake System onTest Pressure and Tumble Generation Conditions-Part2: NumericalAnalysis [J]. SAE paper NO.2004-01-1531,2004.
    [55] Francesco Mariani and Michele Cavalletti. Flow characterization of a highperformance S.I. engine intake system-part1: experimental analysis [J].SAE paper NO.2003-01-0623,2003.
    [56] S. Gehrke, C. Weiskirch and P. Eilts. Development and implementation ofa variable valve actuation system to a HD diesel engine [J]. SAE paperNO.2008-01-1359,2008.
    [57] Ukpai I. Ukpai. Control system design for an electro hydraulic fullyflexible valve actuator with mechanical feedback for a camless engine.Proceedings of the2007American Control Conference,2007-07-11,[C],America:IEEE PRESS,2007.
    [58] Norman K. Bucknor. Simulation of a camless engine valve actuator withmechanical feedback[C].Proceedings of the ASME2008International DesignEngineering Technical Conferences&Computers and Information inEngineering Conference,2008-08-3
    [59] Zheng (David) Lou. Camless variable valve actuation designs with two-springpendulum and electrohydraulic latching[J].SAE Paper NO.2007-01-1295,2007.
    [60] Mechael M. Schechter, Michael B. Levin. Camless engine [J].SAE paperNO.960581.
    [61] Mark D.Anderson, Tsu-Chin Tsao and Michael B. Levin. Adaptive lift controlfor a camless electro hydraulic valvetrain [J].SAE paper NO.981029.
    [62] Max P. Gassman and Mark A. Schoessler. Electrohydraulic valve with cylinderpiston velocity feedback [J].SAE paper NO.981486.
    [63] Jussi Aaltonen, Kalevi Huhtala and Matti Vilenius. Electrohydraulicvalvetrain for extreme value diesel engine [J]. SAE Paper NO.2002-01-1282,2002.
    [64] John Steven Brader. Development of a piezoelectric controlled hydraulicactuator for a camless engine [D].South Carolina:University of SouthCarolina,2001.
    [65] John Steven Brader. Design, control, characterization, and simulation ofpiezoelectric piloted hydraulic actuators [D].South Carolina:Universityof South Carolina,2003.
    [66] J. Pohl, A. Warell, P. Krus and J.-O. Palmberg. Conceptual design of ahydraulic valve train system [J]. Acta Polytechnica.2001(41):20-28
    [67] J. Pohl, A. Warell, P. Krus, and J.-O. Palmberg. Modeling and validationof a fast switching valve intended for combustion engine valve trains [J].IMechE2002(216):1-5.
    [68] Raghav H. V. and A. Ramesh. A new hydraulic servo variable valve actuationconcept simulation study [J].SAE Paper NO.2007-01-1298,2007
    [69] W. Michael Axtell and David N. Rocheleau. Design of a dual piezoelelectriccontrolled electrohydraulic actuator. Proceedings of IDETC/CIE2006ASME2006International Design Engineering Technical Conferences&Computers andInformation in Engineering Conference,Philadelphia, Pennsylvania, Septem-ber10-13,2006[C]. US: ASME,2006.
    [70] J.W.G.Turner, M.D.Bassett, R.J.Pearson, G.Pitcher and K.J.Douglas. Newoperating strategies afforded by fully variable valve trains new variablevalve trains [J].SAE Paper NO.2004-01-1386,2004.
    [71] Ruth Book and Carroll E. Goering. Programmable electrohydraulic valve[J].SAE paper NO.1999-01-2,1999.
    [72] Jong-Cheol Lee, Chun-Woo Lee and James A.Nitkiewicz. The application ofa lost motion VVT system to a DOHC SI engine [J].SAE Paper NO.950816.
    [73] Haoran Hu, Mark A.Israel and Joseph M.Vorih. Variable valve actuation anddiesel engine retarding performance [J].SAE Paper NO.970342.
    [74] Takaaki Tsukui, Koji Tsutsumizaki and Mutsuo Nakajima. Development of thedirectly actuated variable valve control system [J]. SAE Paper NO.1999-01-3319,1999.
    [75] Niculae Negurescu, Constantin Pana, Marcel Ginu Popa and AlexandruRacovitza. Variable valve control systems for spark ignition engine [J].SAEPaper NO.2001-01-0671,2001.
    [76] Harald Fessler and Marco Genova. An electro-hydraulic“lost motion”VVAsystem for a3.0liter diesel engine[J].SAE Paper NO.2004-01-3018,2004
    [77] John Schwoerer, Krishna Kumar, Brian Ruggiero and Bruce Swanbon.Lost-motion vva systems for enabling next generation diesel engineefficiency and after-treatment optimization[J].SAE Paper NO.2010-01-1189
    [78] S Hanran Hu. Internal combustion engines with combined cam andelectro-hydraulic engine valve control.US,5839453[P/OL].1998-11-24
    [79]陈勤学,崔可润,朱国伟.中压共轨柴油机电控可变气门系统的试验研究[J].内燃机工程,2002(4):1-5.
    [80]陈勤学.中压共轨电控柴油机可变气门系统的研究[D].武汉:武汉理工大学,2002.11
    [81]李煜辉.中压共轨柴油机电控系统控制器设计与研究[D].武汉:武汉理工大学,2004.04
    [82]汪志刚.柴油机中压共轨系统大流量高速电磁阀的优化研究[D].武汉:武汉理工大学,2006.04
    [83]尹晓青.135型柴油机气门定时及升程的电控技术研究[D].武汉:武汉理工大学,2006.04
    [84]许回江.柴油机电-液驱动可变气门系统研究[D].武汉:武汉理工大学,2007.04
    [85]赵振峰,黄英,张付军,杨守平.一种新型电液驱动无凸轮配气机构特性研究[J].内燃机工程.2008(9):24-28
    [86]赵振峰,张付军,李国岫.液压自由活塞柴油机无凸轮电液驱动配气机构设计与试验研究[J].车用发动机.2010.12:50-55
    [87]刘嘉,黄英,张付军,赵振峰.液压自由活塞柴油机无凸轮电液驱动配气机构设计与试验研究[J].液压与气动.2010(4):17-20
    [88]李平伟.无凸轮电液气门执行机构研究[D].北京:北京理工大学,2008.
    [89] J.R. Liu, B. Jin, Y J Xie, Y Chen and Z T. Weng. Research on theElectro-hydraulic Variable Vavle Actuation System Based on a Three-wayProportional Reducing Vavle [J]. International Journal of AutomotiveTechnology,2009(10):2736.
    [90] Liu Jin-rong, Jin Bo, Xie Ying-jun, Chen Ying and Weng Zhen-tao.Investigation on the characteristics of a new high frequency three-wayproportional pressure reducing valve in variable valve system of automobileengine [J].Indian Journal of Engineering and Materials Sciences,2009.02(16):713.
    [91]刘金榕.基于高速电液阀的变气门执行系统关键技术研究[D].浙江:浙江大学,2009.
    [92]谢英俊,娄相芽,金波,刘金榕.电液可变气门高速开关阀用电磁铁设计与研究[J].工程设计学报.2010(2):138-145
    [93] Xie Yingjun, Gao Zhen, Jin Bo and Liu Jinrong. Frequency responseenhancement of variable valve system by employing peak and hold method [J].Indian Journal of Engineering and Materials Sciences,2010.08(10):275281
    [94]丁小川.高转速发动机电液可变气门实验系统设计与实验研究[D].浙江:浙江大学硕士论文,2008.06.
    [95]娄相芽.电液可变气门系统用高速开关阀及其电—机械转换器的研究[D].浙江:浙江大学硕士论文,2010.04.
    [96]高镇.高低压驱动方式的研究及其在电液变气门系统的应用[D].浙江:浙江大学硕士论文,2011.05.
    [97]舒歌群,桑海浪,韩睿,卫海桥.无凸轮电液驱动气门系统的建模与控制研究[J].小型内燃机与摩托车,2007(6):9-15.
    [98]苏炎玲.内燃机无凸轮电液驱动配气机构的设计与控制研究[D].天津:天津大学硕士论文,2004.
    [99]李志锐.基于电液驱动的内燃机无凸轮机构的设计与控制研究[D].天津:天津大学硕士论文,2005.
    [100]桑海浪.无凸轮电液驱动配气机构的控制研究[D].天津:天津大学硕士论文,2007.
    [101]王百键,李科,谭立武.新型四冲程发动机液压可变配气机构的动态仿真与分析[J].汽车工程.2006(8):725-728
    [102] P.K.Wong, L.M.Tam and K.Li. Modeling and simulation of a dual-modeelectrohydraulic fully variable valve train for four-stroke engines[J].International Journal of Automotive Technology,2008(5):509521
    [103]谢宗法,孔超,王建昕,刘树臣.发动机全可变液压气门机构进气性能的研究[J].内燃机学报.2009(5).
    [104]孔超.发动机全可变液压气门机构进气性能的研究[D].山东:山东大学,2009.
    [105]刘树臣.车用发动机连续可变配气系统的设计与动力学分析[D].山东:山东大学,2009.
    [106]卜海永.电控液压可变燃气门的设计开发[D].山东:山东大学,2010.
    [107]刘悦.电液驱动可变配气相位机构设计及仿真研究[D].吉林:吉林大学,2006.
    [108]徐大会.电控液压驱动全可变配气系统的开发及其性能研究[D].吉林:吉林大学,2007.
    [109]洪忠超.电控液压驱动配气机构开发及在发动机上的应用[D].吉林:吉林大学,2008.
    [110]张雁成.电控液压驱动配气系统的模拟分析[D].吉林:吉林大学,2009.
    [111]刘发发.缸内EGR策略对汽油CAI燃烧影响研究[D].吉林:吉林大学,2010.
    [112]王云开.无凸轮轴配气机构开发及在可控自燃发动机上的应用研究[D].吉林:吉林大学,2011.
    [113] N. B. Kaahaaina, A. J. Simon, P. A. Caton and C. F. Edwards. Use of dynamicvalving to achieve residual-affected combustion [J]. SAE Paper NO.2001-01-0549,2001
    [114] P. A. Caton, H. H. Song, N. B. Kaahaaina and C. F. Edwards. Strategiesfor achieving residual-effected homogeneous charge compression ignitionusing variable valve actuation [J]. SAE Paper NO.2005-01-0165,2005
    [115] Jeff Allen and Don Law. Production electro-hydraulic variable train fora new generation of IC engines [J].SAE Paper NO.2002-01-1109,2002
    [116] Fuerhapter, E. Unger,W. F. Piock and G.K. Fraidl, The new AVL CSI Engine–HCCI operation on a multi cylinder gasoline engine. SAE Paper NO.2004-01-0551,2004.
    [117] Nebojsa Milovanovic, Dave Blundell, Stephen Gedge and Jamie Turner,SI-HCCI-SI mode transition at different engine operating conditions[J].SAEPaper, NO.2005-01-0156,2005.
    [118] James Krasselt, David Foster, Jaal Ghandhi and Randy Herold.Investigations into the effects of thermal and compositional stratificationon HCCI combustion-part I: metal engine result. SAE Paper,2009-01-1105.
    [119] Kosuke Nagaya, Hiroyuki Kobayashi and Kazuya Koike. Valve timing and valvelift control mechanism for engines [J]. Mechatronics.2006(16):121–129
    [120] J.W.G. Turner, M.D. Bassett, R.J. Pearson, G. Pitcher and K.J. Douglas.NewOperating Strategies afforded by Fully Variable Valve Trains [J].SAE PaperNO.04ANNUAL-451,2004.
    [121] C. Schernus, F. van der Staay, H. Janssen and J. Neumeister. modeling ofexhaust valve opening in a camless engine [J].SAE Paper NO.2002-01-0376,2002.
    [122] Pradeep Gillella and Zongxuan Sun. Modeling and control design of a camlessvalve actuation system.2009American Control Conference, June10-12,2009[C]US:IEEE PRESS,2009
    [123] Zongxuan Sun and Tang-Wei Kuo. Transient control of electro-hydraulicfully flexible engine valve actuation system [J]. IEEE Transactions OnControl Systems Technology.2009,06:74-80
    [124] Zongxuan Sun. Electrohydraulic fully flexible valve actuation system withinternal feedback [J]. Journal of Dynamic Systems, Measurement, and Control.2009,03(131):1-8
    [125] Zongxuan Sun and Xin He. Development and control of electro-hydraulicfully flexible valve actuation system for diesel combustion research[J].SAE Paper NO.2007-01-4021.
    [126] Zongxuan Sun and David Cleary. Dynamics and control of anelectro-hydraulic fully flexible valve actuation system,2003AmericanControl Conference.2003-06[C], US:IEEE PRESS,2003
    [127] Robert Stewart, Design of electro-hydraulic controlled poppet valves.Southern Queensland: University of Southern Queensland [D].2007.11
    [128] M.-S. S. Ashhab and A. G. Stefanopoulou, J. A. Cook and M. B. Levin.Control-oriented model for camless intake process-part I [J].Transactionsof the ASME,2000,03(122):122-131
    [129] M.-S. S. Ashhab and A. G. Stefanopoulou, J. A. Cook and M. B. Levin. Controlof camless intake process-part II [J]. Transactions of the ASME,2000,03(122):131-140
    [130] Thomas C. Hanks and Dr. John H. Lumkes. Adaptive control system forelectrohydraulic camless engine gas valve actuator.2005American ControlConference, June2005[C],US:IEEE PRESS,2003
    [131] Philipp Adomeit, Andreas Sehr, Rolf Weinowski, Kai Hoffmann and Dirk Abel.Operation strategies for controlled auto ignition gasoline engines [J].SAEPaper NO.2009-01-0300,2009.
    [132] James F. Sinnamon. Co-simulation analysis of transient response andcontrol for engines with variable valvetrains [J].SAE Paper,2007-01-1283
    [133] F. Bozza, A. Gimelli and R. Tuccillo. The Control of a VVA-Equipped SIEngine Operation by Means of1D Simulation and Mathematical Optimization[J]. SAE Paper NO.2002-01-1107,2007
    [134] Mika Herranen, Tapio Virvalo, Kalevi Huhtala, Matti Vilenius and GostaLiljenfeldt. Comparison of control strategies of an electro hydraulic valveactuation system [J], SAE paper NO.2009-01-0230,2009.
    [135] Hajime Hosoya, Hidekazu Yoshizawa, Satoru Watanabe, Naoki Tomisawa andKenichi Abe. Development of new concept control system for valve timingcontrol [J], SAE paper NO.2000-01-1226,2000.
    [136] Kathleen M. Misovec, Bruce G. Johnson, Gary Mansouri, Oded E. Sturman andSteven Massey. Digital valve technology applied to the control of ahydraulic valve actuator [J], SAE paper NO.1999-01-0825,1999.
    [137] Law D. Kemp D. Allen J. Kirkpatrick G. and Copland T. Controlled combustionin an IC-engine with a fully variable valve train [J].SAE paper NO.2001-01-0251,2001
    [138] D. Law, J. Allen and R. Chen, On the mechanism of controlled auto-ignition,SAE NO.2002-01-0421,2001.
    [139] J. Allen and D. Law. Variable valve actuated controlled auto-ignition:speed-load maps and strategic regimes of operation, SAE.2002-01-0422.
    [140] Vladimir Pastrakuljic. Design and Modeling of a New Electro HydraulicActuator [D]. Toronto: University of Toronto,1995
    [141] Navid Niksefat. Design and experimental evaluation of robust controllersfor electro-hydraulic actuators [D]. America: University of Manitoba,2002
    [142] Patrick A. Caton. Residual-effected homogeneous charge compressionignition using variable valve actuation [D]. Virginia: Stanford university,2005
    [143] Mark Karpenko. Quantitative fault tolerant control design for a hydraulicactuator with a leaking piston [D]. America: University of Manitoba,2008
    [144] Thomas Leland Dresner. Multi-input CAM-actuated mechanisms and theirapplication to IC engine variable valve timing [D]. Virginia: StanfordUniversity,1988
    [145] Tim Lancefield, Ian Methley and DaimlerChrysler Berlin. The applicationof variable event valve timing to a modern diesel engine [J].SAE paper2000-01-1229,2000
    [146] Tim Lancefield1, Nick Lawrence1, Afif Ahmed and Hedi Ben Hadj Hamouda.“VLD” a flexible, modular, cam operated VVA system giving variable valvelift and duration and controlled secondary valve openings. SIA Conferenceon Variable Valve Actuation,November2006[C]US:IEEE PRESS,2006
    [147] Mingfa Yao, Zhaolei Zheng, Haifeng Liu. Progress and recent trends inhomogeneous charge compression ignition (HCCI) engines [J]. Progress inEnergy and Combustion Science.2009,06:398-437
    [148] Ozaki J, Iida N. Effect of degree of unmixedness on HCCI combustion basedon experiment and numerical analysis. SAE paper2006-32-0046,2006.
    [149] H. Zhao, Z. Peng, J. Williams and N. Ladommatos. Understanding the Effectsof Recycled Burnt Gases on the Controlled Auto Ignition (CAI) Combustionin Four-Stroke Gasoline Engines[J],SAE Paper NO.2001-01-3607,2001
    [150] Aaron Oakley,Hua Zhao Nicos,Ladommatos,Tom Ma,HCCI Combustion Phasingwith Closed-Loop Combustion Control Using Variable Compression Ratio in aMulti Cylinder Engine [J]. SAE Paper NO.2003-01-1830.2003
    [151] Aristotelis Babajimopoulos, George A. Lavoie and Dennis N. Assanis,Modeling HCCI Combustion with High Levels of Residual Gas Fraction–AComparison of Two VVA Strategies [J].SAE Paper NO.2003-01-3220
    [152] Michael Mladek and Christopher H. Onder. A Model for the Estimation ofInducted Air Mass and the Residual Gas Fraction using Cylinder PressureMeasurements, SAE paper NO.2000-01-0958,2000
    [153] James F. Sinnamon and Mark C. Sellnau. A New Technique for Residual GasEstimation and Modeling in Engines[J], SAE paper NO.2008-01-0093,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700